首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used positron emission tomography (PET) to investigate the neural correlates of selective attention in humans. We examined the effects of attending to one side of space versus another (spatial selection) and to one sensory modality versus another (intermodal selection) during bilateral, bimodal stimulation of vision and touch. Attention toward one side resulted in greater activity in several contralateral areas. In somatosensory cortex, these spatial attentional modulations were found only when touch was relevant. In the intraparietal sulcus, spatial attentional effects were multimodal, independent of the modality attended. In occipital areas, spatial modulations were also found during both visual and tactile attention, indicating that tactile attention can affect activity in visual cortex; but occipital areas also showed more activity overall during visual attention. This suggests that while spatial attention can exert multimodal influences on visual areas, these still maintain their specificity for the visual modality. Additionally, irrespective of the attended side, attending to vision activated posterior parietal and superior premotor cortices, while attending to touch activated the parietal operculi. We conclude that attentional selection operates at multiple levels, with attention to locations and attention to modalities showing distinct effects. These jointly contribute to boost processing of stimuli at the attended location in the relevant modality.  相似文献   

2.
When multiple objects are present in a visual scene, they compete for cortical processing in the visual system; selective attention biases this competition so that representations of behaviorally relevant objects enter awareness and irrelevant objects do not. Deployments of selective attention can be voluntary (e.g., shift or attention to a target's expected spatial location) or stimulus driven (e.g., capture of attention by a target-defining feature such as color). Here we use functional magnetic resonance imaging to show that both of these factors induce spatially selective attentional modulations within regions of human occipital, parietal, and frontal cortex. In addition, the voluntary attentional modulations are temporally sustained, indicating that activity in these regions dynamically tracks the locus of attention. These data show that a convolution of factors, including prior knowledge of location and target-defining features, determines the relative competitive advantage of visual stimuli within multiple stages of the visual system.  相似文献   

3.
In this study we used a modified double-label deoxyglucose procedure to investigate attention-dependent modulations of deoxyglucose uptake at the earliest stages of the macaque visual system. Specifically, we compared activity levels evoked during two tasks with essentially identical visual stimulation requiring different attentional demands. During a featural-attention task, the subjects had to discriminate the orientation of a grating; during a control spatial-attention task, they had to localize the position of a target point. Comparison of the resulting activity maps revealed attention-dependent changes in metabolic activity in portions of the magnocellular layers of the lateral geniculate nucleus, and the magnocellular-recipient layers 4Calpha and 4B of the striate cortex. In these early stages of the visual system, attention to the orientation of the grating suppressed the metabolic activity in a retinotopically specific band peripheral to the representation of the stimulus. These results favor an early selection model of attention. After a thalamic attention-dependent gating mechanism, irrelevant visual information outside the focus of attention may be suppressed at the level of the striate cortex, which would then result in an increased signal-to-noise ratio for the processing of the attended feature in higher-tier, less retinotopically organized, extrastriate visual areas.  相似文献   

4.
Electrophysiological and neuroimaging studies have shown that attention to visual motion can increase the responsiveness of the motion- selective cortical area V5 and the posterior parietal cortex (PP). Increased or decreased activation in a cortical area is often attributed to attentional modulation of the cortical projections to that area. This leads to the notion that attention is associated with changes in connectivity. We have addressed attentional modulation of effective connectivity using functional magnetic resonance imaging (fMRI). Three subjects were scanned under identical stimulus conditions (visual motion) while varying only the attentional component of the task. Haemodynamic responses defined an occipito-parieto-frontal network, including the, primary visual cortex (V1), V5 and PR A structural equation model of the interactions among these dorsal visual pathway areas revealed increased connectivity between V5 and PP related to attention. On the basis of our analysis and the neuroanatomical pattern of projections from the prefrontal cortex to PP we attributed the source of modulatory influences, on the posterior visual pathway, to the prefrontal cortex (PFC). To test this hypothesis we included the PFC in our model as a 'modulator' of the pathway between V5 and PP, using interaction terms in the structural equation model. This analysis revealed a significant modulatory effect of prefrontal regions on V5 afferents to posterior parietal cortex.   相似文献   

5.
Patients with lesions in posterior parietal cortex (PPC) are relatively unimpaired in voluntarily directing visual attention to different spatial locations, while many neuroimaging studies in healthy subjects suggest dorsal PPC involvement in this function. We used an offline repetitive transcranial magnetic stimulation (rTMS) protocol to study this issue further. Ten healthy participants performed a cue-target paradigm. Cues prompted covert orienting of spatial attention under voluntary control to either a left or right visual field position. Targets were flashed subsequently at the cued or uncued location, or bilaterally. Following rTMS over right dorsal PPC, (i) the benefit for target detection at cued versus uncued positions was preserved irrespective of cueing direction (left- or rightward), but (ii) leftward cueing was associated with a global impairment in target detection, at all target locations. This reveals that leftward orienting was still possible after right dorsal PPC stimulation, albeit at an increased overall cost for target detection. In addition, rTMS (iii) impaired left, but (iv) enhanced right target detection after rightward cueing. The finding of a global drop in target detection during leftward orienting with a spared, relative detection benefit at the cued (left) location (i-ii) suggests that right dorsal PPC plays a subsidiary rather than pivotal role in voluntary spatial orienting. This finding reconciles seemingly conflicting results from patients and neuroimaging studies. The finding of attentional inhibition and enhancement occurring contra- and ipsilaterally to the stimulation site (iii-iv) supports the view that spatial attention bias can be selectively modulated through rTMS, which has proven useful to transiently reduce visual hemispatial neglect.  相似文献   

6.
A model of normal attentional function, based on the concept of competitive parallel processing, is used to compare attentional deficits following parietal and frontal lobe lesions. Measurements are obtained for visual processing speed, capacity of visual short-term memory (VSTM), spatial bias (bias to left or right hemifield) and top-down control (selective attention based on task relevance). The results show important differences, but also surprising similarities, in parietal and frontal lobe patients. For processing speed and VSTM, deficits are selectively associated with parietal lesions, in particular lesions of the temporoparietal junction. We discuss explanations based on either grey matter or white matter lesions. In striking contrast, measures of attentional weighting (spatial bias and top-down control) are predicted by simple lesion volume. We suggest that attentional weights reflect competition between broadly distributed object representations. Parietal and frontal mechanisms work together, both in weighting by location and weighting by task context.  相似文献   

7.
A well-known theory in the field of attention today is the premotor theory of attention which suggests that the mechanisms involved in eye movements are the same as those for spatial attention shifts. We tested a parietal damaged patient with unilateral optic ataxia and 4 controls on a dual saccade/attentional task and show a dissociation between saccadic eye movements and presaccadic perceptual enhancement at the saccade goal. Remarkably, though the patient was able to make the appropriate saccades to the left, impaired visual field (undistinguishable from saccades to his right, intact visual field), he was unable to discriminate the letter at the saccade goal (whereas his performance was like controls for letter discrimination in his right visual field). This suggests that saccade planning and presaccadic perceptual facilitation are separable--planning a saccade to a location does not necessitate that the processing of this location is enhanced. Based on these results, we suggest that the parietal cortex is necessary for the coupling between saccade planning and presaccadic perceptual facilitation.  相似文献   

8.
We investigated the spatio-temporal dynamic of attentional bias towards fearful faces. Twelve participants performed a covert spatial orienting task while recording visual event-related brain potentials (VEPs). Each trial consisted of a pair of faces (one emotional and one neutral) briefly presented in the upper visual field, followed by a unilateral bar presented at the location of one of the faces. Participants had to judge the orientation of the bar. Comparing VEPs to bars shown at the location of an emotional (valid) versus neutral (invalid) face revealed an early effect of spatial validity: the lateral occipital P1 component (approximately 130 ms post-stimulus) was selectively increased when a bar replaced a fearful face compared to when the same bar replaced a neutral face. This effect was not found with upright happy faces or inverted fearful faces. A similar amplification of P1 has previously been observed in electrophysiological studies of spatial attention using non-emotional cues. In a behavioural control experiment, participants were also better at discriminating the orientation of the bar when it replaced a fearful rather than a neutral face. In addition, VEPs time-locked to the face-pair onset revealed a C1 component (approximately 90 ms) that was greater for fearful than happy faces. Source localization (LORETA) confirmed an extrastriate origin of the P1 response showing a spatial validity effect, and a striate origin of the C1 response showing an emotional valence effect. These data suggest that activity in primary visual cortex might be enhanced by fear cues as early as 90 ms post-stimulus, and that such effects might result in a subsequent facilitation of sensory processing for a stimulus appearing at the same location. These results provide evidence for neural mechanisms allowing rapid, exogenous spatial orienting of attention towards fear stimuli.  相似文献   

9.
Affectively arousing visual stimuli have been suggested to automatically attract attentional resources in order to optimize sensory processing. The present study crosses the factors of spatial selective attention and affective content, and examines the relationship between instructed (spatial) and automatic attention to affective stimuli. In addition to response times and error rate, electroencephalographic data from 129 electrodes were recorded during a covert spatial attention task. This task required silent counting of random-dot targets embedded in a 10 Hz flicker of colored pictures presented to both hemifields. Steady-state visual evoked potentials (ssVEPs) were obtained to determine amplitude and phase of electrocortical responses to pictures. An increase of ssVEP amplitude was observed as an additive function of spatial attention and emotional content. Statistical parametric mapping of this effect indicated occipito-temporal and parietal cortex activation contralateral to the attended visual hemifield in ssVEP amplitude modulation. This difference was most pronounced during selection of the left visual hemifield, at right temporal electrodes. In line with this finding, phase information revealed accelerated processing of aversive arousing, compared to affectively neutral pictures. The data suggest that affective stimulus properties modulate the spatiotemporal process along the ventral stream, encompassing amplitude amplification and timing changes of posterior and temporal cortex.  相似文献   

10.
Perceptual suppression of distractors may depend on both endogenous and exogenous factors, such as attentional load of the current task and sensory competition among simultaneous stimuli, respectively. We used functional magnetic resonance imaging (fMRI) to compare these two types of attentional effects and examine how they may interact in the human brain. We varied the attentional load of a visual monitoring task performed on a rapid stream at central fixation without altering the central stimuli themselves, while measuring the impact on fMRI responses to task-irrelevant peripheral checkerboards presented either unilaterally or bilaterally. Activations in visual cortex for irrelevant peripheral stimulation decreased with increasing attentional load at fixation. This relative decrease was present even in V1, but became larger for successive visual areas through to V4. Decreases in activation for contralateral peripheral checkerboards due to higher central load were more pronounced within retinotopic cortex corresponding to 'inner' peripheral locations relatively near the central targets than for more eccentric 'outer' locations, demonstrating a predominant suppression of nearby surround rather than strict 'tunnel vision' during higher task load at central fixation. Contralateral activations for peripheral stimulation in one hemifield were reduced by competition with concurrent stimulation in the other hemifield only in inferior parietal cortex, not in retinotopic areas of occipital visual cortex. In addition, central attentional load interacted with competition due to bilateral versus unilateral peripheral stimuli specifically in posterior parietal and fusiform regions. These results reveal that task-dependent attentional load, and interhemifield stimulus-competition, can produce distinct influences on the neural responses to peripheral visual stimuli within the human visual system. These distinct mechanisms in selective visual processing may be integrated within posterior parietal areas, rather than earlier occipital cortex.  相似文献   

11.
This study quantified the magnitude and timing of selective attention effects across areas of the macaque visual system, including the lateral geniculate nucleus (LGN), lower cortical areas V1 and V2, and multiple higher visual areas in the dorsal and ventral processing streams. We used one stimulus configuration and behavioral paradigm, with simultaneous recordings from different areas to allow direct comparison of the distribution and timing of attention effects across the system. Streams of interdigitated auditory and visual stimuli were presented at a high rate with an irregular interstimulus interval (mean of 4/s). Attention to visual stimuli was manipulated by requiring subjects to make discriminative behavioral responses to stimuli in one sensory modality, ignoring all stimuli in the other. The attended modality was alternated across trial blocks, and difficulty of discrimination was equated across modalities. Stimulus presentation was gated, so that no stimuli were presented unless the subject gazed at the center of the visual stimulus display. Visual stimuli were diffuse light flashes differing in intensity or color and subtending 12 degrees centered at the point of gaze. Laminar event-related potential (ERP) and current source density (CSD) response profiles were sampled during multiple paired penetrations in multiple visual areas with linear array multicontact electrodes. Attention effects were assessed by comparing responses to specific visual stimuli when attended versus when visual stimuli were looked at the same way, but ignored. Effects were quantified by computing a modulation index (MI), a ratio of the differential CSD response produced by attention to the sum responses to attended and ignored visual stimuli. The average MI increased up levels of the lower visual pathways from none in the LGN to 0.0278 in V1 to 0.101 in V2 to 0.170 in V4. Above the V2 level, attention effects were larger in ventral stream areas (MI = 0. 152) than in dorsal stream areas (MI = 0.052). Although onset latencies were shortest in dorsal stream areas, attentional modulation of the early response was small relative to the stimulus-evoked response. Higher ventral stream areas showed substantial attention effects at the earliest poststimulus time points, followed by the lower visual areas V2 and V1. In all areas, attentional modulation lagged the onset of the stimulus-evoked response, and attention effects grew over the time course of the neuronal response. The most powerful, consistent, and earliest attention effects were those found to occur in area V4, during the 100-300 ms poststimulus interval. Smaller effects occurred in V2 over the same interval, and the bulk of attention effects in V1 were later. In the accompanying paper, we describe the physiology of attention effects in V1, V2 and V4.  相似文献   

12.
We studied the existence, localization and attentional modulation of gamma-band oscillatory activity (30-130 Hz) in the human intracranial region. Two areas known to play a key role in visual object processing: the lateral occipital (LO) cortex and the fusiform gyrus. These areas consistently displayed large gamma oscillations during visual stimulus encoding, while other extrastriate areas remained systematically silent, across 14 patients and 291 recording sites scattered throughout extrastriate visual cortex. The lateral extent of the responsive regions was small, in the range of 5 mm. Induced gamma oscillations and evoked potentials were not systematically co-localized. LO and the fusiform gyrus displayed markedly different patterns of attentional modulation. In the fusiform gyrus, attention enhanced stimulus-driven gamma oscillations. In LO, attention increased the baseline level of gamma oscillations during the expectation period preceding the stimulus. Subsequent gamma oscillations produced by attended stimuli were smaller than those produced by unattended, irrelevant stimuli. Attentional modulations of gamma oscillations in LO and the fusiform gyrus were thus very different, both in their time-course (preparatory period and/or stimulus processing) and direction of modulation (increase or decrease). Our results thus suggest that the functional role of gamma oscillations depends on the area in which they occur.  相似文献   

13.
Two attentional processes in the parietal lobe   总被引:3,自引:3,他引:0  
We report fMRI evidence for two attentional processes in parietal cortex. Subjects matched a feature, cued by a word, to a test display of moving colored dots. Either color (red, green) or motion direction (left, right) was cued on mixed scans while only one dimension was cued on blocked scans. An event-related paradigm separated the preparatory activity generated by the cue from the subsequent activity related to the test display. One attentional process specified task information while a second process was motion selective. During the cue period, a pure effect of task specification was observed in left frontal cortex while combined effects of task specification and motion selectivity were observed in left posterior parietal cortex. The frontal task-specification signal may have been the source of the corresponding signal in parietal cortex. Effects of task specification generalized over cue dimension, indicating that the information was coded in a sufficiently abstract form to affect color and motion processing. During the subsequent test period, task-specification and motion-selective signals were again observed in left parietal cortex. Task specification did not significantly affect occipital motion-selective regions, such as MT+, however, indicating that this process did not influence the lower cortical tier of the motion processing stream. These results provide evidence for general and specialized task representations within left parietal cortex during task preparation and execution.  相似文献   

14.
Spatial attention modulates the activity of inferior parietal neurons. A statistically rigorous approach to classical retinotopic mapping was used to quantify the receptive fields of area 7a neurons under 2 attentional conditions. Measurements were made with retinal stimulation held constant and the locus of attention manipulated covertly. Both tasks required central fixation but differed in the locus of covert attention (either on the center fixation point or on a peripheral square target in one of 25 locations). The neuron's identity over the recording session was confirmed using chaos theory to characterize unique temporal patterns. Sixty-six percent of the neurons changed prestimulus activity based on task state. Retinotopic mapping showed no evidence for foveal sparing. Attentional factors influenced visual responses for approximately 30% of the neurons. Two types of modulation were equally observed. One group of cells had a multiplicative scaling of response, with equal instances of enhancement and suppression. A second group of cells had a complex interaction of visual and attentional signals, such that spatial tuning was subject to a nonlinear modulation across the visual field based on attentional constraints. These 2 cell groups may have different roles in the shift of attention preceding motor behaviors and may underlie shifts in parietal retinotopic maps observed with intrinsic optical imaging.  相似文献   

15.
Recordings of event-related potentials (ERPs) were combined with structural and functional magnetic resonance imaging (fMRI) to study the spatio-temporal patterns of cortical activity that underlie visual-spatial attention. Small checkerboard stimuli were flashed in random order to the four quadrants of the visual field at a rapid rate while subjects attended to stimuli in one quadrant at a time. Attended stimuli elicited enhanced ERP components in the latency range 80-200 ms that were co-localized with fMRI activations in multiple extrastriate cortical regions. The earliest ERP component (C1 at 50-90 ms) was unaffected by attention and was localized by dipole modeling to calcarine cortex. A longer latency deflection in the 150-225 ms range that was accounted for by this same calcarine source, however, did show consistent modulation with attention. This late attention effect, like the C1, inverted in polarity for upper versus lower field stimuli, consistent with a neural generator in primary visual cortex (area V1). These results provide support to current hypotheses that spatial attention in humans is associated with delayed feedback to area V1 from higher extrastriate areas that may have the function of improving the salience of stimuli at attended locations.  相似文献   

16.
In everyday life, we often focus greater attention on behaviorally relevant stimuli to limit the processing of distracting events. For example, when distracting voices intrude upon a conversation at a noisy social gathering, we concentrate more attention on the speaker of interest to better comprehend his or her speech. In the present study, we investigated whether dorsal/caudal regions of the anterior cingulate cortex (dACC), thought to make a major contribution to cognitive control, boost attentional resources toward behaviorally relevant stimuli as a means for limiting the processing of distracting events. Sixteen healthy participants performed a cued global/local selective attention task while brain activity was recorded with event-related functional magnetic resonance imaging. Consistent with our hypotheses, greater dACC activity during distracting events predicted reduced behavioral measures of interference from those same events. dACC activity also differed for cues to attend to global versus local features of upcoming visual objects, further indicating a role in directing attention toward task-relevant stimuli. Our findings indicate a role for dACC in focusing attention on behaviorally relevant stimuli, especially when the achievement of our behavioral goals is threatened by distracting events.  相似文献   

17.
The local field potential (LFP) is a population measure, mainly reflecting local synaptic activity. Beta oscillations (12-40 Hz) occur in motor cortical LFPs, but their functional relevance remains controversial. Power modulation studies have related beta oscillations to a "resting" motor cortex, postural maintenance, attention, sensorimotor binding and planning. Frequency modulations were largely overlooked. We here describe context-related beta frequency modulations in motor cortical LFPs. Two monkeys performed a reaching task with 2 delays. The first delay demanded attention in time in expectation of the visual spatial cue, whereas the second delay involved visuomotor integration and movement preparation. The frequency in 2 beta bands (around 20 and 30 Hz) was systematically 2-5 Hz lower during cue expectancy than during visuomotor integration and preparation. Furthermore, the frequency was directionally selective during preparation, with about 3 Hz difference between preferred and nonpreferred directions. Direction decoding with frequency gave similar accuracy as with beta power, and decoding accuracy improved significantly when combining power and frequency, suggesting that frequency might provide an additional signal for brain-machine interfaces. In conclusion, multiple beta bands coexist in motor cortex, and frequency modulations within each band are as behaviorally meaningful as power modulations, reflecting the changing behavioral context and the movement direction during preparation.  相似文献   

18.
Visuospatial attention can either be "narrowly" focused on (zooming in) or "widely" distributed to (zooming out) different locations in space. In the current functional magnetic resonance imaging study, we investigated the shared and differential neural mechanisms underlying the dynamic "zooming in" and "zooming out" processes while potential distance confounds from visual inputs between zooming in and zooming out were controlled for. When compared with zooming out, zooming in differentially implicated left anterior intraparietal sulcus (IPS), which may reflect the functional specificity of left anterior IPS in focusing attention on local object features. By contrast, zooming out differentially activated right inferior frontal gyrus, which may reflect higher demands on cognitive control processes associated with enlarging the attentional focus. A conjunction analysis between zooming in and zooming out revealed significant shared activations in right middle temporal gyrus, right superior occipital gyrus, and right superior parietal cortex. The latter result suggests that the right posterior temporal-occipital-parietal system, which is known to be crucial for the control of spatial attention, is involved in updating the internal representation of the spatial locations that attentional processing is associated with.  相似文献   

19.
The integration of different visual attributes into the percept of a single global shape is a central aspect of object processing. In hierarchically organized stimuli with local and global levels, the attentional focus largely determines which level is processed. Here we tested the hypothesis that object processing during attention to the global aspect of the stimulus is characterized by an increased neural coupling between visual areas reflecting the integration of local features. In the present experiment, we used global letters that were constructed by smaller local letters, and a cue signaled which spatial level should be identified. On the local level, only 1 relevant letter was presented laterally in 1 visual hemifield. In contrast, the global letter extended into both hemifields, and the integration of information from both hemispheres was necessary to identify the global stimulus. Therefore, we expected an increased functional coupling between hemispheres during global processing. This hypothesis was investigated using electroencephalographic recordings and an analysis of phase locking and coherence. The results show that stimulus-locked neural coupling within the gamma band (30-40 Hz) across hemispheres in visual cortex increased for global processing after stimulus presentation and could therefore reflect the integration of local visual information.  相似文献   

20.
Top-down controlled visual dimension weighting: an event-related fMRI study   总被引:3,自引:0,他引:3  
Target detection in visual singleton feature search is slowed when consecutive targets are defined in different visual dimensions. Behavioral data provide evidence that attentional weight needs to be shifted between dimension-specific processing modules. We found similar dimension-specific change effects in a conjunction search task, in which observers searched for an odd-one-out target defined by a unique combination of size and color or, respectively, size and motion direction. Changes of the secondary target dimension (color or motion) across trials, but not target feature changes within a dimension, increased the time required to detect the target. Dimensional change costs were greatly increased for singleton conjunction search compared to singleton feature search. This suggests involvement of top-down control processes in dimensional change in conjunction search, in contrast to stimulus-driven dimensional change in singleton feature search. The functional anatomical correlates of top-down controlled visual dimension changes were investigated in two event-related functional magnetic resonance imaging (fMRI) experiments. In Experiment 1, dimensional change in singleton conjunction search was accompanied by transient activations in a fronto-posterior network of brain areas that was largely non-overlapping with the general network activated during visual search. Experiment 2, which contrasted singleton feature and conjunction search within the same session, revealed a double dissociation in anterior prefrontal cortex: left frontopolar cortex was selectively involved in stimulus-driven dimension changes but not in top-down controlled dimension changes, whereas the reverse was observed in frontomedian cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号