首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The optimal treatment for the MCL in the combined ACL and MCL-injured knee is still controversial. Therefore, we designed this study to examine the mechanical interaction between the ACL graft and the MCL in a goat model using a robotic/universal force-moment sensor testing system. The kinematics of intact, ACL-deficient, ACL-reconstructed, and ACL-reconstructed/ MCL-deficient knees, as well as the in situ forces in the ACL, ACL graft, and MCL were determined in response to two external loading conditions: 1) anterior tibial load of 67 N and 2) valgus moment of 5 N-m. With an anterior tibial load, anterior tibial translation in the ACL-deficient knee significantly increased from 2.0 and 2.2 mm to 15.7 and 18.1 mm at 30 degrees and 60 degrees of knee flexion, respectively. The in situ forces in the MCL also increased from 8 to 27 N at 60 degrees of knee flexion. ACL reconstruction reduced the anterior tibial translation to within 2 mm of the intact knee and significantly reduced the in situ force in the MCL to 17 N. However, in response to a valgus moment, the in situ forces in the ACL graft increased significantly by 34 N after transecting the MCL. These findings show that ACL deficiency can increase the in situ forces in the MCL while ACL reconstruction can reduce the in situ forces in the MCL in response to an anterior tibial load. On the other hand, the ACL graft is subjected to significantly higher in situ forces with MCL deficiency during an applied valgus moment. Therefore, the ACL-reconstructed knee with a combined ACL and MCL injury should be protected from high valgus moments during early healing to avoid excessive loading on the graft.  相似文献   

2.
The anterior cruciate ligament (ACL) is the major contributor to limit excessive anterior tibial translation (ATT) when the knee is subjected to an anterior tibial load. However, the importance of the medial and lateral structures of the knee can also play a significant role in resisting anterior tibial loads, especially in the event of an ACL injury. Therefore, the objective of this study was to determine quantitatively the increase in the in-situ forces in the medial collateral ligament (MCL) and posterolateral structures (PLS) of the knee associated with ACL deficiency. Eight fresh-frozen cadaveric human knees were subjected to a 134-N anterior tibial load at full extension and at 15°, 30°, 60°, and 90° of knee flexion. The resulting 5 degrees of freedom kinematics were measured for the intact and the ACL-deficient knees. A robotic/universal force-moment sensor testing system was used for this purpose, as well as to determine the in-situ force in the MCL and PLS in the intact and ACL-deficient knees. For the intact knee, the in-situ forces in both the MCL and PLS were less than 20 N for all five flexion angles tested. But in the ACL-deficient knee, the in-situ forces in the MCL and PLS, respectively, were approximately two and five times as large as those in the intact knee (P < 0.05). The results of this study demonstrate that, although both the MCL and PLS play only a minor role in resisting anterior tibial loads in the intact knee, they become significant after ACL injury. Received: December 3, 1999 / Accepted: July 19, 2000  相似文献   

3.
The optimal treatment for the MCL in the combined ACL and MCL-injured knee is still controversial. Therefore, we designed this study to examine the mechanical interaction between the ACL graft and the MCL in a goat model using a robotic/universal force-moment sensor testing system. The kinematics of intact, ACL-deficient, ACL-reconstructed, and ACL-reconstructed/MCL-deficient knees, as well as the in situ forces in the ACL, ACL graft, and MCL were determined in response to two external loading conditions: 1) anterior tibial load of 67 N and 2) valgus moment of 5 N-m. With an anterior tibial load, anterior tibial translation in the ACL-deficient knee significantly increased from 2.0 and 2.2 mm to 15.7 and 18.1 mm at 30° and 60° of knee flexion, respectively. The in situ forces in the MCL also increased from 8 to 27 N at 60° of knee flexion. ACL reconstruction reduced the anterior tibial translation to within 2 mm of the intact knee and significantly reduced the in situ force in the MCL to 17 N. However, in response to a valgus moment, the in situ forces in the ACL graft increased significantly by 34 N after transecting the MCL. These findings show that ACL deficiency can increase the in situ forces in the MCL while ACL reconstruction can reduce the in situ forces in the MCL in response to an anterior tibial load. On the other hand, the ACL graft is subjected to significantly higher in situ forces with MCL deficiency during an applied valgus moment. Therefore, the ACL-reconstructed knee with a combined ACL and MCL injury should be protected from high valgus moments during early healing to avoid excessive loading on the graft.  相似文献   

4.
The optimal treatment for the MCL in the combined ACL and MCL-injured knee is still controversial. Therefore, we designed this study to examine the mechanical interaction between the ACL graft and the MCL in a goat model using a robotic/universal force-moment sensor testing system. The kinematics of intact, ACL-deficient, ACL-reconstructed, and ACL-reconstructed/MCL-deficient knees, as well as the in situ forces in the ACL, ACL graft, and MCL were determined in response to two external loading conditions: 1) anterior tibial load of 67 N and 2) valgus moment of 5 N-m. With an anterior tibial load, anterior tibial translation in the ACL-deficient knee significantly increased from 2.0 and 2.2 mm to 15.7 and 18.1 mm at 30° and 60° of knee flexion, respectively. The in situ forces in the MCL also increased from 8 to 27 N at 60° of knee flexion. ACL reconstruction reduced the anterior tibial translation to within 2 mm of the intact knee and significantly reduced the in situ force in the MCL to 17 N. However, in response to a valgus moment, the in situ forces in the ACL graft increased significantly by 34 N after transecting the MCL. These findings show that ACL deficiency can increase the in situ forces in the MCL while ACL reconstruction can reduce the in situ forces in the MCL in response to an anterior tibial load. On the other hand, the ACL graft is subjected to significantly higher in situ forces with MCL deficiency during an applied valgus moment. Therefore, the ACL-reconstructed knee with a combined ACL and MCL injury should be protected from high valgus moments during early healing to avoid excessive loading on the graft.  相似文献   

5.
The objectives of this study were (1) to develop subject-specific experimental and finite element (FE) techniques to study the three-dimensional stress-strain behavior of ligaments, with application to the human medial collateral ligament (MCL), and (2) to determine the importance of subject-specific material properties and initial (in situ) strain distribution for prediction of the strain distribution in the MCL under valgus loading. Eight male knees were subjected to varus-valgus loading at flexion angles of 0 degrees, 30 degrees, and 60 degrees. Three-dimensional joint kinematics and MCL strains were recorded during kinematic testing. Following testing, the MCL of each knee was removed to allow measurement of the in situ strain distribution and to perform material testing. A FE model of the femur-MCL-tibia complex was constructed for each knee to simulate valgus loading at each flexion angle, using subject-specific bone and ligament geometry, material properties, and joint kinematics. A transversely isotropic hyperelastic material model was used to represent the MCL. The MCL in situ strain distribution at full extension was used to apply in situ strain to each MCL FE model. FE predicted MCL strains during valgus loading were compared to experimental measurements using regression analysis. The subject-specific FE predictions of strain correlated reasonably well with experimentally measured MCL strains (R(2)=0.83, 0.72, and 0.66 at 0 degrees, 30 degrees, and 60 degrees, respectively). Despite large inter-subject variation in MCL material properties, MCL strain distributions predicted by individual FE models that used average MCL material properties were strongly correlated with subject-specific FE strain predictions (R(2)=0.99 at all flexion angles). However, predictions by FE models that used average in situ strain distributions yielded relatively poor correlations with subject-specific FE predictions (R(2)=0.44, 0.35, and 0.33 at flexion angles of 0 degrees, 30 degrees, and 60 degrees, respectively). The strain distribution within the MCL was nonuniform and changed with flexion angle. The highest MCL strains occurred at full extension in the posterior region of the MCL proximal to the joint line during valgus loading, suggesting this region may be most vulnerable to injury under these loading conditions. This work demonstrates that subject-specific FE models can predict the complex, nonuniform strain fields that occur in ligaments due to external loading of the joint.  相似文献   

6.
There continues to be some dissatisfaction with the function of total knee arthroplasties (TKA). “Mid‐range instability” has been linked to multi‐radius femoral components allowing transient ligament slackness and instability during knee flexion. Single‐radius designs have been introduced to avoid this. We compared the kinematics and stability of eight natural knees versus multi‐radius and single‐radius TKAs in vitro. The loading conditions imposed across the range of active knee extension were anterior–posterior drawer forces, internal–external rotation torques, and varus–valgus moments. Significant differences were not found between the biomechanical behavior of the two TKAs. Both were significantly different from the natural knee in allowing greater anterior drawer laxity near extension, probably caused by excision of the anterior cruciate ligament, but no difference occurred beyond 30° flexion. No differences were found for any of the other degrees‐of‐freedom of movement. A geometric analysis suggested that the multi‐radius design may tense the MCL more than the single‐radius in mid‐flexion, contrary to expectation. These kinematic and stability tests did not find mid‐range instability of the knees, and so they could not demonstrate enhanced mid‐range stability of the single‐radius TKA over the older multi‐radius implant. This suggests that mid‐range instability may relate to unrecognized ligament laxity during surgery, rather than being inherent to a specific feature of implant design. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31:53–58, 2012  相似文献   

7.
This study tested the hypothesis that application of a valgus force necessary to create a complete medial collateral ligament (MCL) injury causes damage to the anterior cruciate ligament (ACL). Twelve cadaveric knees were used to measure concomitant loading and damage to the ACL in valgus knee loading sufficient to cause a grade III MCL injury. Displacement sensors were placed on the anteromedial bundle of the ACL and posterior oblique ligament to monitor tensile strain during creation of the MCL injury. A valgus moment was applied to knees flexed at 30 degrees, displacing the joint into valgus rotation beyond MCL rupture. Following valgus loading and MCL injury, femur-ACL-tibia specimens were tested to failure to compare ACL mechanical integrity to noninjured control specimens. Average ACL strength in MCL ruptured knees (1250 +/- 90 N) was statistically lower (P < or = .05) than that for control knees (2110 +/- 50 N). Strain measurements exhibited concomitant posterior oblique ligament strain during valgus loading, whereas ACL strain increased substantially only after MCL rupture. These data indicate that the ACL can be compromised in isolated grade III MCL injuries.  相似文献   

8.
Incidence and mechanism of the pivot shift. An in vitro study.   总被引:5,自引:0,他引:5  
The aim of this study was to determine the incidence and mechanism of the pivot shift phenomenon in the normal and anterior cruciate ligament transected knee in vitro. Fifteen knees were tested under a range of valgus moments and iliotibial tract tensions when intact and after anterior cruciate ligament transection. Knee kinematics were measured and described in terms of tibial rotation as the knee flexed. Eight knees pivoted after anterior cruciate ligament transection. The mean pivot shift motion was an external tibial rotation of 17 degrees (+/- 11 degrees standard deviation) over a range of 27 degrees (+/- 24 degrees) knee flexion, at a mean flexion angle of 56 degrees (+/- 27 degrees). Clinically, this corresponds to a reduction of an anteriorly subluxed lateral tibial plateau as the knee flexes. When intact, pivoting and nonpivoting knees had similar anteroposterior laxity, but after anterior cruciate ligament transection, the pivoting group had significantly greater laxity. The loading required to elicit the pivot shift was critical and variable between knees, which raises questions about comparing clinicians' techniques and results in assessing the buckling instability attributable to anterior cruciate ligament injury.  相似文献   

9.
Recent work has suggested the transected anterior cruciate ligament (ACL) can heal and support reasonable loads if repaired with sutures and a bioactive scaffold; however, use of a traditional suture configuration results in knees with increased anterior–posterior (AP) laxity. The objective was to determine whether one of five different suture repair constructs when performed at two different joint positions would restore normal AP knee laxity. AP laxity of the porcine knee at 60° of flexion was evaluated for five suture repair techniques. Femoral fixation for all repair techniques utilized a suture anchor. Primary repair was to either the tibial stump, one of three bony locations in the ACL footprint, or a hybrid bony fixation. All five repairs were tied with the knee in first 30° and then 60° of flexion for a total of 10 repair constructs. Suture repair to bony fixation points within the anterior half of the normal ACL footprint resulted in knee laxity values within 0.5 mm of the ACL‐intact joint when the sutures were tied with the knee at 60° flexion. Suture repair to the tibial stump, or with the knee at 30° of flexion, did not restore normal AP laxity of the knee. Three specific suture repair techniques for the transected porcine ACL restored the normal AP laxity of the knee at the time of surgery. Additional studies defining the changes in laxity with cyclic loading and in vivo healing are indicated. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:1500–1505, 2008  相似文献   

10.
Both the medial collateral ligament (MCL) and the anterior cruciate ligament (ACL) are reported to prevent valgus instability of the knee. In this study, the anatomical mechanisms by which these ligaments prevent valgus instability were experimentally investigated. The valgus rotation angle and the magnitude of the medial joint space opening were measured in six cadaveric knees, using biplanar photography before and after the MCL and/or the ACL were severed. A significant increase in the valgus rotation angle and a large medial joint space opening were observed when the MCL was severed. An increase in the valgus rotation angle was also observed when the ACL was severed, but only a small medial joint space opening was present. The increase in the valgus rotation angle after ACL severance was nearly parallel to the increase in the internal rotation of the tibia. Thus, we concluded that both ligaments function to prevent valgus instability, but that the anatomical reasons for their function are different. The MCL prevents valgus instability by stopping an opening in the medial joint space. The ACL, on the other hand, prevents the internal rotation of the tibia. When the ACL is severed, the internal rotation increases, and causes the valgus rotation angle to also increase, despite the presence of only a small medial joint space opening. Received: May 16, 2000 / Accepted: August 3, 2000  相似文献   

11.
The purpose of this study was to evaluate the effect of the iliotibial band (ITB) on the kinematics of anterior cruciate ligament (ACL) intact and deficient knees and also on the in situ force in the ACL during a simulated pivot shift test. A combination of 10 N-m valgus and 5 N-m internal tibial torques was applied to 10 human cadaveric knees at 15 degrees, 30 degrees, 45 degrees, and 60 degrees of flexion using a robotic/universal force-moment sensor testing system. ITB forces of 0, 22, 44, and 88 N were also applied. An 88 N ITB force significantly decreased coupled anterior tibial translation of ACL deficient knees by 32%-45% at high flexion angles, but did not have a significant effect at low flexion angles. Further, an 88 N ITB force significantly decreased in situ forces in the ACL at all flexion angles by 23%-40%. These results indicate that during the pivot shift test, the ITB can improve tibial reduction at high flexion angles while not affecting subluxation at low flexion angles. Additionally, the action of the ITB as an ACL agonist suggests that its use as an ACL graft might hinder knee stability in response to rotatory load.  相似文献   

12.
前交叉韧带股骨等距重建位置的比较   总被引:16,自引:6,他引:10  
目的 :比较模拟生理负荷条件下前交叉韧带股骨重建位置的等距特性。方法 :7具新鲜冷冻尸体膝关节标本 ,在前交叉韧带胫骨附着区取 3点以及胫骨附着区取 5点分别钻骨隧道 ,通过钢丝和等距测量器施加初负荷 ,检测膝关节屈曲过程中胫骨和股骨隧道间的距离变化。结果 :膝关节从 0~ 90°屈曲过程中 ,股骨韧带附着区中点、上点和后点与胫骨附着区 5点间呈等距变化 ,但股骨韧带附着区中点、上点与胫骨附着区 5点间距离变化具有组内显著性差异。结论 :股骨韧带附着区后点是理想的等距重建点。  相似文献   

13.
Posterior cruciate ligament stretching after posterior cruciate ligament-retaining (CR) total knee arthroplasty (TKA) can lead to an increase in sagittal laxity, knee dysfunction, or accelerated damage to the tibial bearing surface. We conducted a prospective study on 74 consecutive mobile-bearing CR TKA to determine if knee laxity changed with time or if knees with large initial laxity experienced greater increases in laxity. Patients were studied with radiographic posterior and anterior drawer examinations at 3 and 23 months. Model-based shape-matching techniques were used to measure TKA kinematics. We found a 1-mm increase in posterior drawer. Knees with large postoperative drawers did not exhibit increased laxity at last follow-up. The use of a mobile-bearing CR TKA did not significantly modify the midterm knee sagittal laxity.  相似文献   

14.
Wang XF  Chen BC  Shi CX  Gao SJ  Shao DC  Li T  Lu B  Chen JQ 《中华外科杂志》2007,45(12):839-842
目的通过增加胫骨平台后倾角度或后交叉韧带(PCL)部分松解对全膝关节置换术(TKA)中屈曲间隙过紧进行处理,分析这两种方法对TKA术后膝关节运动学的影响。方法测量6例新鲜尸体膝关节标本在完整状态下、正常TKA、屈曲间隙过紧、增加胫骨平台后倾角以及PCL部分松解TKA术后膝关节屈曲0°、30°、60°、90°、120°时的前后松弛度、内外翻松弛度、旋转松弛度及最大屈曲度。结果屈曲过紧TKA与正常TKA相比,在屈曲30°、60°、90°和120°时前后松弛度、内外翻松弛度及旋转松弛度均显著较小(P〈0.05)。与屈曲过紧TKA相比,增加胫骨后倾角后,在屈曲30°、60°、90°和120°时前后松弛度、内外翻松弛度和旋转松弛度均明显增大(P〈0.05)。PCL部分松解与屈曲过紧TKA相比,在屈曲30°、60°、90°和120°时前后松弛度明显增加(P〈0.05);旋转松弛度在屈曲30°、60°、90°时明显增加(P〈0.05)。与PCL部分松解相比,增加胫骨后倾角的内外翻松弛度在屈曲30°、60°、90°时明显较大(P〈0.05);旋转松弛度在屈曲0°、30°、60°和90°时明显较大(P〈0.05)。屈曲过紧TKA的最大屈曲度(120.4°)与正常TKA(130.3°)及增加胫骨后倾角(131.1°)相比明显较小(P〈0.05)。增加后倾角与PCL部分松解(124.0°)相比,最大屈曲度较大,但差异无统计学意义(P=0.0816)。结论屈曲间隙过紧TKA术后膝关节的前后松弛度、内外翻松弛度、旋转松弛度和最大屈曲度均减小;增加胫骨平台后倾角后,前后松弛度、内外翻松弛度、旋转松弛度和最大屈曲度均明显增大;PCL部分松解仅能明显增大前后松弛度。因此对于TKA术中屈曲紧张的膝关节,增加胫骨平台后倾角比PCL部分松解能更好地改善膝关节的运动学。  相似文献   

15.
The anterior cruciate ligament (ACL) can be anatomically divided into anteromedial (AM) and posterolateral (PL) bundles. Current ACL reconstruction techniques focus primarily on reproducing the AM bundle, but are insufficient in response to rotatory loads. The objective of this study was to determine the distribution of in situ force between the two bundles when the knee is subjected to anterior tibial and rotatory loads. Ten cadaveric knees (50+/-10 years) were tested using a robotic/universal force-moment sensor (UFS) testing system. Two external loading conditions were applied: a 134 N anterior tibial load at full knee extension and 15 degrees, 30 degrees, 60 degrees, and 90 degrees of flexion and a combined rotatory load of 10 Nm valgus and 5 Nm internal tibial torque at 15 degrees and 30 degrees of flexion. The resulting 6 degrees of freedom kinematics of the knee and the in situ forces in the ACL and its two bundles were determined. Under an anterior tibial load, the in situ force in the PL bundle was the highest at full extension (67+/-30 N) and decreased with increasing flexion. The in situ force in the AM bundle was lower than in the PL bundle at full extension, but increased with increasing flexion, reaching a maximum (90+/-17 N) at 60 degrees of flexion and then decreasing at 90 degrees. Under a combined rotatory load, the in situ force of the PL bundle was higher at 15 degrees (21+/-11 N) and lower at 30 degrees of flexion (14+/-6 N). The in situ force in the AM bundle was similar at 15 degrees and 30 degrees of knee flexion (30+/-15 vs. 35+/-16 N, respectively). Comparing these two external loading conditions demonstrated the importance of the PL bundle, especially when the knee is near full extension. These findings provide a better understanding of the function of the two bundles of the ACL and could serve as a basis for future considerations of surgical reconstruction in the replacement of the ACL.  相似文献   

16.
Despite the numerous long-term success reports of posterior stabilized (PS) total knee arthroplasty (TKA), recent retrieval studies of various PS TKA designs revealed wear and deformation on the anterior side of the tibial post. This study investigated the mechanisms of anterior impingement of the post with the femoral component. Seven cadaveric knees were tested to study kinematics and tibial post biomechanics during simulated heel strike using an in vitro robotic testing system. Intact knee kinematics and in situ anterior cruciate ligament (ACL) forces were determined at hyperextension (0 degree to -9 degrees) and low flexion angles (0 degrees to 30 degrees) under the applied loads. The same knee was reconstructed using a PS TKA. The kinematics and the tibial post contact forces of the TKA were measured under the same loading condition. The ACL in the intact knee carried load and contributed to knee stability at low flexion angles and hyperextension. After TKA, substantial in situ contact forces (252.4 +/- 173 N at 9 degrees of hyperextension) occurred in the tibial post, indicating anterior impingement with the femoral component. Consequently, the TKA showed less posterior femoral translation compared to the intact knee after the impingement. At 9 degrees of hyperextension, the medial condyle of the intact knee translated 0.1 +/- 1.1 mm whereas the medial condyle of the TKA knee translated 5.6 +/- 6.9 mm anteriorly. The lateral condyle of the intact knee translated 1.5 +/- 1.0 mm anteriorly whereas the lateral condyle of the TKA knee translated 2.1 +/- 5.8 mm anteriorly. The data demonstrated that anterior tibial post impingement functions as a substitute for the ACL during hyperextension, contributing to anterior stability. However, anterior post impingement may result in additional polyethylene wear and tibial post failure. Transmitted impingement forces might cause backside wear and component loosening. Understanding the advantages and disadvantages of the tibial post function at low flexion angles may help to further improve component design and surgical techniques and thus enhance knee stability and component longevity after TKA.  相似文献   

17.
Background The anterior cruciate ligament (ACL) constrains the anterior translation and axial rotation of the tibia. However, the effect of ACL injury on the mediolateral translation and varus-valgus rotation of the tibia is unknown. Because of the oblique orientation of the ACL, we hypothesized that ACL deficiency alters mediolateral translation and varus-valgus rotation.

Methods The kinematics of 9 cadavers from full extension to 90° of flexion under various loading conditions were measured before and after ACL resection using a robotic testing system.

Results ACL deficiency increased the medial translation of the tibia and valgus rotation, especially at 15° and 30° of flexion. For example, at 15°, ACL deficiency increased the medial translation from 1.2 (SD 0.9) mm to 1.8 (SD 1.1) mm in response to a quadriceps load. The valgus rotation also increased from 0.8° (SD 0.6) to 1.7° (SD 0.8).

Interpretation ACL deficiency altered both the mediolateral tibial translation and valgus-varus rotation under various loading conditions. The increased medial tibial translation could shift the contact in the medial compartment towards the medial tibial spine, a region where degeneration is observed in ACL-deficient patients. In addition to restoring anterior laxity, ACL reconstruction might need to restore the mediolateral translation of the tibia and varus-valgus rotation of the knee.  相似文献   

18.
The tension applied to the anterior cruciate ligament (ACL) graft at time of fixation is thought to influence graft healing, knee kinematics, and joint contact forces; however, the optimal tensioning procedure remains unclear. An animal model provides a means by which the effect of graft tensioning on healing can be studied. Prior to using the model, the relationship between graft tensioning and knee kinematics at time of surgery should be established. Our objective was to explore the relationship between graft tensioning and anterior-posterior (A-P) laxity of the reconstructed goat knee. Eight cadaver knees were tested. The A-P laxity values of the intact knee were measured with the knee at 30 degrees, 60 degrees. and 90 degrees flexion. The ACL was then severed and the laxity measurements were repeated. The ACL was reconstructed using a bone-patellar tendon-bone autograft. The laxity measurements were repeated for nine different tensioning conditions; three tension magnitudes (30, 60, and 90 N), each applied with the knee at three angles (30 degrees, 60 degrees and 90 degrees). Both graft tension and the knee angle at which it was applied produced significant changes on A-P laxity values. An increase in tension reduced laxity values. A tension level of 60 N applied with the knee flexed to 30 degrees was the best combination for restoring normal A-P laxity values at all knee angles tested.  相似文献   

19.
负荷条件下前交叉韧带的股骨重建位置   总被引:6,自引:4,他引:2  
目的 探讨模拟生理负荷条件下前交叉韧带股骨等距重建位置。方法  7具新鲜冷冻膝关节标本 ,在前交叉韧带股骨附着区取 5点以及胫骨附着区中点分别钻骨隧道 ,通过钢丝和等距测量器施加初负荷 ,检测膝关节屈曲过程中胫骨和股骨隧道间的距离变化。结果 膝关节 0°~ 90°屈曲过程中 ,股骨韧带附着区中点、后点和下点与胫骨附着区中点间呈等距变化 ,而股骨韧带附着区前点和上点与胫骨附着区中点间距离变化超过生理等距界限。结论 股骨韧带附着区后点和下点是理想的前交叉韧带股骨等距重建点。股骨韧带附着区中点、后点和下点的连线构成了前交叉韧带的股骨等距重建区。  相似文献   

20.
The ideal treatment of a combined anterior cruciate ligament (ACL) and medial collateral ligament (MCL) injury to the knee is still debated. In particular, the question of whether reconstruction of the ACL can provide the knee with sufficient multidirectional stability to allow for effective MCL healing needs to be better elucidated. Therefore, the first objective of this study was to quantify the changes in the function of goat knees between time-zero and 6 weeks following a combined ACL/MCL injury treated with ACL reconstruction. Using a robotic/universal force-moment sensor testing system, the kinematics of the knee and in situ forces in the ACL/ACL graft as well as in the sham-operated and healing MCL were evaluated in response to (1) a 67 N anterior-posterior (A-P) tibial load and (2) a 5 Nm varus-valgus (V-V) moment. The second objective was to evaluate the structural properties of the healing femur-MCL-tibia complex (FMTC) and the mechanical properties of the healing MCL at 6 weeks under uniaxial tension.In response to the 67 N A-P tibial load, the A-P translations for the experimental knee increased by as much as 4.5 times from time-zero to 6 weeks (p<0.05). Correspondingly, the in situ forces in the ACL graft decreased by as much as 45% (p<0.05). There was no measurable changes of the in situ force in the healing MCL. In response to a 5 Nm V-V moment, V-V rotations were twice as much as controls, but similar for both time periods. From time-zero to 6 weeks, the in situ forces in the ACL graft dropped by over 71% (p<0.05), while the in situ force in the healing MCL was as much as 35+/-19 N.In terms of the structural properties of the healing FMTC, the stiffness and ultimate load values at 6 weeks reached 53% and 29% of sham-operated contralateral controls, respectively (p<0.05). For the mechanical properties of the healing MCL substance, the values for tangent modulus and tensile strength were only 13% and 10% of sham-operated controls, respectively (p<0.05). These results suggest that the ACL graft stabilized the knee initially, but became loose over time. As a result, the healing MCL may have been required to take on excessive loads and was unable to heal sufficiently as compared to an isolated MCL injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号