首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The co-expression of osteocalcin (OC) with the capsaicin receptor (VR1) and vanilloid receptor 1-like receptor (VRL-1) was examined in the dorsal root (DRG) and trigeminal ganglia (TG). Virtually all OC-immunoreactive (ir) DRG neurons were devoid of VR1- and VRL-1-immunoreactivity (ir). In the TG, 14.1% of OC-ir neurons were also immunoreactive for VR1. Only 1.7% of OC-ir TG neurons co-expressed VRL-1-ir. The distribution of OC-ir was also examined in the spinal cord and trigeminal sensory nuclei. In the spinal cord, the superficial laminae of the dorsal horn were devoid of OC-ir. The neuropil was weakly stained in other regions of the spinal horns. The medullary dorsal horn (MDH) contained numerous OC-ir varicose fibers in laminae I and II. These fibers were occasionally observed originating from the spinal trigeminal tract. The neuropil was weakly stained in deeper laminae of the MDH, and the rostral parts of the trigeminal sensory nuclei. The present study suggests that OC-ir TG nociceptors send their unmyelinated axons to the superficial laminae of the MDH.  相似文献   

2.
Terminals in the rat spinal cord that express the vanilloid receptor VR1 are from small and medium dorsal root ganglion (DRG) neurons and appear prominent in lamina I and inner lamina II. Because primary afferents from these neurons can be myelinated or unmyelinated and their terminals in these laminae can be of various morphological and functional types, we undertook this study to identify the type(s) of VR1-positive afferent fibers and terminals. In the DRG, many small and medium-sized neurons are immunopositive. Under electron microscopy, dorsal root afferents that are immunopositive for VR1 are predominantly unmyelinated. Large numbers of VR1-positive terminals in lamina I are of the nonglomerular type and may contain dense core vesicles. VR1 immunoreactivity in terminals in lamina I is in good agreement with data on noxious, heat-sensitive neurons in the dorsal horn. Two types of glomerular afferent terminals in lamina II also are immunopositive for VR1. In both laminae, most VR1-positive terminals are distinct from substance P-positive terminals. However, the immunoreactivity in lamina II also is prominent in dendrites that are contacted by primary afferent endings. Because we also observed patchy immunostaining in cell bodies in lamina II, this unexpected result may reflect synthesis of VR1 by neurons in this lamina. However, because dorsal rhizotomy abolishes VR1 staining in both laminae I and II, it is suggested that the expression and intracellular dynamics of VR1 in lamina II neurons are controlled by presynaptic input.  相似文献   

3.
Using monoiodinated peptide YY (PYY) and galanin as radioligands, and neuropeptide Y (NPY) fragments, the distribution of NPY binding sites and its subtypes Y1 and Y2, and of galanin binding sites, was investigated in rat and monkey lumbar (L) 4 and L5 dorsal root ganglia (DRG) and spinal cord before and after a unilateral sciatic nerve cut, ligation or crush. Receptor autoradiography revealed that [125I]PYY bound to some DRG neurons and a few nerve fibres in normal rat DRG, and most of these neurons were small. NPY binding sites were observed in laminae I–IV and X of the rat dorsal horn and in the lateral spinal nucleus, with the highest density in laminae 1–11. [125I]NPY binding was most strongly attenuated by NPY13–36, a Y2 agonist, and partially inhibited by [Leu31,Pro34]NPY, a Y1 agonist, in both rat DRG and the dorsal horn of the spinal cord. These findings suggest that Y2 receptors are the main NPY receptors in rat DRG and dorsal horn, but also that Y1 receptors exist. After sciatic nerve cut, PYY binding markedly increased in nerve fibres and neurons in DRG, especially in large neuron profiles, and in laminae III-IV of the dorsal horn, as well as in nerve fibres in dorsal roots and the sciatic nerve. Incubation with NPY13–36 completely abolished PYY binding, which was also reduced by [Leu,31 Pro34] NPY. However, the increase in PYY binding seen in laminae I–IV of the ipsilateral dorsal horn after axotomy was not observed after coincubation with [Leu31, Pro34] NPY. NPY binding sites were seen in a few neurons in monkey DRG and in laminae I-II, X and IX of the monkey spinal cord. The intensity of PYY binding in laminae I-II of the dorsal horn was decreased after axotomy. Galanin receptor binding sites were not observed in rat DRG, but were observed in the superficial dorsal horn of the spinal cord, mainly in laminae I-II. Axotomy had no effect on galanin binding in rat DRG and dorsal horn. However, galanin receptor binding was observed in many neurons in monkey L4 and L5 DRG and in laminae I–IV and X of monkey L4 and L5 spinal cord, with the highest intensity in laminae I-II. No marked effect of axotomy was observed on the distribution and intensity of galanin binding in monkey DRG or spinal cord. The present results indicate that after axotomy the synthesis of NPY receptors is increased in rat DRG neurons, especially in large neurons, and is transported to the laminae I–IV of the ipsilateral dorsal horn and into the sciatic nerve. No such up-regulation of the NPY receptor occurred in monkey DRG after axotomy. The Y2 receptor seems to be the main NPY receptor in DRG and the dorsal horn of the rat and monkey spinal cord, but Y1 receptors also exist. The increase in NPY binding sites in laminae I–IV of the dorsal horn after axotomy partly represents Y1 receptors. In contrast to the rat, galanin binding sites could be identified in monkey lumbar DRG. No effect of axotomy on the distribution of galanin binding sites in rat or monkey DRG and dorsal horn was detected, suggesting their presence on local dorsal horn neurons (or central afferents).  相似文献   

4.
Galectin-1 (Gal1) is an endogenously-expressed protein important for the embryonic development of the full complement of primary sensory neurons and their synaptic connections in the spinal cord. Gal1 also promotes axonal regeneration following peripheral nerve injury, but the regulation of Gal1 by axotomy in primary afferent neurons has not yet been examined. Here, we show by immunohistochemistry and in situ hybridization that Gal1 expression is differentially regulated by peripheral nerve injury and by dorsal rhizotomy. Following peripheral nerve injury, the proportion of Gal1-positive DRG neurons was increased. An increase in the proportion of large-diameter DRG neurons immunopositive for Gal1 was paralleled by an increase in the depth of immunoreactivity in the dorsal horn, where Gal1-positive terminals are normally restricted to laminae I and II. Dorsal rhizotomy did not affect the proportions of neurons containing Gal1 mRNA or protein, but did deplete the ipsilateral dorsal horn of Gal1 immunoreactivity, indicating that it is transported centrally by dorsal root axons. Dorsal rhizotomy also resulted in an increase in Gal1 mRNA the nerve peripheral to the PNS-CNS interface (likely within Schwann cells and/or macrophages), and to a lesser extent within deafferented spinal cord regions undergoing Wallerian degeneration. This latter increase was notable in the dorsal columns and along the prior trajectories of myelinated afferents into the deeper dorsal horn. These results show that neuronal and glial expressions of Gal1 are tightly correlated with regenerative success. Thus, the differential expression pattern of Gal1 following peripheral axotomy and dorsal rhizotomy suggests that endogenous Gal1 may be a factor important to the regenerative response of injured axons.  相似文献   

5.
Although several lines of evidence indicate that glutamate is a neurotransmitter in primary afferent terminals, controversies exist on the proportion and types of such terminals that release glutamate. In the present study quantitative analysis of immunogold labelling was used to assess the presence of glutamate-like immunoreactivity in primary afferent terminals in laminae I – V of the rat spinal cord dorsal horn. Anterograde transport of choleragenoid – horseradish peroxidase from a spinal ganglion and tetramethyl benzidine histochemistry were used to identify primary afferent terminals in laminae I and III – V. Presumed C-fibre terminals in lamina II were identified on morphological criteria (dense sinusoid axon terminals). Primary afferent terminals in all dorsal horn laminae displayed significantly higher levels of glutamate-like immunoreactivity than pleomorphic vesicle-containing profiles in laminae III – IV and large neuronal cell bodies in laminae III – V. The density of gold particles over primary afferent terminals also significantly exceeded the average density of gold particles over laminae II and III – IV. The highest densities of gold particles were present over dense sinusoid axon terminals in lamina II. These findings suggest that glutamate, alone or in combination with other neuroactive compounds, is involved in the transfer of all sensory modalities from primary afferent fibres to dorsal horn neurons.  相似文献   

6.
Hyperpolarization-activated cyclic nucleotide-gated cation channel proteins (HCN1-4), which are potentially able to modulate membrane excitability, are abundantly expressed by neurons in spinal dorsal root ganglia (DRG). In the present experiment, we investigated whether HCN2 protein is confined exclusively to the perikarya of DRG neurons or is transported from the somata to the central axons of DRG neurons that terminate in the spinal dorsal horn. Using immunohistochemical methods, we have demonstrated that laminae I-IIo of the superficial spinal dorsal horn of the adult rat spinal cord show a strong punctate immunoreactivity for HCN2. Dorsal rhizotomy resulted in a complete loss of immunostaining in the dorsal horn, suggesting that HCN2 is confined to axon terminals of primary afferents. In double labelling immunohistochemical studies, we have also shown that HCN2 widely co-localizes with calcitonin gene-related peptide, but is almost completely segregated from isolectin-B4 binding, indicating that HCN2 is primarily expressed in peptidergic nociceptive primary afferents. The expression of HCN2 in central terminals of peptidergic primary afferents was also verified with electron microscopy. Utilizing the pre-embedding nanogold method, we found that HCN2 is largely confined to axon terminals with dense-core vesicles. Within these terminals, some of the silver grains marking the accurate location of HCN2 molecules were associated with the cell membrane, and others were scattered in the axoplasm. Within the cell membrane, HCN2 was found almost exclusively in extrasynaptic locations. The results suggest that HCN2 may contribute to the modulation of membrane excitability of nociceptive primary afferent terminals in the spinal dorsal horn.  相似文献   

7.
8.
The location of GABAB receptor binding sites in mammalian spinal cord   总被引:5,自引:0,他引:5  
GABAB binding sites in rat spinal cord have been detected by receptor autoradiography using 3H-GABA in the presence of isoguvacine. The sites could be demonstrated throughout the spinal cord grey matter. The maximum concentration of GABAB sites occurred in lamina II with substantial amounts in other laminae of the dorsal horn. Much lower levels were detected in the ventral horn. Unilateral rhizotomy reduced the number of GABAB sites in the dorsal horn without affecting levels in the ventral horn. The greatest reduction occurred in lamina II with 18% loss 2 days after surgery, 23% after 4 days, 25% after 6 days, and 48% after 15 days. The change after 15 days was comparable to that produced 4 months after neonatal capsaicin administration (50 mg/kg). The only apparent difference between rhizotomy and capsaicin treatment occurred in lamina IV, where rhizotomy produced a greater reduction than capsaicin. 3H-Neurotensin binding in sections from the same animals was unaltered after rhizotomy, indicating a lack of change in the populations of neurons containing neurotensin-binding sites. This would support the view that up to 50% of GABAB binding sites are located on nerve terminals. The greater reduction in lamina IV after rhizotomy would suggest that GABAB sites may be present on large-diameter afferent fibres that terminate in this region as well as on smaller-diameter C and A delta fibres.  相似文献   

9.
Transganglionic transport of horseradish peroxidase (HRP) has been used to study the anatomy of the central projection of somatic and visceral afferent fibers to the thoracic spinal cord of the cat. A dense concentration of somatic afferent fibers and terminals was found in laminae I and II of the dorsal horn and more scattered terminals were present in laminae III, IV and V and in Clarke's column. In contrast, visceral afferent fibers and terminals were found only in lamina I or reaching lamina V via a small bundle of fibers located in the lateral border of the dorsal horn. These results indicate that fine afferent fibers from viscera, unlike those of cutaneous origin, do not project to the substantia gelatinosa (lamina II) of the dorsal horn.  相似文献   

10.
To describe a sympathetic afferent circuit, the left ureter was ligated in anesthetized rats for 1.5–2 h followed by immunocytochemical processing to localize expression of either the immediate early gene (IEG) c-fos or Krox-24 in the spinal cord or dorsal root ganglia (DRG). No IEG expression was detected in DRG. Both Fos and Krox-24 expression was found in the dorsal horn. More Fos immunocytochemically stained cells were found in the dorsal hom both ipsi- and contralateral to the ligated ureter at spinal segments T10–T13 after ureteral ligation than after either sham ligation or anesthesia control procedures. More Fos stained cells were in the dorsal horn ipsilateral to the ligated ureter than on the contralateral side. The Fos staining patterns in the dorsal horn of ligated and sham-ligated animals were similar with most labeled cells in dorsomedial portions of laminae I and II. In contrast, the Fos staining pattern in the dorsal horn in anesthetized animals (unoperated controls) was noticeably different from operated animals with the most Fos cells in the ventrolateral part of laminae I-II. These results indicate that (1) Fos immunocytochemistry may be useful for tracing sympathetic afferent pathways, (2) the sensory pathway activated by ureteral ligation enters the spinal cord at lower thoracic levels, where renal and upper ureteral afferents are terminating, and (3) some of this sympathetic afferent pathway is located contralateral to the stimulated kidney. Neurons activated by ureteral ligation in the contralateral dorsal horn may mediate reno-renal reflexes.  相似文献   

11.
γ-Aminobutyric acid (GABA) is a principal inhibitory neurotransmitter in vertebrate nervous system. The metabotropic receptor for GABA, GABAB receptor, is characterized as a G protein-coupled receptor subtype. In the present study, GABAB receptor-like immunoreactivity (GABABR-LI) in the rat spinal cord and dorsal root ganglion (DRG), as well as GABAB receptor-mediated depression in the spinal dorsal horn were examined by using immunohistochemistry and whole-cell voltage-clamp recording technique, respectively. Under light microscope, GABABR-LI was densely found in laminae I and II of the dorsal horn. DRG cells of various diameters also showed GABABR-LI. Electron microscopy further revealed that GABABR-LI was also localized in terminals of myelinated, unmyelinated fibers as well as the somatodendritic sites of dorsal horn neurons. Bath application of a GABAB receptor agonist, baclofen (10 μM, 30 s), induced a slow outward (inhibitory) current in dorsal horn neurons. This slow current was depressed when the postsynaptic G protein-coupled receptor was inhibited, indicating the postsynaptic action of baclofen. Under the condition of postsynaptic GABAB receptor being inhibited, baclofen (10 μM, 60 s) depressed large (Aβ) and fine (C, Aδ) afferent fiber-evoked monosynaptic excitatory postsynaptic currents, indicating presynaptic inhibition of GABAB receptor on elicited neurotransmitter release. Taken together, the results suggest that baclofen-sensitive GABAB receptor is expressed pre- and postsynaptically on primary afferent fibers and neurons in the spinal dorsal horn; activation of GABAB receptor in the dorsal horn postsynaptically hyperpolarizes dorsal horn neurons and presynaptically inhibits primary afferents.  相似文献   

12.
To examine differential carbohydrate expression among different subsets of primary afferent fibers, several fluorescein-isothiocyanate conjugated lectins were used in a histochemical study of the dorsal root ganglion (DRG) and spinal cord of the rabbit. The lectinUlex europaeus agglutinin I specifically labeled a subset of DRG cells and primary afferent fibers which projected to the superficial laminae of the dorsal horn. These results suggest that specific carbohydrates containingl-fucosyl residue is expressed selectively in small diameter primary afferent fibers which subserve nociception or thermoception.  相似文献   

13.
Pituitary adenylate cyclase activating polypeptide (PACAP) is a widely expressed neuropeptide that has been involved in nerve regeneration, neurone survival and nociception. In this study, the distribution of PACAP and PACAP-receptors were investigated in rat dorsal root ganglia (DRG), spinal cord and medulla oblongata at 3, 7 or 14 days following unilateral sciatic nerve transection using immunohistochemistry, 125I-PACAP-binding and in situ hybridisation. In control (contralateral side) DRG, about 30% of the nerve cell bodies (92% being small) were PACAP-immunoreactive (PACAP-IR). In the spinal cord, PACAP-IR fibres were seen in laminae I-II but not in the gracile nuclei. Following sciatic nerve transection, PACAP-IR fibres appeared in the gracile nuclei and occasionally in the deeper laminae of the dorsal horn consistent with the relative increase in larger PACAP-IR DRG neurones. However, the relative number of small PACAR-IR neurones was significantly lower on the transected side as compared to the control side suggesting a dual reaction for PACAP in the DRG following nerve injury. 125I-PACAP-binding was found in laminae I-II, around the central canal and in the gracile nuclei but not in the DRG. At 14 days after transection, 125I-PACAP-binding density was significantly reduced in the ipsilateral dorsal horn. PACAP-receptor (PAC(1)) mRNA was detected in neurones of the dorsal and ventral horn and in the gracile nuclei with no overt changes observed after transection. Very few DRG nerve cell bodies contained PAC(1) mRNA. The findings are consistent with a role for PACAP both in nociception and regeneration.  相似文献   

14.
Transport of horseradish peroxidase (HRP) through somatic and visceral nerve fibres was used to study the patterns of termination of somatic and visceral primary afferent fibres within the lower thoracic segments of the cat's spinal cord. A concentrated solution of HRP was applied for at least 5 hours to the central end of the righ greater splanchnic nerve and of the left T9 intercostal nerve of adult cats. Some animals remained under chloralose anaesthesia for the duration of the HRP transport times (up to 53 hours) whereas longer HRP application and transport times (4-5 days) were allowed in animals that recovered from barbiturate anaesthesia. Somatic afferent fibres and varicosities (presumed terminals) were found in laminae I, II, III, IV, and V of the ipsilateral dorsal horn and in the ipsilateral Clarke's column. The density of the somatic projection was particularly high in the superficial dorsal horn. In parasagittal sections of the cord, bundles of somatic fibres were seen joining the dorsal horn from the dorsal roots via the dorsal columns and Lissauer's tract. A medio-lateral somatotopic arrangement of somatic afferent terminations was observed, with afferent fibres from the ventral parts of the dermatome ending in the medial dorsal horn and afferent fibres from the dorsal parts of the dermatome ending in the lateral dorsal horn. The total rostro-caudal extent of the somatic projection through a single spinal nerve was found to be of 2 and 2/3 segments, including the segment of entry, the entire segment rostral to it and two-thirds of the segment caudal to it. A lateral to medial shift in the position of the somatic projection was observed in the rostro-caudal axis of the cord. Visceral afferent fibres and varicosities (presumed terminals) were seen in laminae I and V of the ipsilateral dorsal horn. The density of the visceral projection to the dorsal horn was substantially lower than that of the somatic projection. Visceral afferent fibres reached the dorsal horn via Lissauer's tract and joined a lateral bundle of fine fibres that run along the lateral edge of the dorsal horn. The substantia gelatinosa (lamina II) appeared free of visceral afferent fibres. These results are discussed in relation to the mechanisms of viscero-somatic convergence onto sensory pathways in the thoracic spinal cord.  相似文献   

15.
Expression of the neuropeptide orphanin FQ/nociceptin (OFQ/N) and its receptor, the opioid receptor-like receptor (ORL1), have been found to have a wide distribution in the central nervous system, and in brain areas involved in sensory perception in particular. The effects of OFQ/N on, e.g., sensory transmission are very complex, and a modulatory effect on pain perception has been suggested. We therefore wanted to investigate the distribution of OFQ/N and ORL1 in the spinal cord and DRG, and also in SCG and some other peripheral tissues. The methods used were in situ hybridization, immunohistochemistry and ligand binding. We found that OFQ/N and ORL1 mRNA are expressed in DRG; primarily in small and large neurons, respectively. In spinal cord, mRNA for OFQ/N and ORL1 is expressed in neurons in laminae I, II and X, and in ventral horn neurons. Further, immunoreactivity for OFQ/N is observed in fibers and neurons in the superficial laminae of the dorsal horn and around the central canal, and also in neurons in the ventral horn of the spinal cord. Receptor ligand binding to the spinal cord grey matter is demonstrated, primarily concentrated to the dorsal horn and around the central canal, and also to medium and large size DRG neurons. These findings on the morphological distribution pattern of OFQ/N and ORL1 at the cellular level may support the notion that OFQ/N is involved in modulating pain transmission. Further, expression of OFQ/N and ORL1 mRNA was also found in SCG, whereas expression was undetectable in skin.  相似文献   

16.
gamma-Aminobutyric acid (GABA) is a principal inhibitory neurotransmitter in vertebrate nervous system. The metabotropic receptor for GABA, GABA(B) receptor, is characterized as a G protein-coupled receptor subtype. In the present study, GABA(B) receptor-like immunoreactivity (GABA(B)R-LI) in the rat spinal cord and dorsal root ganglion (DRG), as well as GABA(B) receptor-mediated depression in the spinal dorsal horn were examined by using immunohistochemistry and whole-cell voltage-clamp recording technique, respectively. Under light microscope, GABA(B)R-LI was densely found in laminae I and II of the dorsal horn. DRG cells of various diameters also showed GABA(B)R-LI. Electron microscopy further revealed that GABA(B)R-LI was also localized in terminals of myelinated, unmyelinated fibers as well as the somatodendritic sites of dorsal horn neurons. Bath application of a GABA(B) receptor agonist, baclofen (10 microM, 30 s), induced a slow outward (inhibitory) current in dorsal horn neurons. This slow current was depressed when the postsynaptic G protein-coupled receptor was inhibited, indicating the postsynaptic action of baclofen. Under the condition of postsynaptic GABA(B) receptor being inhibited, baclofen (10 microM, 60 s) depressed large (Abeta) and fine (C, Adelta) afferent fiber-evoked monosynaptic excitatory postsynaptic currents, indicating presynaptic inhibition of GABA(B) receptor on elicited neurotransmitter release. Taken together, the results suggest that baclofen-sensitive GABA(B) receptor is expressed pre- and postsynaptically on primary afferent fibers and neurons in the spinal dorsal horn; activation of GABA(B) receptor in the dorsal horn postsynaptically hyperpolarizes dorsal horn neurons and presynaptically inhibits primary afferents.  相似文献   

17.
In the adult spinal cord, the neuron-specific protein NT75 is located in nerve terminals synapsing in the superficial laminae of the dorsal horn. The present study examines the occurrence of NT75 in the developing rat spinal cord. NT75 immunoreactivity is detectable in primary afferent axons at the dorsal root entry zone on embryonic day 15. Subsequently, staining of presumptive nerve terminals appears in the deeper laminae of the dorsal horn, expanding into the superficial laminae during the first postnatal week. NT75 staining also appears in developing corticospinal tract axons in the brainstem at birth, and at lumbosacral levels by postnatal day 5. As NT75-positive nerve terminals approach the adult distribution, staining of primary afferent and corticospinal axons decreases, becoming undetectable by postnatal day 30. Dense transient staining of presumed nerve terminals in the ventral horn is also apparent during early postnatal development. Quantitative analysis of developing spinal cord shows a low level of NT75 immunoreactivity at birth. NT75 activity then increases substantially, reaching values by the third and fourth postnatal weeks up to 2.5 times that seen in adults. The occurrence of NT75 immunoreactivity correlates with the reported time course of synaptic development in the spinal cord. In addition, the results suggest that NT75 immunoreactivity is maintained at high levels in the nerve terminals of certain neural pathways into adulthood, whereas in other systems NT75 immunoreactivity may be detectable only during development.  相似文献   

18.
In the adult spinal cord, immunocytochemical staining for NT75 is concentrated in nerve terminals in the superficial laminae of the dorsal horn. Deeper laminae of the dorsal horn contain moderate immunocytochemical labeling, but the ventral horn is only sparsely stained. The origin of spinal nerve terminals containing NT75 was investigated with lesion techniques, colchicine treatment, and retrograde tracing in combination with immunocytochemical staining. Primary afferent neurons express NT75 immunoreactivity and account for most of the dense staining in the superficial dorsal horn and part of the labeling in the deeper laminae. It was found that corticospinal and virtually all brainstem neurons with descending projections to the spinal cord also express NT75 immunoreactivity, including those terminating in the ventral horn. Colchicine treatment of the spinal cord also resulted in NT75 staining in most, if not all, spinal neurons. It appears that neurons in all three major sources of spinal afferents (primary sensory, descending, and intrinsic systems) can express NT75 immunoreactivity, but that some neurons normally contain higher levels of the protein in their nerve terminals. Previous analysis of developing spinal cord has shown widespread, dense NT75 labeling throughout the spinal gray in the early postnatal period, which later becomes restricted to the adult pattern. These studies support the hypothesis that many spinal pathways express high levels of NT75 immunoreactivity during development, but that only certain pathways maintain high levels in the adult. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Recent studies have suggested that calcitonin gene-related peptide (CGRP) can be used as a marker for a subpopulation of nociceptive primary afferents. Consequently, CGRP-immunoreactive (CGRP-IR) primary afferents have been reported to project many segments rostral to their segment of entry and to send collaterals into the superficial and deep laminae of the dorsal horn. This study reports that some CGRP-IR primary afferents of sacral origin project rostral through the ipsilateral lumbar enlargement in the cat. The ultrastructure of these multisegmentally projecting primary afferent axons and terminals identified in a partially denervated cat was examined and compared to the ultrastructure of CGRP-IR afferents from an intact cat. Retrograde transport of wheatgerm agglutinin-colloidal gold injected into the cat L4 spinal cord resulted in labeling of primary afferent cell bodies in the ipsilateral L4-S1 dorsal root ganglia (DRG). Analysis of every fourth section through the ipsilateral S1 DRG revealed as many as 1,000 retrogradely labeled neuronal cell bodies. One third of these cell bodies were double labeled for CGRP-like immunoreactivity. The number of single- and double-labeled cells increased in ganglia closer to the injection site (L4-L7). At the ultrastructural level, in the lumbosacral dorsal spinal cord of a normal cat, most CGRP-IR axons were unmyelinated, while the rest were small myelinated axons. In both the superficial dorsal horn and lamina V, CGRP-IR varicosities were dome shaped, scallop shaped, or elongated. The CGRP-IR varicosities contained small agranular vesicles and frequently a few dense core vesicles. These labeled varicosities formed asymmetric synapses on unlabeled dendritic spines, shafts, or neuronal somata. One cat received multiple unilateral dorsal rhizotomies (S1-L4) and an ipsilateral hemisection (mid L4). CGRP-IR axons and terminals were found within each of the rhizotomized segments, although their density was greatly reduced compared to that in the intact animals. In Lissauer's tract the majority (greater than 90%) of CGRP-IR fibers were unmyelinated. In laminae I and V, the remaining CGRP-IR varicosities were mainly the dome-shaped varicosities morphologically similar to those observed in the normal spinal cords. They contained small agranular vesicles and a few dense core vesicles and formed asymmetric synapses on unlabeled dendritic shafts and spines. These data demonstrate that unmyelinated, presumably C-fiber nociceptive primary afferents and some small myelinated A-delta nociceptive primary afferents of sacral origin project rostral through the cat lumbar enlargement and make synaptic connections in both the superficial and deep laminae of the cat dorsal spinal cord.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The different subdivisions along the mediolateral extent of the superficial dorsal horn of the spinal cord are generally regarded as identical structures that execute the function of sensory information processing without any significant communication with other regions of the spinal gray matter. In contrast to this standing, here we endeavor to show that neural assemblies along the mediolateral extent of laminae I-IV cannot be regarded as identical structures. After injecting Phaseolus vulgaris leucoagglutinin and biotinylated dextran amine into various areas of the superficial dorsal horn (laminae I-IV) at the level of the lumbar spinal cord in rats, we have demonstrated that the medial and lateral areas of the superficial dorsal horn show the following distinct features in their propriospinal afferent and efferent connections: 1) A 300- to 400-microm-long section of the medial aspects of laminae I-IV projects to and receives afferent fibers from a three segment long compartment of the spinal dorsal gray matter, whereas the same length of the lateral aspects of laminae I-IV projects to and receives afferent fibers from the entire rostrocaudal extent of the lumbar spinal cord. 2) The medial aspects of laminae I-IV project extensively to the lateral areas of the superficial dorsal horn. In contrast to this, the lateral areas of laminae I-IV, with the exception of a few fibers at the segmental level, do not project back to the medial territories. 3) There is a substantial direct commissural connection between the lateral aspects of laminae I-IV on the two sides of the lumbar spinal cord. The medial part of laminae I-IV, however, does not establish any direct connection with the gray matter on the opposite side. 4) The lateral aspects of laminae I-IV appear to be the primary source of fibers projecting to the ipsi- and contralateral ventral horns and supraspinal brain centers. Projecting fibers arise from the medial subdivision of laminae I-IV in a substantially lower number. The findings indicate that the medial and lateral areas of the superficial spinal dorsal horn of rats may play different roles in sensory information processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号