首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A combined PET/CT scanner for clinical oncology.   总被引:70,自引:0,他引:70  
The availability of accurately aligned, whole-body anatomical (CT) and functional (PET) images could have a significant impact on diagnosing and staging malignant disease and on identifying and localizing metastases. Computer algorithms to align CT and PET images acquired on different scanners are generally successful for the brain, whereas image alignment in other regions of the body is more problematic. METHODS: A combined PET/CT tomograph with the unique capability of acquiring accurately aligned functional and anatomical images for any part of the human body has been designed and built. The PET/CT scanner was developed as a combination of a Siemens Somatom AR.SP spiral CT and a partial-ring, rotating ECAT ART PET scanner. All components are mounted on a common rotational support within a single gantry. The PET and CT components can be operated either separately, or in combined mode. In combined mode, the CT images are used to correct the PET data for scatter and attenuation. Fully quantitative whole-body images are obtained for an axial extent of 100 cm in an imaging time of less than 1 h. When operated in PET mode alone, transmission scans are acquired with dual 137Cs sources. RESULTS: The scanner is fully operational and the combined device has been operated successfully in a clinical environment. Over 110 patients have been imaged, covering a range of different cancers, including lung, esophageal, head and neck, melanoma, lymphoma, pancreas, and renal cell. The aligned PET and CT images are used both for diagnosing and staging disease and for evaluating response to therapy. We report the first performance measurements from the scanner and present some illustrative clinical studies acquired in cancer patients. CONCLUSION: A combined PET and CT scanner is a practical and effective approach to acquiring co-registered anatomical and functional images in a single scanning session.  相似文献   

2.
In routine PET, a 10- to 20-min transmission scan with a rotating (68)Ge source is commonly obtained for attenuation correction (AC). AC is time-consuming using this procedure and could considerably be shortened by instead using a rapid CT scan. Our aim was to evaluate the feasibility of CT AC in quantitative myocardial perfusion PET using a hybrid PET/CT scanner. METHODS: (13)N-labeled NH(3) and PET were used to measure myocardial blood flow (MBF) (mL/min/g) at rest and during standard adenosine stress. In group 1 (n = 7), CT scans (0.5 s) of the heart area with different tube currents (10, 40, 80, and 120 mA) were compared with a standard (68)Ge transmission (20 min) and with no AC. In group 2 (n = 3), the repeatability of 8 consecutive CT scans at a tube current of 10 mA was assessed. In group 3 (n = 4), emission was preceded and followed by 3 CT scans (10 mA) and 1 (68)Ge scan for each patient. For reconstruction, filtered backprojection (FBP) was compared with iterative reconstruction (IT). RESULTS: For group 1, no significant difference in mean MBF for resting and hyperemic scans was found when emission reconstructed with (68)Ge AC was compared with emission reconstructed with CT AC at any of the different tube currents. Only emission without any correction differed significantly from (68)Ge AC. For group 2, repeated measurements revealed a coefficient of variance ranging from 2% to 5% and from 2% to 6% at rest and at stress, respectively. For group 3, similar reproducibility coefficients (RC) for MBF were obtained when (68)Ge AC(FBP) was compared with (68)Ge AC(IT) (RC = 0.218) and when CT AC(FBP) was compared with CT AC(IT) (RC = 0.227). Even better reproducibility (lower RC) was found when (68)Ge AC(FBP) was compared with CT AC(FBP) (RC = 0.130) and when (68)Ge AC(IT) was compared with CT AC(IT) (RC = 0.146). CONCLUSION: Our study shows that for the assessment of qualitative and quantitative MBF with a hybrid PET/CT scanner, the use of CT AC (with a tube current of 10 mA) instead of (68)Ge AC provides accurate results.  相似文献   

3.
Performance evaluation of the 32-module quadHIDAC small-animal PET scanner.   总被引:8,自引:0,他引:8  
The 32-module quadHIDAC is a commercial, high-resolution animal PET scanner, based on gas multiwire proportional chambers. METHODS: Several scanner parameters that characterize the performance of the system were evaluated in this study, such as spatial resolution, absolute sensitivity, scatter, and count rate performance. The spatial resolution has been determined with filtered back-projected images of a point source. A line source, a mouse phantom, and a rat phantom have been used to characterize the count rate performance. The scatter fraction and photon absorption have been measured with a mouse scatter phantom. The absolute sensitivity has been determined using a line source with aluminum shields of different thickness. RESULTS: Spatial resolution (full width at half maximum) offers values of 1.08, 1.08, and 1.04 mm in the radial, tangential, and axial directions, respectively. The maximum count rate is 370 kcps for a line source of 19 MBq activity. Registration of scattered coincidences is caused primarily by photons scattering in the large coincidence detectors. For a mouse-sized object, only 5% of the measured coincidences scatter inside the animal, whereas 32% of the coincidences scatter inside the detectors. Photon attenuation within a mouse phantom was 22%. After scatter corrections, the absolute sensitivity of the system is 15.2 cps/kBq for a point source and 13.7 cps/kBq for a 7.8-cm-long line source. The peak noise equivalent count rates are 67 kcps@209 kBq/mL for the mouse phantom and 52 kcps@96 kBq/mL for the rat phantom. Finally, a comparison has been made with the microPET R4, a commercial scintillation crystal-based PET camera. CONCLUSION: The results confirm that the quadHIDAC PET scanner, with its large cylindric field of view (165-mm diameter, 280-mm axial length), is particularly suitable for imaging small animals such as mice or rats.  相似文献   

4.
OBJECTIVE: In this study, we evaluated the performance of a newly commercialized small-animal positron emission tomography (PET) scanner, ClairvivoPET, which provides significant advantages in spatial resolution, sensitivity, and quantitative accuracy. METHODS: This scanner consists of depth of interaction detector modules with a large axial extent of 151 mm and an external (137)Cs source for attenuation correction. Physical performances, resolution, sensitivity, scatter fraction (SF), counting rate including noise equivalent count (NEC) rate, quantitative accuracy versus activity strength, and transmission accuracy, were measured and evaluated. Animal studies were also performed. RESULTS: Transaxial spatial resolution, measured with a capillary tube, was 1.54 mm at the center and 2.93 mm at a radial offset of 40 mm. The absolute sensitivity was 8.2% at the center, and SFs for mouse-and rat-sized phantoms were 10.7% and 24.2%, respectively. Peak NEC rates for mouse-and rat-sized uniform cylindrical phantoms were 328 kcps at 173 kBq/ml and 119 kcps at 49 kBq/ml, respectively. The quantitative stability of emission counts against activity strength was within 2% over 5 half-lives, ranging from 0.6 MBq to 30 MBq. Transmission measurement based on segmented attenuation correction allowed 6-min and 10-min scans for mouse-and rat-sized cylindrical phantoms, respectively. Rat imaging injected with (18)F-NaF resulted in visibility of fine bone structures, and mouse imaging injected with (18)F-D-fluoromethyl tyrosine demonstrated the feasibility of using this system to obtain simultaneous time activity curves from separate regions, such as for the heart and tumors. CONCLUSIONS: ClairvivoPET is well suited to quantitative imaging even with short scan times, and will provide a number of advantages in new drug development and for kinetic measurement in molecular imaging.  相似文献   

5.
Lutetium oxyorthosilicate (LSO)- or lutetium-yttrium oxyorthosilicate (LYSO)-based PET scanners have intrinsic radioactivity in the scintillator crystals due to the presence of (176)Lu, which decays by beta-emission followed by one or more prompt gamma-ray emissions. This leads to intrinsic true counts that can influence the image when scanning low levels of activity. An evaluation of the effects of this intrinsic activity for low levels of activity and different energy windows is performed on an LSO-based small-animal PET scanner. METHODS: Intrinsic count rate and sensitivity were measured for a range of lower-level discriminators (LLDs) ranging from 100 to 750 keV. The noise equivalent count rate (NECR) as a function of LLD for activity levels from 100 Bq to 100 kBq was estimated using a combination of measurement and previously published data for this scanner. Phantom imaging was performed using three (68)Ge sources of strength 55, 220, and 940 Bq and LLD levels of 250, 350, and 400 keV. The images were assessed using a contrast-to-noise ratio (CNR) analysis and by comparing the observed ratio of source activities to the true ratio value. RESULTS: The intrinsic true count rate is reduced from 940 counts per second (cps) for a 250- to 750-keV energy window to <2 cps for a 400- to 750-keV window. There is a corresponding 2-fold drop in sensitivity for detected true events for external positron sources for these 2 energy windows. The NECR versus LLD curves showed a highly peaked shape, with the optimum LLD being approximately 425 keV. The phantom image results were dominated by the intrinsic true counts when an energy window of 250-750 keV was used. The intrinsic true counts were almost completely removed by raising the LLD to 400 keV. The CNR for each of the sources was higher for the narrow energy window and the 55 Bq could be easily visualized in images acquired with LLD levels of 350 and 400 keV but not when the 250-keV LLD was used. Images acquired with an LLD of 400 keV and reconstructed with 2-dimensional filtered backprojection were the most quantitatively accurate. CONCLUSION: It is possible to visualize sources of <1 kBq in LSO-based animal PET systems by raising the LLD to 400 keV to exclude the majority of the counts due to the intrinsic activity present in the LSO.  相似文献   

6.
We evaluated the performance characteristics of the eXplore VISTA dual-ring small-animal PET scanner, a stationary, ring-type, depth-of-interaction (DOI) correcting system designed to simultaneously maximize sensitivity, resolution, and resolution uniformity over a field of view sufficient to image rodent-sized animals. METHODS: We measured the intrinsic spatial resolution response of the VISTA detector modules, spatial and volume resolution throughout a representative portion of the field of view, and imaged several common resolution phantoms to provide a qualitative picture of resolution performance. We obtained an axial sensitivity profile and measured central point source sensitivity, scatter fractions and noise equivalent count (NEC) rates for rat- and mouse-sized objects using different energy windows, and count rate linearity. In addition, we measured the energy and timing resolution of both of the crystal layers (cerium-doped gadolinium orthosilicate and cerium-doped lutetium-yttrium orthosilicate) that give VISTA machines a DOI compensation capability. We examined the effectiveness of this DOI compensation by comparing spatial resolution measurements with and without the DOI correction enabled. Finally, several animal studies were included to illustrate system performance in the field. RESULTS: Spatial and volume resolutions averaged approximately 1.4 mm and 2.9 mm(3), respectively (with 3-dimensional Fourier rebinning and 2-dimensional filtered backprojection image reconstructions and an energy window of 250-700 keV), along the central axis of the scanner, and the spatial resolution was better than 1.7 mm and 2.1 mm at 1 and 2 cm off the central axis, respectively. Central point source sensitivity measured approximately 4% with peak NEC rates of 126.8 kcps at 455 kBq/mL and 77.1 kcps at 141 kBq/mL for mouse- and rat-sized uniform, cylindric phantoms, respectively. The radial spatial resolution at 2.8 cm off axis with DOI compensation was 2.5 mm but degraded (by 56%) to 3.9 mm without DOI compensation (as would be the case with a geometrically identical scanner without DOI correction capability). CONCLUSION: These results indicate that the VISTA small-animal PET scanner is well suited to imaging rodent-sized animals. The combination of high spatial resolution, resolution uniformity, sensitivity, and count rate performance, made possible in part by the novel use of phoswich detector modules, confers significant technical advantages over machines with similar geometry but without DOI correction capability.  相似文献   

7.
A combined PET/CT scanner: the choices.   总被引:17,自引:0,他引:17  
  相似文献   

8.
A whole-body PET scanner, without interplane septa, has been designed to achieve high performance in clinical applications. The C-PET scanner, an advancement of the PENN PET scanners, is unique in the use of 6 curved NaI(Tl) detectors (2.54 cm thick). The scanner has a ring diameter of 90 cm, a patient port diameter of 56 cm, and an axial field of view of 25.6 cm. A (137)Cs point source is used for transmission scans. METHODS: Following the protocols of the International Electrotechnical Commission ([IEC] 61675-1) and the National Electrical Manufacturers Association ([NEMA] NU-2-1994 and an updated version, NU2-2001), point and line sources, as well as uniform cylinders, were used to determine the performance characteristics of the C-PET scanner. An image-quality phantom and patient data were used to evaluate image quality under clinical scanning conditions. Data were rebinned with Fourier rebinning into 2-dimensional (slice-oriented) datasets and reconstructed with an iterative reconstruction algorithm. RESULTS: The spatial resolution for a point source in the transaxial direction was 4.6 mm (full width at half maximum) at the center, and the axial resolution was 5.7 mm. For the NU2-1994 analysis, the sensitivity was 12.7 cps/Bq/mL (444 kcps/microCi/mL), the scatter fraction was 25%, and the peak noise equivalent count rate (NEC) for a uniform cylinder (diameter = 20 cm, length = 19 cm) was 49 kcps at an activity concentration of 11.2 kBq/mL. For the IEC protocol, the peak NEC was 41 kcps at 12.3 kBq/mL, and for the NU2-2001 protocol, the peak NEC was 14 kcps at 3.8 kBq/mL. The NU2-2001 NEC value differed significantly because of differences in the data analysis and the use of a 70-cm-long phantom. CONCLUSION: Compared with previous PENN PET scanners, the C-PET, with its curved detectors and improvements in pulse shaping, integration dead time, and triggering, has an improved count-rate capability and spatial resolution. With the refinements in the singles transmission technique and iterative reconstruction, image quality is improved and scan time is shortened. With single-event transmission scans interleaved between sequential emission scans, a whole-body study can be completed in <1 h. Overall, C-PET is a cost-effective PET scanner that performs well in a broad variety of clinical applications.  相似文献   

9.
A full-ring PET insert device should be able to enhance the image resolution of existing small-animal PET scanners. METHODS: The device consists of 18 high-resolution PET detectors in a cylindric enclosure. Each detector contains a cerium-doped lutetium oxyorthosilicate array (12 x 12 crystals, 0.72 x 1.51 x 3.75 mm each) coupled to a position-sensitive photomultiplier tube via an optical fiber bundle made of 8 x 16 square multiclad fibers. Signals from the insert detectors are connected to the scanner through the electronics of the disabled first ring of detectors, which permits coincidence detection between the 2 systems. Energy resolution of a detector was measured using a (68)Ge point source, and a calibrated (68)Ge point source stepped across the axial field of view (FOV) provided the sensitivity profile of the system. A (22)Na point source imaged at different offsets from the center characterized the in-plane resolution of the insert system. Imaging was then performed with a Derenzo phantom filled with 19.5 MBq of (18)F-fluoride and imaged for 2 h; a 24.3-g mouse injected with 129.5 MBq of (18)F-fluoride and imaged in 5 bed positions at 3.5 h after injection; and a 22.8-g mouse injected with 14.3 MBq of (18)F-FDG and imaged for 2 h with electrocardiogram gating. RESULTS: The energy resolution of a typical detector module at 511 keV is 19.0% +/- 3.1%. The peak sensitivity of the system is approximately 2.67%. The image resolution of the system ranges from 1.0- to 1.8-mm full width at half maximum near the center of the FOV, depending on the type of coincidence events used for image reconstruction. Derenzo phantom and mouse bone images showed significant improvement in transaxial image resolution using the insert device. Mouse heart images demonstrated the gated imaging capability of the device. CONCLUSION: We have built a prototype full-ring insert device for a small-animal PET scanner to provide higher-resolution PET images within a reduced imaging FOV. Development of additional correction techniques are needed to achieve quantitative imaging with such an insert.  相似文献   

10.
近年来,124I PET/CT在DTC诊治中的应用引起了临床工作者越来越广泛的关注.结合CT精确的解剖学信息和PET高特异的功能学信息,124I PET/CT可准确定位摄碘性病灶,探测非摄碘性病灶,从而更好地对DTC进行分期.此外,依赖其准确的剂量学评价结果,124I PET/CT剂量学评价可辅助制定DTC患者的治疗方案.笔者概述了124I PET/CT在DTC诊治中的应用.  相似文献   

11.
New CT software programs allow rapid-sequence images to be obtained. During a period of 12 sec, multiple CT images can be produced, so that the progression of contrast flow at intervals of 1 sec or less can be followed. In addition, as many as 16 consecutive 3-sec scans can be performed, or arbitrary time intervals inserted between scans. The rapidity with which the contrast medium enters and leaves a specific tissue may be a valuable, non-invasive diagnostic tool in differentiating enhancing lesions. Other potential applications are mentioned.  相似文献   

12.
The combination of small-animal PET and MRI data provides quantitative in vivo insights into cardiac pathophysiology, integrating information on biology and morphology. We sought to determine the feasibility of PET and MRI for the quantification of ischemic injury in the rat model. METHODS: Fourteen healthy male Wistar rats were studied with 18F-FDG PET and cine MRI. Myocardial viability was determined in a transmural myocardial infarction model in 12 additional rats, using 18F-FDG PET and delayed-enhancement MRI with gadolinium-diethylenetriaminepentaacetic acid. All PET was acquired with a dedicated small-animal PET system. MRI was performed on a 1.5-T clinical tomograph with a dedicated small-animal electrocardiographic triggering device and a small surface coil. RESULTS: In normal rats, 18F-FDG uptake was homogeneous throughout the left ventricle. The lowest mean uptake of the 18F-FDG was found in the apical regions (79% +/- 6.0% of maximum) and the highest uptake was in the anterior wall (93% +/- 4.3 % of maximum). Myocardial infarct size as determined by histology correlated well with defects of glucose metabolism obtained with 18F-FDG PET (r = 0.89) and also with delayed-enhancement MRI (r = 0.91). Left ventricular ejection fraction in normal rats measured by cine MRI was 57% +/- 5.4% and decreased to 38% +/- 12.9% (P < 0.001) in the myocardial infarction model. CONCLUSION: Integrating information from small-animal PET and clinical MRI instrumentation allows for the quantitative assessment of cardiac function and infarct size in the rat model. The MRI measurements of scar can be complemented by metabolic imaging, addressing the extent and severity of ischemic injury and providing endpoints for therapeutic interventions.  相似文献   

13.
14.
15.

Purpose

To compare pretherapy 124I PET/CT and posttherapy 131I SPECT/CT in the identification of pathological lesions and the staging of patients with differentiated thyroid carcinoma.

Methods

124I SPECT with low-dose CT in addition to a standard whole-body scan was performed 5 days following 131I therapy with the administration of 1,110–7,728 MBq. Pretherapy 124I PET/CT was done 24 h and 96 h after oral ingestion of 20–28 MBq, including a noncontrast high-dose CT scan. Scans were evaluated by two independent experienced nuclear physicians. In addition to the total number of lesions found, patient-based analyses and lesion-based analyses were performed to ascertain the discrepancies between the findings of the two scanning techniques, as well as to evaluate the clinical impact of the findings.

Results

A group of 20 consecutive patients were analysed. In the lesion-based analysis, a total of 62 foci were found with all modalities together. Of these, 124I PET/CT found 57 (92 %), 131I SPECT/CT 50 (81 %) and planar imaging 39 (63 %). In the patient-based analysis, in 50 % of patients complete concordance between the findings of 124I PET and 131I SPECT was seen, in 5 % complete discordance and in the remaining 45 % partial discordance, i.e. a focus or some foci seen with both modalities but another or others seen more or less with one or other modality. In 5 of the 20 patients (25 %), tumour stage was changed according to the findings of one of the modalities. In 60 % of these patients this was only with the findings of 124I PET/CT.

Conclusion

This study showed that 124I PET/CT is preferred over 131I imaging for staging differentiated thyroid carcinoma.  相似文献   

16.
17.
AIM: This study was aimed at assessing the clinical performances of a NaI(Tl) crystal 3D PET scanner, C-PET (ADAC-UGM), using a multi-ring 2D BGO PET scanner (multi-ring PET), as a reference. METHODS: Thirty-seven oncological patients were studied in sequence with multi-ring PET and C-PET, within 30 days of a CT study. In order to assess the behaviour of C-PET in relation to acquisition count rate, patients were divided into 3 groups according to the count rate at the time of the C-PET scan acquisition. Group A (n=21): 3000-5000 kcounts/sec (recommended count rate range); Group B (n=8): <3000 Kcounts/sec and Group C (n=8): >5000 Kcounts/sec. RESULTS: The number of lesions detected by multi-ring PET and C-PET, classified according to size, was compared. For Group A and Group B there was a good agreement between C-PET and multi-ring PET in terms of lesion detectability (relative sensitivity: 99.9% and 96.0%, respectively), while for Group C the relative sensitivity of C-PET was 61.9%. CONCLUSION: Optimal performances of the C-PET scanner can thus be obtained at a count rate within or below the recommended range. Despite a lower lesion/background contrast resulting from a high scatter and random noise, the sensitivity of C-PET in detecting hypermetabolic lesions is comparable to that of multi-ring PET. These findings are discussed in relation to the physical performance of the two scanners and particularly in relation to the 3D vs 2D acquisition modality.  相似文献   

18.
(124)I was produced, via (124)Te(p,n)(124)I reaction, in greater than 3.7GBq (100 mCi, EOB) amount by bombarding (124)TeO(2) targets at 24 microA current for about 8h. This was achieved by keeping the target at 37 degrees relative to the beam during irradiation, by sweeping the beam across the target and by keeping the incident energy of the proton at 14.1MeV. The time-averaged yield of our 8h run was 21.1 MBq/microAh (0.57 mCi/microAh), which was 90% of the theoretical yield calculated using thick target yield data obtained from the reported excitation function for the reaction. At the end of bombardment, the level of (125)I and (126)I impurities, co-produced with (124)I, were 0.03% and 0.007%, respectively.  相似文献   

19.
This study evaluates the 2-dimensional (2D) and 3-dimensional (3D) performance characteristics of a newly developed PET/CT scanner using the National Electrical Manufacturers Association (NEMA) NU 2-1994 (NU94) and NEMA NU 2-2001 (NU01) standards. The PET detector array consists of 10,080 individual bismuth germanate crystals arranged in 24 rings of 420 crystals each. The size of each crystal is 6.3 x 6.3 x 30 mm in the axial, transaxial, and radial dimensions, respectively. The PET detector ring diameter is 88.6 cm with axial and transaxial fields of view (FOVs) of 15.7 and 70 cm, respectively. The scanner has a uniform patient port of 70 cm throughout the PET and CT FOV, and the PET scanner is equipped with retractable septa to allow 2D and 3D imaging. METHODS: Spatial resolution, scatter fraction, sensitivity, counting rate, image quality, and accuracy as defined by the NEMA protocols of NU94 and NU01 for 2D and 3D modes are evaluated. The 2D mode data were acquired with a maximum ring difference of 5, whereas the 3D mode acquisition used ring differences of 23. Both 2D and 3D mode data were acquired with an energy window of 375-650 keV. Random estimation from singles counting rate was applied to all relevant analysis. In addition, images from 2 clinical whole-body oncology studies acquired in 2D and 3D modes are shown to demonstrate the image quality obtained from this scanner. RESULTS: The 2D NU94 transaxial resolution is 6.1-mm full width at half maximum (FWHM) 1 cm off center and increases to 6.9 mm tangential and 8.1 mm radial at a radius (R) of 20 cm. NU01 2D average transaxial (axial) FWHM resolution measured 6.1 (5.2) mm at R = 1 cm and 6.7 (6.1) mm at R = 10 cm. The NU94 scatter fraction for 2D (3D) was 13% (29%), whereas the NU01 scatter fraction gave 19% (45%). NU01 peak 2D (3D) noise equivalent counting rate (T(2)/[T + R + S]) was 90.2 (67.8) kilocount per second (kcps) at 52.5 (12) kBq/mL. Total 2D (3D) system sensitivity for true events is 8 (32.9) kcps/kBq/mL for NU94 and 1.95 (9.2) kcps/Bq for NU01. CONCLUSION: The results show excellent system sensitivity with relatively uniform resolution throughout the FOV, making this scanner highly suitable for whole-body studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号