首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contrast in rapid MR imaging: T1- and T2-weighted imaging   总被引:1,自引:0,他引:1  
Partial saturation (PS) is an imaging technique that is useful in applications that require rapid image acquisitions (imaging time less than 1 min). Image contrast in PS imaging, as in other magnetic resonance methods, depends on the often conflicting effects of differences in proton density, T1, and T2. Previous analyses of pulse sequence optimization to maximize image contrast have assumed 90 degrees pulses and examined the effects of varying repetition times (TR) and echo times (TE). In this paper we present theoretical calculations and images made with a 0.6 T imager to show that the radiofrequency pulse tip angle alpha, and not the pulse sequence timing parameters, is the most important parameter for producing image contrast. For large tip angles (alpha greater than or equal to 60 degrees), contrast is primarily determined by differences in T1, but for small tip angles (alpha approximately equal to 25 degrees), contrast is primarily due to differences in T2. The T2-weighted images can be produced as quickly as T1-weighted images by using a small pulse angle and a long TE; it is not necessary to use a long TR to reduce the effects of T1 differences. Optimum pulse angles are calculated, and the potential advantages and disadvantages of T2-weighted and T1-weighted PS imaging are discussed.  相似文献   

2.
The radial trajectory has found applications in cardiac imaging because of its resilience to undersampling and motion artifacts. Recent work has shown that interleaved and weighted radial imaging can produce images with multiple contrasts from a single data set. This feature was investigated for inversion recovery imaging of scar using a radial technique. The 2D radial imaging method was modified to acquire quadruply interleaved projection sets within each acquisition window of the cardiac cycle. These data were reconstructed using k-space weightings that used a smaller segment of the acquisition window for the central k-space data, the determinant of image contrast. This method generates four images with different T1 weightings. The novel approach was compared with noninterleaved radial imaging, interleaved radial without weightings, and Cartesian imaging in simulations, phantoms, and seven subjects with clinical myocardial infarction. The results show that during a typical acquisition window after an inversion pulse, magnetization changes rapidly. The interleaved acquisition provided better image quality than the noninterleaved radial acquisition. Interleaving with weighting provided better quality when the inversion time (TI) was shorter than optimal; otherwise, interleaving without weighting was superior. These methods enable a radial trajectory to be employed in conjunction with preparation pulses for viability imaging.  相似文献   

3.
Fluid-attenuated inversion recovery (FLAIR) is a pulse sequence used for acquiring T2-weighted images of the brain and spine in which the normally high signal intensity of CSF is greatly attenuated. The CSF-sup pressed T2-weighted contrast of this technique may be more sensitive to a variety of disorders than that of conventional Tz-weighted imaging. The primary disadvantage associated with conventional spin-echo implementations of FLAIR is the relatively limited anatomic coverage that can be achieved in a reasonable imaging time. We developed and optimized a three-dimensional magnetization-prepared rapid gradient-echo (3D MP-RAGE) pulse sequence that combines CSF-suppressed T2-weighted contrast similar to exleting FLAIR techniques with anatomic coverage characteristic of 3D imaging. A preliminary evaluation of the new sequence was performed by imaging healthy volunteers and patients with multiple sclerosis.  相似文献   

4.
RATIONALE AND OBJECTIVES: The goal of this study was to evaluate the utility of T1rho weighting in magnetic resonance imaging of murine brain tumors. MATERIALS AND METHODS: S91 Cloudman melanoma was implanted in mouse brains (n = 4). A T2-weighted spin-echo (SE) and a T1rho-weighted fast SE-based sequence were performed on a 4-T clinical imager. T2 and T1rho maps were computed. The tumor-to-normal-tissue contrast was compared between T2-weighted, T1rho-weighted, proton-density-weighted, and pre- and postcontrast T1-weighted SE images. RESULTS: The tumor-tissue contrast of the T1rho-weighted images was similar to that of the T2-weighted images but less than that of the postcontrast T1-weighted images. The T1rho-weighted images provided better definition of tumor boundaries than T2-weighted images. At spin-locking powers of 0.5 and 1.5 kHz, the T1rho of the tumor was 64.0 msec +/- 0.46 and 68.65 msec +/- 0.59, respectively. There was no significant inter- or intra-animal variation in T1rho for tumor or normal brain cortex. CONCLUSION: T1rho-weighted imaging performed at low spin-lock strengths qualitatively depicted tumor borders better than proton-density or T2-weighted imaging and could be useful in treatment planning when combined with other imaging sequences.  相似文献   

5.
In this work, the feasibility of using T2rho weighting as an MR contrast mechanism is evaluated. Axial images of a human brain were acquired using a single-slice spin-lock T2rho-weighted pulse sequence and compared to analogous T2-weighted images of the same slice. The contrast between white matter and gray matter in T2rho-weighted images was approximately 40% greater than that from T2-weighted data. These preliminary data suggest that the novel contrast mechanism of T2rho can be used to yield high-contrast T2-like images.  相似文献   

6.
Myocardial perfusion can be estimated, in principle, from first-pass MR images by converting the T(1)-weighted signal-time curves to contrast agent concentration-time curves. Typically, T(1) weighting is achieved by saturating the magnetization with a nonselective radiofrequency (RF) pulse prior to the imaging sequence. The accuracy of the perfusion estimate derived from the single-point T(1)-weighted signal depends on the initial residual longitudinal magnetization (RLM) produced by the saturation pulse. In this study we demonstrate that single-shot, echo-planar imaging can be used to show initial RLM resulting from incomplete saturation due to static magnetic field and RF field inhomogeneities in the heart at 1.5 T. Three saturation pulses, single, composite simple, and composite B(1)-insensitive rotation (BIR-4) were evaluated in phantom and cardiac experiments. The RLM image was calculated by normalizing the saturated image by a proton-density-weighted image. Mean RLM produced by the three saturation pulses was significantly different in noncontrast cardiac imaging (RLM(single) = 0.108 +/- 0.078; RLM(composite) = 0.051 +/- 0.052; RLM(BIR-4) = 0.011 +/- 0.009; P < 0.001; n = 20). Using a BIR-4 pulse to perform saturation of magnetization seems promising for improving the effectiveness and uniformity of T(1) weighting for first-pass perfusion imaging.  相似文献   

7.
PURPOSE: The authors conducted a clinical evaluation of single-slab, 3-dimensional, T2-weighted turbo-spin-echo (TSE) with high sampling efficiency (SPACE) for high isotropic body imaging with large field-of-view (FoV). MATERIALS AND METHODS: Fifty patients were examined in clinical routine with SPACE (regions of interest: pelvis n=30, lower spine n=12, upper spine n=6, extremities n=4) at 1.5 T. For achieving a high sampling efficiency, parallel imaging, high turbofactor, and magnetization restore pulses were used. In contrast to a conventional TSE imaging technique with constant flip angle refocusing, the refocusing pulse train of the SPACE sequence consists of variable flip angle radiofrequency pulses along the echo train. RESULTS: Signal-to-noise ratio and contrast-to-noise ratio of SPACE images were of sufficient diagnostic value. The possibility of image reconstruction in multiple planes was of clinical relevance in all cases and simplified data analysis. CONCLUSION: The achievement of 3-dimensional, T2-weighted TSE magnetic resonance imaging with isotropic and high spatial resolution and interactive 3-dimensional visualization essentially improve the diagnostic potential of magnetic resonance imaging.  相似文献   

8.
PURPOSE: The aim of this study is to evaluate the efficacy of the driven equilibrium radio frequency reset pulse (DRIVE) on image quality and nerve detection when used in adjunction with T2-weighted 3D turbo spin-echo (TSE) sequence. MATERIALS AND METHODS: Forty-five patients with cranial nerve symptoms referable to the cerebellopontine angle (CPA) were examined using a T2-weighted 3D TSE pulse sequence with and without DRIVE. MR imaging was performed on a 1.5-T MRI scanner. In addition to the axial resource images, reformatted oblique sagittal, oblique coronal and maximum intensity projection (MIP) images of the inner ear were evaluated. The nerve identification and image quality were graded for the cranial nerves V-VIII as well as inner ear structures. These structures were chosen because fluid-solid interfaces existed due to the CSF around (the cranial nerves V-VIII) or the endolymph within (the inner ear structures). Statistical analysis was performed using the Wilcoxon test. P < 0.05 was considered significant. RESULTS: The addition of the DRIVE pulse shortens the scan time by 25%. T2-weighted 3D TSE sequence with DRIVE performed slightly better than the T2-weighted 3D TSE sequence without DRIVE in identifying the individual nerves. The image quality was also slightly better with DRIVE. CONCLUSION: The addition of the DRIVE pulse to the T2-weighted 3D TSE sequence is preferable when imaging the cranial nerves surrounded by the CSF, or fluid-filled structures because of shorter scan time and better image quality due to reduced flow artifacts.  相似文献   

9.
OBJECTIVE: To compare the magnetic resonance image contrasts due to ferritin and hemosiderin in the brain tissue among different pulse sequences. MATERIALS AND METHODS: Fourteen patients with cavernous hemangioma in the brain prospectively underwent MR imaging with T2*-weighted gradient-echo (GRE), T2-weighted conventional spin-echo (SE) and fast spin-echo (FSE) sequences. The relative contrast ratios (CRs) of the hypointense part of cavernous hemangioma, globus pallidus and putamen to the deep frontal white matter were measured on each pulse sequence and statistically analyzed using analysis of variance followed by paired t-test. RESULTS: In the hypointense part of cavernous hemangioma, relative CRs were significantly lower on T2*-weighted GRE than on T2-weighted SE images (P=0.0001), and on T2-weighted SE than on T2-weighted FSE images (P=0.0001). In the globus pallidus, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.002), and on T2*-weighted GRE than on T2-weighted FSE images (P=0.0002). In the putamen, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.001), and there was no significant difference between CRs on T2-weighted FSE and T2*-weighted GRE images (P=0.90). CONCLUSION: Hemosiderin showed best image contrast on T2*-weighted GRE images but ferritin showed more prominent image contrast on T2-weighted SE than on T2*-weighted GRE images, which may help to determine an appropriate pulse sequence in neurological diseases associated with excessive ferritin accumulation.  相似文献   

10.
To determine the safety and imaging characteristics of OMR--an effervescent solution of ferric ammonium citrate--as a bowel contrast agent, magnetic resonance (MR) imaging at 1.5 T was performed in 29 volunteers. T1- and T2-weighted images of the upper abdomen and pelvis were obtained before and after oral administration of OMR at doses of 100-400 mg of iron in 300-600 mL of water. Respiratory-ordered phase encoding and presaturation pulses were used routinely for artifact suppression. All dose levels of OMR provided marking of the bowel by increasing intraluminal signal intensity; however, the degree and percentage of small bowel opacification appeared more prominent at higher dose levels of iron. Semisolid or watery bowel movements were noted in 31% of subjects, but no clinically important laboratory abnormalities were seen. OMR improved delineation of the head of the pancreas on T1-weighted images in 72% of subjects but was less useful in defining the body and tail. OMR is a safe and effective bowel contrast agent for MR imaging. Because artifacts due to movement of hyperintense bowel may degrade the images, OMR may be most useful on short TR/TE or fast imaging pulse sequences or when combined with antiperistaltic agents.  相似文献   

11.
The black blood sequence, in which the blood signal is suppressed, fundamentally provides T(2)-weighted images. We developed a T(1)-weighted black blood sequence. This new sequence improved the triple IR sequence that uses three inversion pulses by continuously providing three inversion pulses. By so doing, the sequence lengthens the time from the third inversion pulse to data sampling. The new sequence sets the flip angle of the third inversion pulse to 95-110 degrees. Consequently, the difference in T(1) is emphasized in favor of the longitudinal magnetization component with the null point of blood. Data sampling uses the fast spin-echo sequence of a wide sampling bandwidth. The wide bandwidth shortens echo space. T(1)-weighted black blood images were obtained by these methods. Fat suppression is possible by using a CHESS pulse before data sampling.  相似文献   

12.
PURPOSE: To design and implement a magnetic resonance imaging (MRI) pulse sequence capable of performing three-dimensional T(1rho)-weighted MRI on a 1.5-T clinical scanner, and determine the optimal sequence parameters, both theoretically and experimentally, so that the energy deposition by the radiofrequency pulses in the sequence, measured as the specific absorption rate (SAR), does not exceed safety guidelines for imaging human subjects. MATERIALS AND METHODS: A three-pulse cluster was pre-encoded to a three-dimensional gradient-echo imaging sequence to create a three-dimensional, T(1rho)-weighted MRI pulse sequence. Imaging experiments were performed on a GE clinical scanner with a custom-built knee-coil. We validated the performance of this sequence by imaging articular cartilage of a bovine patella and comparing T(1rho) values measured by this sequence to those obtained with a previously tested two-dimensional imaging sequence. Using a previously developed model for SAR calculation, the imaging parameters were adjusted such that the energy deposition by the radiofrequency pulses in the sequence did not exceed safety guidelines for imaging human subjects. The actual temperature increase due to the sequence was measured in a phantom by a MRI-based temperature mapping technique. Following these experiments, the performance of this sequence was demonstrated in vivo by obtaining T(1rho)-weighted images of the knee joint of a healthy individual. RESULTS: Calculated T(1rho) of articular cartilage in the specimen was similar for both and three-dimensional and two-dimensional methods (84 +/- 2 msec and 80 +/- 3 msec, respectively). The temperature increase in the phantom resulting from the sequence was 0.015 degrees C, which is well below the established safety guidelines. Images of the human knee joint in vivo demonstrate a clear delineation of cartilage from surrounding tissues. CONCLUSION: We developed and implemented a three-dimensional T(1rho)-weighted pulse sequence on a 1.5-T clinical scanner.  相似文献   

13.
PURPOSETo compare T2-weighted conventional spin-echo (CSE), fast spin-echo (FSE), shorttau inversion recovery (STIR) FSE, and fluid-attenuated inversion recovery (FLAIR) FSE sequences in the assessment of cervical multiple sclerosis plaques.METHODSTwenty patients with clinically confirmed multiple sclerosis and signs of cervical cord involvement were examined on a 1.5-T MR system. Sagittal images of T2-weighted and proton density-weighted CSE sequences, T2-weighted FSE sequences with two different sets of sequence parameters, STIR-FSE sequences, and FLAIR-FSE sequences were compared by two independent observers. In addition, contrast-to-noise measurements were obtained.RESULTSSpinal multiple sclerosis plaques were seen best on STIR-FSE images, which yielded the highest lesion contrast. Among the T2-weighted sequences, the FSE technique provided better image quality than did the CSE technique, but lesion visibility was improved only with a repetition time/echo time of 2500/90; parameters of 3000/150 provided poor lesion contrast but the best myelographic effect and overall image quality. CSE images were degraded by prominent image noise; FLAIR-FSE images showed poor lesion contrast and strong cerebrospinal fluid pulsation artifacts.CONCLUSIONSThe STIR-FSE sequence is the best choice for assessment of spinal multiple sclerosis plaques. For T2-weighted FSE sequences, shorter echo times are advantageous for spinal cord imaging, long echo times are superior for extramedullary and extradural disease. FLAIR-FSE sequences do not contribute much to spinal imaging for multiple sclerosis detection.  相似文献   

14.
T(1)-weighted contrast is conventionally obtained using multislice two-dimensional (2D) spin-echo (SE) imaging. Achieving isotropic, high spatial resolution is problematic with conventional methods due to a long acquisition time, imperfect slice profiles, or high-energy deposition. Single-slab 3D SE imaging was recently developed employing long echo trains with variable low flip angles to address these problems. However, long echo trains may yield suboptimal T(1)-weighted contrast, since T(2) weighting of the signals tends to develop along the echo train. Image blurring may also occur if high spatial frequency signals are acquired with low signal intensity. The purpose of this work was to develop an optimized T(1)-weighted version of single-slab 3D SE imaging with long echo trains. Refocusing flip angles were calculated based on a tissue-specific prescribed signal evolution. Spatially nonselective excitation was used, followed by half-Fourier acquisition in the in-plane phase encoding (PE) direction. Restore radio frequency (RF) pulses were applied at the end of the echo train to optimize T(1)-weighted contrast. Imaging parameters were optimized by using Bloch equation simulation, and imaging studies of healthy subjects were performed to investigate the feasibility of whole-brain imaging with isotropic, high spatial resolution. The proposed technique permitted highly-efficient T(1)-weighted 3D SE imaging of the brain.  相似文献   

15.
Fat-suppressed MR imaging of myositis.   总被引:8,自引:0,他引:8  
A hybrid fat-suppression sequence in magnetic resonance (MR) imaging was used to evaluate inflammatory muscle disorders in seven children: five patients with dermatomyositis, one patient with vasculitis, and one patient with viral myositis. Fat-suppressed multisection axial images obtained with the same repetition and echo times as those used to obtain standard spin-echo (SE) images enabled direct comparison of images, with little variation of T1 and T2 weighting. In six patients, the contrast on images obtained with T2 fat suppression was 15%-20% greater than contrast on conventional T2-weighted SE images. In all seven patients, the subjective judgment was that T2-weighted fat-suppression sequences improved visualization of muscle abnormalities. It is concluded that T2 fat suppression is useful in evaluation of inflammatory muscle disorders in children because it increases contrast and eliminates fat as a cause of muscle abnormality.  相似文献   

16.
We have implemented a snapshot FLARE sequence using a scan time of 320 ms for a 64 x 128 image. As in the conventional FLARE sequence the T2 weighting of the image can be altered by manipulating the phase encoding scheme with the position of the zeroth phase encoding effectively determining the amount of T2 weighting. Reducing the flip angle of the refocusing pulse reduces both the RF power deposition and the blurring in images of short T2 samples, at the expense of reduced signal and contrast.  相似文献   

17.
Fast magnetic resonance imaging of liver.   总被引:13,自引:0,他引:13  
Recent magnetic resonance (MR) units with a stronger gradient system have allowed various fast MR imaging techniques to develop. These fast scan techniques have easily realized breath-holding acquisition in the liver and the image quality has been greatly improved without sacrificing spatial resolution. The majority of the fast imaging techniques have been devoted to T2-weighted imaging to obtain useful T2-weighted images in the shortest possible time. Among the fast sequences, fast spin-echo (FSE) sequence is the most promising technique and allows high-quality T2-weighted images with reduced motion artifacts. However, FSE sequences using multiple refocused pulses may essentially realize only poor soft-tissue contrast due to magnetization transfer and T2-filtering effects, and therefore, echo-planar (EP) imaging is expected to provide high image contrast. In addition, single-shot EP imaging allows even diffusion-weighted (DW) and perfusion-weighted (PW) imaging in the liver due to its short scanning time. Recent development of fast gadolinium-enhanced 3D MR angiography has also impacted liver imaging. Combined with such gadolinium-enhanced 3D-MRA sequences and zerofilling image interpolation technique, biphasic gadolinium-enhanced 3D-MRA (whole-liver dynamic MR imaging in the arterial phase and MR portography in the portal phase) can be obtained.  相似文献   

18.
Acute myocardial injury was evaluated in 21 patients by using a contrast material-enhanced T1rho-weighted cine turbo field-echo magnetic resonance (MR) imaging sequence and a delayed-enhancement sequence. In 12 of 21 patients, conventional T1-weighted contrast-enhanced cine turbo field-echo MR images were also collected for direct comparison with T1rho-weighted images. Delayed-enhancement technique distinctly characterized irreversible injury (percentage enhancement, 588% +/- 344). With T1rho weighting, percentage enhancement of irreversibly injured myocardium was 68% +/- 41, compared with 23% +/- 24 without T1rho weighting (P <.006). The addition of T1rho weighting to contrast-enhanced cine turbo field-echo MR sequences may offer a new contrast enhancement mechanism for characterization of acutely infarcted myocardium.  相似文献   

19.
Multisection FLASH: method for breath-hold MR imaging of the entire liver.   总被引:3,自引:0,他引:3  
One hundred ten patients with various focal liver lesions were imaged with a multisection fast low-angle shot (FLASH) gradient-echo sequence with an echo time of 4.6 msec. This sequence enabled the acquisition of 19 T1-weighted magnetic resonance (MR) images of the liver within a single 26-second breath hold. Patients were also examined with standard T1- and T2-weighted spin-echo (SE) sequences. The multisection FLASH sequence provided significantly higher (P less than .01) liver-spleen contrast, liver-spleen signal-difference-to-noise ratio (SD/N), liver-tumor contrast, and liver-tumor SD/N than the T1-weighted SE sequence but lower values than the T2-weighted SE sequence. Motion artifacts were reduced with the multisection FLASH sequence compared with both SE sequences (P less than .01). The overall image quality of the multisection FLASH images was similar to that of the T1-weighted SE images and superior to that of T2-weighted SE images. The most important characteristics of the multisection FLASH technique in MR imaging of the liver are the high T1 contrast, the prevention of motion artifacts, and a dramatic reduction in imaging time.  相似文献   

20.
To develop guidelines for clinical magnetic resonance imaging of the liver, the authors undertook an animal study to investigate the effect of dose and pulse sequence on liver signal intensity in gadopentetate dimeglumine—enhanced echo-planar imaging. Serial imaging of the liver was performed in anesthetized rats after intravenous administration of five different doses (0.01, 0.05, 0.1, 0.2, and 0.5 mmol/kg) of contrast agent, with six different pulse sequences. The results show that gadopentetate dimeglumine—enhanced echo-planar images obtained during the perfusion phase can yield either positive (due to increased T1 relaxation rates) or negative (due to susceptibility-induced increased T2 relaxation rates) liver enhancement depending on choice of pulse sequence and dose. At the current clinically recommended dose of 0.1 mmol/kg, maximal liver signal enhancement was seen with a T1-weighted inversion-recovery sequence, while maximal liver signal diminution was seen with a T2*-weighted gradient-echo sequence. The authors conclude that gadopentetate dimeglumine—enhanced echo-planar imaging can provide T1, T2, and T2* contrast that may be exploited for both lesion detection and lesion characterization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号