首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of organotins on human aromatase activity in vitro.   总被引:2,自引:0,他引:2  
The interaction between the human aromatase enzyme and some organotins was investigated. Tributyltin (TBT) at 12 and 59 microM and dibutyltin at 74 microM inhibited aromatase activity in vitro but monobutyltin and tri-, di- and monooctyltins were without effect. In four separate kinetic studies of aromatase, the K(m(app)) for testosterone was 0.24, 0.21, 0.16 and 0.24 microM. TBT inhibited aromatase activity by causing the K(m(app)) to be increased without affecting the V(max), indicative of competitive inhibition. Slope and intercept replots confirmed the effect of aromatase on the K(m(app)). Slope replots from three separate kinetic studies provided Ki values for TBT of 64.5, 40.9 and 37.3 microM. Consequently, TBT is a competitive inhibitor of human aromatase with a Ki approximately 300-fold the K(m(app)) value.  相似文献   

2.
Polychlorinated biphenyls (PCBs) are industrial pollutants detected in human milk, serum and tissues. They readily cross the placenta to accumulate in fetal tissues, particularly the brain. These compounds affect normal brain sexual differentiation by mechanisms that are incompletely understood. The aim of this study was to verify whether a technical mixture of PCBs (Aroclor 1254) would interfere with the normal pattern of expression of hypothalamic aromatase and 5-alpha reductase(s), the two main enzymatic pathways involved in testosterone activation and of androgen receptor (AR). Aroclor 1254 was administered to pregnant rats at a daily dose of 25 mg/kg by gavage from days 15 to 19 of gestation (GD15–19). At GD20 the expression of aromatase, 5-alpha reductase types 1 and 2 and androgen receptor (AR) and aromatase activity were evaluated in the hypothalamus of male and female embryos. The direct effect of Aroclor was also evaluated on aromatase activity adding the PCB mixture to hypothalamic homogenates or to primary hypothalamic neuronal cultures. The data indicate that aromatase expression and activity is not altered by prenatal PCB treatment; 5-alpha reductase type 1 is similarly unaffected while 5-alpha reductase type 2 is markedly stimulated by the PCB exposure in females. Aroclor also decreases the expression of the AR in females. The observed in vivo effects are indicative of a possible adverse effect of PCBs on the important metabolic pathways by which testosterone produces its brain effects. In particular the changes of 5-alpha reductase type 2 and AR in females might be one of the mechanisms by which Aroclor exposure during fetal development affects adult sexual behavior in female rats.  相似文献   

3.
Imidazole antimycotics: inhibitors of steroid aromatase   总被引:4,自引:0,他引:4  
Miconazole and clotrimazole, members of a class of imidazole agents which have broad spectrum antimycotic activity, were shown to be potent inhibitors of steroid aromatase activity of human placental microsomes. The I50 values for the inhibition of aromatase activity by miconazole, clotrimazole, ketoconazole, and aminoglutethimide were 0.6, 1.8, 60 and 44 microM respectively. The most effective compound, miconazole, exhibited competitive kinetics with respect to androstenedione, the aromatase substrate. The apparent inhibitory constant (Ki) was 55 nM, under assay conditions where the apparent Km for androstenedione was 220 nM. The inhibition of aromatase activity by miconazole was shown to be reversible by dilution. Miconazole was a relatively poor inhibitor of the cholesterol side chain cleavage activity of a placental mitochondria-enriched fraction, while both clotrimazole and ketoconazole markedly inhibited this mitochondrial monooxygenase activity. Spectrophotometric studies revealed that miconazole bound to the cytochrome P-450 component of the placental microsomal aromatase complex and had negligible effect on NADPH-cytochrome c (P-450) reductase activity. These results strongly support direct interaction of miconazole with microsomal cytochrome P-450 in human placental microsomes with high affinity resulting in the inhibition of aromatase activity.  相似文献   

4.
Endosulfan-alpha is metabolized to a single metabolite, endosulfan sulfate, in pooled human liver microsomes (Km = 9.8 microM, Vmax = 178.5 pmol/mg/min). With the use of recombinant cytochrome P450 (P450) isoforms, we identified CYP2B6 (Km = 16.2 microM, Vmax = 11.4 nmol/nmol P450/min) and CYP3A4 (Km = 14.4 microM, Vmax = 1.3 nmol/nmol P450/min) as the primary enzymes catalyzing the metabolism of endosulfan-alpha, although CYP2B6 had an 8-fold higher intrinsic clearance rate (CL(int) = 0.70 microl/min/pmol P450) than CYP3A4 (CL(int) = 0.09 microl/min/pmol P450). Using 16 individual human liver microsomes (HLMs), a strong correlation was observed with endosulfan sulfate formation and S-mephenytoin N-demethylase activity of CYP2B6 (r(2) = 0.79), whereas a moderate correlation with testosterone 6 beta-hydroxylase activity of CYP3A4 (r(2) = 0.54) was observed. Ticlopidine (5 microM), a potent CYP2B6 inhibitor, and ketoconazole (10 microM), a selective CYP3A4 inhibitor, together inhibited approximately 90% of endosulfan-alpha metabolism in HLMs. Using six HLM samples, the percentage total normalized rate (% TNR) was calculated to estimate the contribution of each P450 in the total metabolism of endosulfan-alpha. In five of the six HLMs used, the percentage inhibition with ticlopidine and ketoconazole in the same incubation correlated with the combined % TNRs for CYP2B6 and CYP3A4. This study shows that endosulfan-alpha is metabolized by HLMs to a single metabolite, endosulfan sulfate, and that it has potential use, in combination with inhibitors, as an in vitro probe for CYP2B6 and 3A4 catalytic activities.  相似文献   

5.
The hepatic toxicity produced by polychlorinated biphenyls (PCB) was enhanced in mice that were inoculated with an oncogenic virus, Moloney leukemia virus (MLV). Whenever there was neoplastic involvement of the spleen by MLV, the hepatic lesions produced by PCB were more pronounced than in those of non-MLV inoculated mice. Mice were exposed to PCB Aroclors, 1254, 1242, and 1221 for six months. Aroclors 1254 and 1242 were hepatotoxic with Aroclor 1254 causing death. Aroclor 1221 did not affect the mice. Liver weights in mice that were fed PCBs for six months and then maintained on a PCB-free diet for an additional three months were comparable with those of non-PCB exposed mice. These results suggest that the PCB-produced hepatic lesions (noncirrhotic) regenerate after removal of PCB from the diet. Polychlorinated biphenyls did not affect (promote or induce) the oncogenesis of MLV in this study.  相似文献   

6.
The effects of Ca2+ and Ca2+/calmodulin on the polychlorinated biphenyl (PCB)-induced activation of phospholipase A2 (PLA2) in rat neutrophils were examined. The commercial PCB mixture Aroclor 1242 induced activation of PLA2 and promoted an increase in the intracellular free calcium concentration ([Ca2+]i). Bromoenol lactone (BEL), an inhibitor of the Ca2+-independent PLA2 isoform (iPLA2) activated by PCBs, did not abrogate the increase in [Ca2+]i, suggesting that this change in Ca2+ concentration is not downstream from the activation of iPLA2. TMB-8 [8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate], a blocker of the release of intracellular Ca2+, decreased Aroclor 1242-induced stimulation of PLA2 with a maximal inhibition of 17% at 50 microM. These two results suggest little direct dependence between the PCB-induced activation of iPLA2 and increase in [Ca2+]i. Calmidazolium and W7 [N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide], two chemically distinct calmodulin inhibitors, inhibited Aroclor 1242-induced PLA2 activity, whereas trifluoperazine (TFP), another inhibitor of calmodulin, had no effect at noncytotoxic concentrations. Thus, activation of PLA2 is dependent, in part, on calmodulin. Furthermore, both TFP and Aroclor 1242 inhibited neutrophil degranulation stimulated by the bacterial peptide formyl-methionyl-leucyl-phenylalanine. These results raise the possibility that some of the effects of PCBs on neutrophil function can be explained by effects on Ca2+/calmodulin-dependent processes.  相似文献   

7.
4'-Methyl-alpha-pyrrolidinopropiophenone (MPPP) is a new drug of abuse. It is believed to have an abuse potential similar to that of amphetamines. Previous studies with Wistar rats had shown that MPPP was metabolized mainly by hydroxylation in position 4' followed by dehydrogenation to the corresponding carboxylic acid. The aim of the study presented here was to identify the human hepatic cytochrome p450 (p450) enzymes involved in the biotransformation of MPPP to 4'-hydroxymethyl-pyrrolidinopropiophenone. Baculovirus-infected insect cell microsomes and human liver microsomes were used for this purpose. Only CYP2C19 and CYP2D6 catalyzed this hydroxylation. The apparent Km and Vmax values for the latter were 9.8 +/- 2.5 microM and 13.6 +/- 0.7 pmol/min/pmol p450, respectively. CYP2C19 was not saturable over the tested substrate range (2-1000 microM) and interestingly showed a biphasic kinetic profile with apparent Km,1 and Vmax,1 values of 47.2 +/- 12.5 microM and 8.1 +/- 1.4 pmol/min/pmol p450, respectively. Experiments with pooled human liver microsomes also revealed biphasic nonsaturable kinetics with apparent Km,1 and Vmax,1 values of 57.0 +/- 20.9 microM and 199.7 +/- 59.7 pmol/min/mg of protein for the high affinity enzyme, respectively. Incubation of 2 microM MPPP with 3 microM of the CYP2D6-specific inhibitor quinidine resulted in significant (p < 0.01) turnover inhibition (11.8 +/- 1.6% of control). Based on kinetic data corrected for the relative activity factors, CYP2D6 is the enzyme mainly responsible for MPPP hydroxylation, confirmed by CYP2D6 inhibition studies.  相似文献   

8.
The estrogenic activities of 17beta-estradiol, biphenyl, chlorinated biphenyls, and Aroclor mixtures 1221, 1242, and 1248 were measured with a modified recombinant yeast estrogen assay (i.e., a Saccharomyces cerevisiae-based lac-Z (beta-galactosidase) reporter assay). Modifications of the assay included the use of glass vials instead of plastic microtiter plates and the addition of the medium and yeast before the test substrate. 14C-labeled compounds were used to follow improvements in the assay procedures. 14C-17beta-estradiol recovery from plastic microtiter plates and glass vials using the standard or the modified procedure was approximately 89%. However, 14C-4-CB (4-chlorobiphenyl) recovery was considerably less, ranging from 3% in plastic microtiter plates using the standard procedure to 26% in vials using the modified procedure. These results suggest that the toxicity of strongly hydrophobic chemicals may be underestimated. Using the modified yeast estrogen assay, full agonist activity was observed for 4-CB, 2,4,6-CB, and 2,5-CB while each of the Aroclor mixtures were only partial agonists. The equivalent EC50 values in ppm were in environmentally relevant concentrations for biphenyl (19 ppm), 4-CB (4.5 ppm), 2,5-CB (21 ppm), 2,4,6-CB (0.8 ppm), Aroclor 1221 (2.9 ppm), Aroclor 1242 (0.65 ppm), and Aroclor 1248 (2.3 ppm). Estrogen receptor binding for the individual PCB congeners was 25- to 650-fold less than the reported estrogen binding for the corresponding hydroxylated PCB metabolite. Gas chromatographic/mass spectrometric analysis of yeast extracts indicated that S. cerevisiae hydroxylated the individual PCB congeners in the ppb range. With the exception of biphenyl, the concentration of hydroxylated metabolites obtained from incubation of S. cerevisiae with PCB congeners was consistent with the concentration necessary to elicit a positive estrogen receptor-binding response. This work provides evidence that S. cerevisiae are capable of metabolic transformation of PCBs and that estrogen receptor binding of PCBs is mediated through the hydroxylated metabolite rather than through the direct interaction of the PCB congeners with the estrogen receptor.  相似文献   

9.
To investigate possible interactions between the human androgen receptor and PCBs in vitro, we have used a previously characterized human androgen receptor reporter gene assay in which PC-3 LUC(AR+) cells respond to 5alpha-dihydrotestosterone (DHT, 50 pM) with enhanced luciferase activity. The effects of Aroclors, commercial mixtures of PCBs, or polychlorinated terphenyls (PCTs) (0, 0.1, 1.0, and 10.0 microM) on luciferase activity in PC-3 LUC(AR+) cells were determined after exposure for 18 h in the presence and absence of DHT (50 pM). In the absence of DHT, none of the Aroclors induced luciferase activity but, in the presence of DHT (50 pM), Aroclors 1016, 1221, 1232, 1242, 1248, 1254, 1260, 5432, and 5442 acted antagonistically at concentrations that did not affect cell viability. Aroclor 5460 was without effect. Similarly, when PCBs found as human milk contaminants were assessed as individual congeners (each at 1 microM, where no cytotoxic effects were observed), none activated luciferase expression in the absence of DHT but PCBs 49, 66, 74, 105, and 118 completely antagonized the stimulation by DHT (50 pM) and PCBs 138, 153, and 156 were less effective antagonists, reducing the DHT stimulation by about 50%. Thus, 30% (by weight) of the PCBs in human milk are androgen antagonists (PCBs 66, 74, 105, and 118) and a further 25% are partial antagonists (PCBs 138, 153, and 156). A proportionally representative mixture of PCBs that contaminate human milk also caused the DHT-mediated activation of luciferase activity in PC-3 LUC(AR+) cells to be reduced by more than 50%.  相似文献   

10.
Catechols are substances with a 1,2-dihydroxybenzene group from natural or synthetic origin. The aim of this study was to determine whether catechols (4-methylcatechol, 4-nitrocatechol, 2,3-dihydroxynaphthalene) and the antiparkinsonian drugs, entacapone and tolcapone, at doses 150 to 300 mg/kg/day, for 3 days, are able to enhance their own glucuronidation. The induction potency of catechols on rat liver UDP-glucuronosyltransferases (UGTs) was compared with that of a standard polychlorinated biphenyl (PCB) inducer, Aroclor 1254. The glucuronidation rate of these catechols was enhanced up to 15-fold in the liver microsomes of PCB-treated rats, whereas treatment with catechols had little effect. Entacapone, tolcapone, 4-methylcatechol, catechol, 2,3-dihydroxynaphthalene, and 4-nitrocatechol were glucuronidated in control microsomes at rates ranging from 0.12 for entacapone to 22.0 nmol/min/mg for 4-nitrocatechol. Using 1-naphthol, entacapone, and 1-hydroxypyrene as substrates, a 5-, 8-, and 16-fold induction was detected in the PCB rats, respectively, whereas the catechol-induced activities were 1.1- to 1.5-fold only. Entacapone was glucuronidated more efficiently by PCB microsomes than by control microsomes (Vmax/Km, 0.0125 and 0.0016 ml/min/mg protein, respectively). Similar kinetic results were obtained for 1-hydroxypyrene. The Eadie-Hofstee plots suggested the contribution of multiple UGTs for the glucuronidation of 1-hydroxypyrene (Km1, Km2, Km3 = 0.8, 9.7, and 63 microM, and Vmax1, Vmax2, Vmax3 = 11, 24, and 55 nmol/min/mg, respectively), whereas only one UGT could be implicated in the glucuronidation of entacapone (Km = 130 microM, Vmax = 1.6 nmol/min/mg). In conclusion, catechols are poor inducers of their own glucuronidation supported by several UGT isoforms. Their administration is unlikely to affect the glucuronidation of other drugs administered concomitantly.  相似文献   

11.
Polychlorinated biphenyls (PCBs) exhibit tumor-promoting effects in experimental animals. We investigated effects of six model PCB congeners and hydroxylated PCB metabolites on proliferation of contact-inhibited rat liver epithelial WB-F344 cells. The 'dioxin-like' PCB congeners, PCB 126, PCB 105, and 4'-OH-PCB 79, a metabolite of the planar PCB 77 congener, induced cell proliferation in a concentration-dependent manner. In contrast, the 'non-dioxin-like' compounds that are not aryl hydrocarbon receptor (AhR) agonists, PCB 47, PCB 153, and 4-OH-PCB 187, an abundant noncoplanar PCB metabolite, had no effect on cell proliferation at concentrations up to 10 muM. The concentrations of dioxin-like PCBs leading to cell proliferation corresponded with the levels inducing the expression of cytochrome P450 1A1 mRNA, suggesting that the release from contact inhibition was associated with AhR activation. The effects of PCB 126 and PCB 153 on expression of proteins controlling G0/G1-S-phase transition and S-phase progression were compared. Only PCB 126 was found to upregulate cyclin A and D2 protein levels, and to increase both total cyclin-dependent kinase 2 (cdk2) and cyclin A/cdk2 complex activities. Despite the observed upregulation of cyclin D2, no increase in cdk4 activity was observed. The expression of cdk inhibitor p27Kip1 was not affected by either PCB 126 or PCB 153. These results suggest that dioxin-like PCBs can induce cell proliferation of contact-inhibited rat liver epithelial cells by increasing cyclin A protein levels, a process that then leads to upregulation of cyclin A/cdk2 activity and initiation of DNA replication. This mechanism could be involved in tumor-promoting effects of dioxin-like PCBs.  相似文献   

12.
The present study was undertaken to investigate the endocrine disrupting activity of PCB3 and its hydroxylated metabolites 4-OH-PCB3 and 3,4-diOH-PCB3 in ovarian follicle cells derived from prepubertal animals with special emphasis on cytochrome P-450-dependent aromatase (CYP19). Aromatase activity was assayed simply by measuring the production of 17beta-estradiol in the culture medium after addition of the substrate (testosterone). Theca interna and granulosa cells were exposed in vitro to 6 ng/ml of test chemicals for 24, 48, 72 and 96 h. PCBs stimulated the conversion of testosterone to estradiol in all treatments. In addition, PCB3, and to a lesser extent its metabolites, decreased progesterone secretion by these cells. This increase in estradiol and simultaneous decrease in progesterone suggests that progesterone is converted to testosterone and further to estradiol. The rank order of potency in estradiol secretion was 3,4-diOH-PCB3>4-OH-PCB3>PCB3. The non-steroidal aromatase inhibitor CGS 16949A abolished this stimulatory activity, and reduced estradiol levels in treatment and control groups below the control levels, verifying that the increased estradiol secretion by follicle cells was due to aromatase activity. We infer that: (1) metabolism of PCB3 does not protect against endocrine disruption and (2) the estrogenic effect of these compounds is due to stimulation of aromatase activity.  相似文献   

13.
The effects of acute exposure to polychlorinated biphenyls (PCBs) on porphyrin synthesis and cytochrome P-450-dependent monooxygenases in the small intestine and liver were studied in male Japanese quail. The birds were dosed orally with the PCB mixture, Aroclor 1242, or the individual PCB isomers, 2,4,2',4'-tetrachlorobiphenyl (2-TCB) and 3,4,3',4'-tetrachlorobiphenyl (3-TCB), and were killed 48 h later. All the PCB compounds caused a significant increase in porphyrin content and delta-aminolevulinic acid synthetase (ALA-S) activity in the small intestine and liver. Increases in porphyrins were greater in the small intestine than in liver. However, a smaller increase in ALA-S activity occurred in the small intestine than in liver, suggesting that ALA-S induction is not a major mechanism for the increased porphyrin content of small intestine. All the test compounds significantly increased the cytochrome P-450 content of liver. In the small intestine, cytochrome P-450 content was increased by Aroclor 1242 and 2-TCB but not by 3-TCB. The activity of 7-ethoxyresorufin O-deethylase, however, was increased by all test compounds in both liver and small intestine. In contrast, there was a striking difference between small intestine and liver in the induction of 7-ethoxycoumarin O-deethylase (ECOD) activity by Aroclor 1242. In the liver, ECOD activity was unchanged or decreased, but in the small intestine, ECOD activity increased linearly with dose. No tissue difference in ECOD activity was observed after treatment with 2-TCB or 3-TCB. These findings suggest that acute exposure to a given PCB results in marked differences between small intestine and liver in porphyrin metabolism and in the induction of cytochrome P-450 isozymes and associated monooxygenases.  相似文献   

14.
Buprenorphine is a thebaine derivative used in the treatment of heroin and other opiate addictions. In this study, the selective probe reactions for each of the major hepatic cytochromes P450 (P450s) were used to evaluate the effect of buprenorphine and its main metabolite norbuprenorphine on the activity of these P450s. The index reactions used were CYP1A2 (phenacetin O-deethylation), CYP2A6 (coumarin 7-hydroxylation), CYP2C9 (diclofenac 4'-hydroxylation), CYP2C19 (omeprazole 5-hydrxoylation), CYP2D6 (dextromethorphan O-demethylation), CYP2B6 (7-ethoxy-4-trifluoromethyl-coumarin 7-deethylation), CYP2E1 (chlorzoxazone 6-hydroxylation), and CYP3A4 (omeprazole sulfoxidation). Buprenorphine exhibited potent, competitive inhibition of CYP2D6 (Ki 10 +/- 2 microM and 1.8 +/- 0.2 microM) and CYP3A4 (Ki 40 +/- 1.6 microM and 19 +/- 1.2 microM) in microsomes from human liver and cDNA-expressing lymphoblasts, respectively. Compared with buprenorphine, norbuprenorphine demonstrated a lower inhibitory potency with CYP2D6 (22.4% inhibition at 20 microM norbuprenorphine) and CYP3A4 (13.6% inhibition at 20 microM) in microsomes from human cDNA-expressing lymphoblast cells. Furthermore, buprenorphine was shown to be a substrate of CYP2D6 (Km = 600 microM; Vmax = 0.40 nmol/min/mg protein) and CYP3A4 (Km = 36 microM; Vmax = 0.19 nmol/min/mg protein). The present in vitro study suggests that buprenorphine and its major metabolite norbuprenorphine are inhibitors of CYP2D6 and CYP3A4; however, at therapeutic concentrations they are not predicted to cause potentially clinically important drug interactions with other drugs metabolized by major hepatic P450s.  相似文献   

15.
16.
Perinatal exposure to polychlorinated biphenyls (PCBs) is linked to cognitive deficits in humans and experimental animals; however, the mechanism(s) underlying this effect remain speculative. Apoptosis is essential to normal brain development, and perturbation of normal spatiotemporal patterns of apoptosis can cause persistent neural deficits. We tested the hypothesis that PCBs alter apoptosis in neuronal cell types critical to cognitive function. Primary cultures of rat cortical and hippocampal neurons were treated for 48 h with Aroclor 1254 or the congeners PCB 77 and 47, which represent coplanar and noncoplanar PCBs that bind the arylhydrocarbon receptor (AhR) with high and low affinity, respectively. Using Hoechst dye and an ELISA for DNA oligonucleosomes, we observed that Aroclor 1254 (10 microM) and PCB 47 (1 microM) significantly increased DNA fragmentation in hippocampal but not cortical neurons, and this effect was blocked by the caspase inhibitors, z-VAD-fmk and DEVD-CHO. In contrast, PCB 77 had no effect on apoptosis in either neuronal cell type, suggesting that PCB-induced apoptosis occurs independent of the AhR. The proapoptotic activity of PCBs was inhibited by the ryanodine receptor (RyR) antagonist FLA 365 and by the antioxidant alpha-tocopherol but not by antagonists of the IP(3) receptor (xestospongin C), L-type calcium channel (verapamil), or NMDA receptor (APV). These data indicate that noncoplanar PCBs induce apoptosis in hippocampal neurons subsequent to RyR activation and increased reactive oxygen species and suggest that altered regional profiles of apoptosis may be an important mechanism underlying the developmental neurotoxicity of PCBs.  相似文献   

17.
1. Artelinic acid (AL), a water-soluble artemisinin analogue for treatment of multidrug resistant malaria, is metabolized to the active metabolite dihydroqinghaosu (DQHS) solely by CYP3A4/5. Although AL is not metabolized by CYP2C9, it does inhibit diclofenac 4-hydroxylase activity with an IC50 = 115 microM. Interestingly, AL activates CYP2D6-mediated bufuralol metabolism in human liver microsomes but not recombinant CYP2D6-Val by approximately 30% at AL concentrations up to 100 microM. 2. In human liver microsomes, AL is metabolized to DQHS with a Km = 157 +/- 44 microM and Vmax = 0.77 +/- 0.56 nmol DQHS/min/mg protein. Human recombinant CYP3A4 catalysed the conversion of AL to DQHS with a Km = 102 +/- 23 microM and a Vmax = 1.96 +/- 0.38 nmol DQHS/min/nmol P450. The kinetic parameters (Km and Vmax) for DQHS formation from CYP3A5 were 189 +/- 19 microM and 3.60 +/- 0.42 nmol DQHS/min/nmol P450 respectively. 3. Inhibition studies suggest that azole antifungals and calcium channel blockers may present clinically significant drug drug interactions. In human liver microsomes, ketoconazole and miconazole were potent competitive inhibitors of DQHS formation with a Ki = 0.028 and 0.124 microM respectively. Verapamil is a non-competitive inhibitor of DQHS formation in human liver microsomes with a Ki = 15 microM.  相似文献   

18.
The kinetics of inhibition of microsomal drug oxidation (as aminopyrine N-demethylase activity) by the antimalarial agent primaquine were found to be concentration-dependent. Lower concentrations of primaquine (0-40 microM) elicited slope-hyperbolic, intercept-hyperbolic noncompetitive (mixed) inhibition with an inhibitor equilibrium-dissociation constant (Ki) of 21 microM. On the other hand, primaquine concentrations greater than 40 microM elicited essentially simple competitive inhibition as judged from Lineweaver-Burk and Dixon analysis with appropriate replots (Ki = 23 microM). The coincident Ki values suggest that the same enzyme-inhibitor complex is involved in inhibition over all concentrations of primaquine tested. The apparent change in kinetics was accounted for in terms of a four-step interaction scheme involving a ternary enzyme-substrate-inhibitor complex that catalyses substrate oxidation at a slower rate than the binary enzyme-substrate complex. Competitive inhibition reflects the likelihood that the ternary complex does not form at all, presumably due to reduced accessibility of the active site to substrate. A good correlation was found between the Ki values for the inhibition of aminopyrine N-demethylase activity (21 or 23 microM) and the modulation of aminopyrine binding (26 microM) by primaquine. These findings suggest that the inhibition of aminopyrine N-demethylase activity by primaquine is mediated via an interaction with the oxidised form of cytochrome P-450. In addition, the apparent change in inhibition kinetics suggests a concentration-dependent change in the capacity of primaquine to modulate substrate binding to cytochrome P-450 as well as the formation of a P-450-aminopyrine-primaquine ternary complex.  相似文献   

19.
Kang JH  Jeong W  Park Y  Lee SY  Chung MW  Lim HK  Park IS  Choi KH  Chung SY  Kim DS  Park CS  Hwang O  Kim Ji 《Toxicology》2002,177(2-3):157-166
The neuronal nitric oxide synthase (nNOS) specific inhibitor, 7-nitroindazole (7-NI), and the nitric oxide (NO) donor (S-nitroso-N-acetylpenicillarnine, SNAP) were used to study the role of NO in polychlorinated biphenyl (PCB: Aroclor 1254)-induced cytotoxicity in the immortalized dopaminergic cell line (CATH.a cells), derived from the central nervous system of mice. Treatment of the dopaminergic cells with various concentrations of Aroclor 1254 (0.5-10 microg/ml), a commercial PCB mixture, showed significant cytotoxicity as evaluated by lactate dehydrogenase (LDH) release and assessment of cell viability, depending on the concentration used. We also observed that Aroclor 1254 treatment reduced the level of nNOS expression. Furthermore, the cytotoxicity of Aroclor 1254 was augmented by 10 microM of 7-NI, which alone did not produce cytotoxicity, while it was protected by treatment with SNAP. Depending on the concentrations of Aroclor 1254 used, intracellular dopamine and dihydroxyphenylacetic acid (DOPAC) concentrations were significantly decreased. Therefore, these results suggest that PCBs have the potential for dopaminergic neurotoxicity, which may be related with the PCBs-mediated alteration of NO production originating from nNOS at least in part.  相似文献   

20.
Deltamethrin, a widely used type II pyrethroid insecticide, is a relatively potent neurotoxicant. While the toxicity has been extensively examined, toxicokinetic studies of deltamethrin and most other pyrethroids are very limited. The aims of this study were to identify, characterize, and assess the relative contributions of esterases and cytochrome P450s (CYP450s) responsible for deltamethrin metabolism by measuring deltamethrin disappearance following incubation of various concentrations (2 to 400 microM) in plasma (esterases) and liver microsomes (esterases and CYP450s) prepared from adult male rats. While the carboxylesterase metabolism in plasma and liver was characterized using an inhibitor, tetra isopropyl pyrophosphoramide (isoOMPA), CYP450 metabolism was characterized using the cofactor, NADPH. Michaelis-Menten rate constants were calculated using linear and nonlinear regression as applicable. The metabolic efficiency of these pathways was estimated by calculating intrinsic clearance (Vmax/Km). In plasma, isoOMPA completely inhibited deltamethrin biotransformation at concentrations (2 and 20 microM of deltamethrin) that are 2- to 10-fold higher than previously reported peak blood levels in deltamethrin-poisoned rats. For carboxylesterase-mediated deltamethrin metabolism in plasma, Vmax=325.3+/-53.4 nmol/h/ml and Km=165.4+/-41.9 microM. Calcium chelation by EGTA did not inhibit deltamethrin metabolism in plasma or liver microsomes, indicating that A-esterases do not metabolize deltamethrin. In liver microsomes, esterase-mediated deltamethrin metabolism was completely inhibited by isoOMPA, confirming the role of carboxylesterases. The rate constants for liver carboxylesterases were Vmax=1981.8+/-132.3 nmol/h/g liver and Km=172.5+/-22.5 microM. Liver microsomal CYP450-mediated biotransformation of deltamethrin was a higher capacity (Vmax=2611.3+/-134.1 nmol/h/g liver) and higher affinity (Km=74.9+/-5.9 microM) process than carboxylesterase (plasma or liver) detoxification. Genetically engineered individual rat CYP450s (Supersomes) were used to identify specific CYP450 isozyme(s) involved in the deltamethrin metabolism. CYP1A2, CYP1A1, and CYP2C11 in decreasing order of importance quantitatively, metabolized deltamethrin. Intrinsic clearance by liver CYP450s (35.5) was more efficient than that by liver (12.0) or plasma carboxylesterases (2.4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号