首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review article examines the evolutionary adaptations in the vertebrate inner ear that allow selective activation of auditory or vestibular hair cells, although both are housed in the same bony capsule. The problem of separating acoustic stimuli from the vestibular end organs in the inner ear has recently reemerged with the recognition of clinical conditions such as superior canal dehiscence syndrome and enlarged vestibular aqueduct syndrome. In these syndromes, anatomical defects in the otic capsule alter the functional separation of auditory and vestibular stimuli and lead to pathological activation of vestibular reflexes in response to sound. This review demonstrates that while the pars superior of the labyrinth (utricle and semicircular canals) has remained fairly constant throughout evolution, the pars inferior (saccule and other otolith, macular, and auditory end organs) has seen considerable change as many adaptations were made for the development of auditory function. Among these were a relatively rigid membranous labyrinth wall, a variably rigid otic capsule, immersion of the membranous labyrinth in perilymph, a perilymphatic duct to channel acoustic pressure changes away from the vestibular organs, and different operating frequencies for vestibular versus auditory epithelia. Even in normal human ears, acoustic sensitivity of the labyrinth to loud clicks or tones is retained enough to be measured in a standard clinical test, the vestibular-evoked myogenic potential test.  相似文献   

2.
3.
Inner ear hair cells have been suggested as attractors for growing afferent fibers, possibly through the release of the neurotrophin brain-derived neurotrophic factor (BDNF). Atoh1 null mice never fully differentiate hair cells and supporting cells and, therefore, may show aberrations in the growth and/or retention of their innervation. We investigated the distribution of cells positive for Atoh1- or Bdnf-mediated beta-galactosidase expression in Atoh1 null and Atoh1 heterozygotic mice and correlated the distribution of these cells with their innervation. Embryonic day (E) 18.5 Atoh1 null and heterozygotic littermates show Atoh1- and BDNF-beta-galactosidase-positive cells in comparable distributions in the canal cristae and the cochlea apex. Atoh1-beta-galactosidase-positive but only occasional Bdnf-beta-galactosidase-positive cells are found in the utricle, saccule, and cochlea base of Atoh1 null mutant mice. Absence of Bdnf-beta-galactosidase expression in the utricle and saccule of Atoh1 null mice is first noted at E12.5, a time when Atoh1-beta-galactosidase expression is also first detected in these epithelia. These data suggest that expression of Bdnf is dependent on ATOH1 protein in some but does not require ATOH1 protein in other inner ear cells. Overall, the undifferentiated Atoh1- and Bdnf-beta-galactosidase-positive cells show a distribution reminiscent of that in the six sensory epithelia in control mice, suggesting that ear patterning processes can form discrete patches of Atoh1 and Bdnf expression in the absence of ATOH1 protein. The almost normal growth of afferent and efferent fibers in younger embryos suggests that neither fully differentiated hair cells nor BDNF are necessary for the initial targeted growth of fibers. E18.5 Atoh1 null mice have many afferent fibers to the apex of the cochlea, the anterior and the posterior crista, all areas with numerous Bdnf-beta-galactosidase-positive cells. Few fibers remain to the saccule, utricle, and the base of the cochlea, all areas with few or no Bdnf-beta-galactosidase-positive cells. Thus, retention of fibers is possible with BDNF, even in the absence of differentiated hair cells.  相似文献   

4.
We present the normal patterns of programmed cell death in the developing inner ears of a primitive anuran, Xenopus laevis, and an ostariophysan fish, Danio rerio. A prominent ventromedial focus of cell death was described previously in the developing chicken and mouse otocysts. We hypothesize that this focus of cell death might be associated with a signaling center that directs morphogenesis of the surrounding tissue. Amphibian and fish ear anatomies differ considerably from those of birds and mammals, particularly in the structures derived from the ventral part (pars inferior) of the otic vesicle. We reasoned that these anatomical differences between species might result from a difference in the size, location, or presence of a putative morphogenetic signaling center. Using in situ terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) to detect apoptotic cells, we show that developing Xenopus and zebrafish ears have apoptotic cells in the eighth cranial ganglia, the developing sensory patches, and in various positions in the otocyst wall. However, both species lack the persistent ventromedial hot spot of cell death that is prominently situated between the pars superior and pars inferior in the chicken and mouse otocysts.  相似文献   

5.
The rat inner ear is ectodermally derived from a region adjacent to the developing hindbrain. Beginning on day 8 of a 22-day gestational period, this zone of ectoderm first forms the otic placode, then the otocyst, and ultimately the definitive membranous labyrinth. This report provides an estimation of total DNA content of the developing inner ear, and hence an estimation of the total number of cells that comprise the inner ear at each developmental stage. The incorporation of 3H-thymidine indicates that most cells of the inner ear undergo DNA synthetic activity during gestational days 13 to 15. Radioautographic observations indicate a zone of DNA synthetic activity at the base of the outpocketing cochlear duct during early development. At the later stages of development, DNA synthesis is restricted to the cristae ampullares of the semicircular canals and the maculae of the utricle and the saccule. In contradistinction to the findings of other investigators, the statoacoustic ganglion complex undergoes terminal mitosis during gestational days 17 and 18. The gestational period between days 13 and 15 may prove to be a critical stage in normal otic development. The normal values of total DNA content and the number of cells that comprise the inner ear during development, established by these methods, can be compared with pathologic inner ears to provide quantitative means of assessing the damage in malformed inner ears. These values also form the baseline for future experimental studies of inner ear development.  相似文献   

6.
目的 准确定位豚鼠中、内耳结构。方法 对 15只正常健康成年豚鼠的中耳、内耳进行显微解剖 ,对颞骨标本标志结构放大 0 6 1倍并照相。结果 在豚鼠的颞骨标本上准确定位出下列中耳结构 :鼓膜、听骨链、卵圆窗、圆窗、咽圆窗鼓管鼓口、面神经等 ;内耳结构 :耳蜗、三个半规管、椭圆囊、球囊、乙状窦、内听道、内淋巴囊裂、前庭导水管口、蜗水管口等。结论 豚鼠颞骨结构与人体颞骨结构基本一致 ,但亦有区别 ,此项研究工作可以指导和帮助利用豚鼠作耳科研究的工作者准确定位中耳、内耳结构  相似文献   

7.
Inner ear structures are compared among three major genera of the deep‐sea fish family Melamphaidae (bigscales and ridgeheads). Substantial interspecific variation is found in the saccular otoliths, including the presence of a unique otolithic “spur” in the genera Melamphaes and Poromitra. The variation in the saccular otolith is correlated with an increase in the number of hair bundle orientation groups on the sensory epithelia from the genera Scopelogadus to Poromitra to Melamphaes. The diverse structural variations found in the saccule may reflect the evolutionary history of these species. The sensory hair cell bundles in this family have the most variable shapes yet encountered in fish ears. In the saccule, most of the hair bundles are 15–20 μm high, an exceptional height for fish otolithic end organs. These bundles have large numbers of stereovilli, including some that reach the length of the kinocilium. In the utricle, the striolar region separates into two unusually shaped areas that have not been described in any other vertebrates. The brains in all species have a relatively small olfactory bulb and optic tectum, as well as an enlarged posterior cerebellar region that is likely to be involved in inner ear and lateral line (octavolateral) functions. Data from melamphaids support the hypothesis that specialized anatomical structures are found in the ears of some (if not most) deep‐sea fishes, presumably enhancing their hearing sensitivity. Anat Rec, 296:1064–1082, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
9.
The development of the cranial lateral line canals and neuromast organs are described in postembryonic zebrafish (0-80 days postfertilization). Cranial canal development commences several weeks after hatch, is initiated in the vicinity of individual neuromasts, and occurs in four discrete stages that are described histologically. Neuromasts remain in open canal grooves for several weeks during which they dramatically change shape and increase in size by adding hair cells at a rate one-tenth that in the zebrafish inner ear. Scanning electron microscopy demonstrates that neuromasts elongate perpendicular to the canal axis and the axis of hair cell polarization and that they lack a prominent nonsensory cell population surrounding the hair cells-features that make zebrafish neuromasts unusual among fishes. These results demand a reassessment of neuromast and lateral line canal diversity among fishes and highlight the utility of the lateral line system of postembryonic zebrafish for experimental and genetic studies of the development and growth of hair cell epithelia.  相似文献   

10.
The formation of the eight independent endorgan compartments (sacculus, utricle, horizontal canal, anterior canal, posterior canal, lagena, amphibian papilla, and basilar papilla) of the Xenopus laevis inner ear is illustrated as the otic vesicle develops into a complex labyrinthine structure. The morphology of transverse sections and whole-mounts of the inner ear was assessed in seven developmental stages (28, 31, 37, 42, 45, 47, 50) using brightfield and laser scanning confocal microscopy. The presence of mechanosensory hair cells in the sensory epithelia was determined by identification of stereociliary bundles in cryosectioned tissue and whole-mounts of the inner ear labeled with the fluorescent F-actin probe Alexa-488 phalloidin. Between stages 28 and 45, the otic vesicle grows in size, stereociliary bundles appear and increase in number, and the pars inferior and pars superior become visible. The initial formation of vestibular compartments with their nascent stereociliary bundles is seen by larval stage 47, and all eight vestibular and auditory compartments with their characteristic sensory fields are present by larval stage 50. Thus, in Xenopus, inner ear compartments are established between stages 45 and 50, a 2-week period during which the ear quadruples in length in the anteroposterior dimension. The anatomical images presented here demonstrate the morphological changes that occur as the otic vesicle forms the auditory and vestibular endorgans of the inner ear. These images provide a resource for investigations of gene expression patterns in Xenopus during inner ear compartmentalization and morphogenesis.  相似文献   

11.
太空发育鸡胚的前庭感受器细胞形态学研究   总被引:4,自引:0,他引:4  
为了探讨太空微重力对鸡胚前庭感觉上皮细胞的形态发育的影响 ,选取在航天飞机 (STS-2 9)发育鸡胚和地面发育鸡胚各两只 ,利用计算机显微测量技术分别测量椭圆囊和球囊的毛细胞、支持细胞核的切面面积、周长、形状系数。太空发育鸡胚的球囊支持细胞核的切面面积、周长显著大于地面组 ,形状系数无差异 ;太空发育鸡胚的椭圆囊支持细胞核的切面面积、周长、形状系数以及椭圆囊和球囊毛细胞的切面面积、周长与地面发育鸡胚相比无明显差异。微重力可能对球囊支持细胞核的体积发育有影响 ,对椭圆囊和球囊的毛细胞以及椭圆囊支持细胞核的形态发育无影响。  相似文献   

12.
The inner ear contains the end organs for balance (vestibular labyrinth) and hearing (cochlea). The vestibular labyrinth is comprised of the semicircular canals (detecting angular acceleration) and otolith organs (utricle and saccule, which detect linear acceleration and head tilt relative to gravity). Lying just inferior to the utricle is the membranous membrana limitans (ML). Acting as a keystone to vestibular geometry, the ML provides support for the utricular macula and acts as a structural boundary between the superior (pars superior) and inferior (pars inferior) portions of the vestibular labyrinth. Given its importance in vestibular form, understanding ML morphology is valuable in establishing the spatial organization of other vestibular structures, particularly the utricular macula. Knowledge of the 3D structure and variation of the ML, however, remain elusive. Our study addresses this knowledge gap by visualizing, in 3D, the ML and surrounding structures using micro-CT data. By doing so, we attempt to clarify: (a) the variation of ML shape; (b) the reliability of ML attachment sites; and (c) the spatial relationship of the ML to the stapes footplate using landmark-based Generalized Procrustes, Principal Component and covariance analyses. Results indicate a consistent configuration of three distinct bony ML attachments including an anterolateral, medial, and posterior attachment which all covary with bony structure. Our results set the stage for further understanding into vestibular and more specifically, utricular macula spatial configuration within the human head, offering the potential to aid in clinical and evolutionary studies which rely on a 3D understanding of vestibular spatial configuration.  相似文献   

13.
A database was built that consists of 4694 sequence contigs of approximately 18,000 reads of cDNAs isolated from the microdissected otocysts of zebrafish embryos at 20-30 hour postfertilization, following subtraction with a pool of liver cDNAs from adult fish. These sequences were compared with those of public databanks. Significant similarity were recorded and organized in a relational database at http://www.genoscope.cns.fr/zie. A first group of 2067 sequences correspond to 1428 known zebrafish genes or ESTs present in the Danio rerio section of UniGene. A second group of 302 sequences encode putative proteins that showed significant similarity (50%-100%) with 302 nonzebrafish proteins in the nr databank, a public databank containing an exhaustive nonredundant collection of protein sequences from different species (ftp://ftp.ncbi.nlm.nih.gov/blast/db/nr). The remaining 2325 (49.5%) sequence contigs or singletons showed no significant similarity with sequences available in public databanks. Several genes known to be expressed in the developing inner ear were represented in the present database, in particular genes involved in hair cell differentiation or innervation The occurrence of these genes validates the outcome of this study as the first collection of ESTs preferentially expressed in the zebrafish inner ear during the period of hair cell differentiation and neuroblast delamination from the otic vesicle epithelium. Novel zebrafish genes also involved in these processes are thus likely to be represented among the sequences obtained herein, for which no homology was found in the D. rerio section of UniGene. [The sequence data from this study have been submitted to EMBL under accession nos. AL714032-AL731531].  相似文献   

14.
In a chemical mutagenesis screen, we identified two zebrafish mutants that possessed small pupils. Genetic complementation revealed these two lines are due to mutations in different genes. The phenotypes of the two mutants were characterized using histologic, immunohistochemical, and tissue transplantation techniques. The arrested lens (arl) mutant exhibits a small eye and pupil phenotype at 48 hr postfertilization (hpf) and lacks any histologically identifiable lens structures by 5 days postfertilization (dpf). In contrast, the disrupted lens (dsl) mutants are phenotypically normal until 5 dpf, and then undergo lens disorganization and cell degeneration that is apparent by 7 dpf. Histology reveals the arl mutant terminates lens cell differentiation by 48 hpf, whereas the dsl lens exhibits a defective lens epithelial cell population at 5 dpf. Lens transplantation experiments demonstrate both mutations are autonomous to the lens tissue. Immunohistochemistry reveals the retinal cells may suffer subtle effects, possibly due to the lens abnormalities.  相似文献   

15.
Anatomical studies of the developing zebrafish retina have shown that rods approach maturity at about 15 days postfertilization (dpf). Past work has examined the photopic spectral sensitivity function of the developing zebrafish, but not spectral sensitivity under dark-adapted conditions. This study examined rod contributions to the dark-adapted spectral sensitivity function of the ERG b-wave component in developing zebrafish. ERG responses to stimuli of various wavelengths and irradiances were obtained from dark-adapted fish at 6-8, 13-15, 21-24, and 27-29 dpf. The results show that dark-adapted spectral sensitivity varied with age. Spectral sensitivity functions of the 6-8 and 13-15 dpf groups appeared to be cone dominated and contained little or no rod contributions. Spectral sensitivity functions of the 21-24 and 27-29 dpf groups appeared to have both rod and cone contributions. Even at the oldest age group tested, the dark-adapted spectral sensitivity function did not match the adult function. Thus, consistent with anatomical findings, the rod contributions to the ERG spectral sensitivity function appear to develop with age; however, these contributions are still not adult-like by 29 dpf, which is contrary to anatomical work. These results illustrate that the zebrafish is an excellent model for visual development.  相似文献   

16.
Osteopontin (OPN) is considered to be a non-collagenous bone matrix protein that is involved in the ossification process. However, OPN has recently been observed in ectopic sites such as the kidney and nervous tissue. In the present study, the expression of OPN mRNA was examined in the rat and mouse inner ear by nonradioisotopic in situ hybridization. Signals of OPN mRNA were observed in the marginal cells of the stria vascularis, spiral ganglion cells, vestibular sensory hair cells, and vestibular dark cells. OPN protein was detected only in the otoconia by immunohistochemistry. The presence of OPN mRNA in the cochlea and vestibular dark cells may indicate that OPN is involved in the regulation of ions in the inner ear fluid. Findings in the saccule and utricle suggest that OPN is one of the protein components of the rodent otoconia and that the vestibular sensory hair cells are involved in the production of otoconia.  相似文献   

17.
Loss of inner ear hair cells leads to incurable balance and hearing disorders because these sensory cells do not effectively regenerate in humans. A potential starting point for therapy would be the stimulation of quiescent progenitor cells within the damaged inner ear. Inner ear progenitor/stem cells, which have been described in rodent inner ears, would be principal candidates for such an approach. Despite the identification of progenitor cell populations in the human fetal cochlea and in the adult human spiral ganglion, no proliferative cell populations with the capacity to generate hair cells have been reported in vestibular and cochlear tissues of adult humans. The present study aimed at filling this gap by isolating colony-forming progenitor cells from surgery- and autopsy-derived adult human temporal bones in order to generate inner ear cell types in vitro. Sphere-forming and mitogen-responding progenitor cells were isolated from vestibular and cochlear tissues. Clonal spheres grown from adult human utricle and cochlear duct were propagated for a limited number of generations. When differentiated in absence of mitogens, the utricle-derived spheres robustly gave rise to hair cell-like cells, as well as to cells expressing supporting cell-, neuron-, and glial markers, indicating that the adult human utricle harbors multipotent progenitor cells. Spheres derived from the adult human cochlear duct did not give rise to hair cell-like or neuronal cell types, which is an indication that human cochlear cells have limited proliferative potential but lack the ability to differentiate into major inner ear cell types. Anat Rec, 303:461–470, 2020. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.  相似文献   

18.
The vestibular system of the inner ear is responsible for the perception of motion and gravity. Key elements of this organ are otoconia, tiny biomineral particles in the utricle and the saccule. In response to gravity or linear acceleration, otoconia deflect the stereocilia of the hair cells, thus transducing kinetic movements into sensorineural action potentials. Here, we present an allelic series of mutations at the otoconia-deficient head tilt (het) locus, affecting the gene for NADPH oxidase 3 (Nox3). This series of mutations identifies for the first time a protein with a clear enzymatic function as indispensable for otoconia morphogenesis.  相似文献   

19.
Receptor protein-tyrosine phosphatase alpha (RPTP alpha) is highly expressed in the developing retina of different species, but little is known about its function there. Here, we report that injection of antisense morpholinos in zebrafish embryos reduced RPTP alpha expression to almost nondetectable levels up to 3 days postfertilization (dpf). RPTP alpha was detectable again from 4 dpf onward. RPTP alpha knock-down resulted in smaller eyes. Examination of sections of the retina at different developmental stages demonstrated that already at 28 hours postfertilization (hpf) fewer cells were present in the retina of RPTP alpha-morpholino-injected embryos. At 3 dpf, the layered organization of the retina was absent. In addition, the morphology and labeling with an axon specific antibody, acetylated tubulin, demonstrated that most cells appeared to be undifferentiated. Strikingly, at 5 dpf the lamination of the retina was partially restored, concomitant with re-expression of RPTP alpha protein. Although cells in the retina were now differentiated, the layering of the retina remained disrupted and significant gaps were observed in the amacrine cell layer. Therefore, knock-down of RPTP alpha protein provides evidence that RPTP alpha is essential for normal retinal development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号