首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The avian scapula has a dual origin. The cranial part derives from the somatopleure of the forelimb field, while the caudal part, the scapula blade, originates from the dermomyotomes of the cervicothoracic transition zone. Thus, these dermomyotomes have, in addition to the well-known myogenic, angiogenic, and dermogenic potential, the ability to form cartilage. The scapula blade is therefore a derivative of dermomyotomal chondrogenesis. Although the mechanisms that direct the sclerotomal chondrogenesis are beginning to be understood, little is known about dermomyotomal chondrogenesis. Here, we address the mechanisms that control dermomyotomal cells to become chondrocytes. After heterotopic transplantation of dorsal epithelial somite halves from the scapula-forming level to the cervical level, the grafted tissue retains the capability to form cartilage, indicating that the dermomyotomal chondrogenic potential must be specified during anterior-to-posterior regionalisation of the paraxial mesoderm. Furthermore, we show that signals from the ectoderm are required, allowing dermomyotome cells to express markers associated with the chondrogenic lineage.  相似文献   

2.
The scapula is a component of the shoulder girdle. Its structure has changed greatly during evolution. For example, in humans it is a large quite flat triangular bone whereas in chicks it is a long blade like structure. In this review we describe the mechanisms that control the formation of the scapula. To assimilate our understanding regarding the development of the scapula blade we start by addressing the issue concerning the origin of the scapula. Experiments using somite extirpation, chick-quail cell marking system and genetic cell labelling techniques in a variety of species have suggested that the scapula had its origin in the somites. For example we have shown in the chick that the scapula blade originates from the somite, while the cranial part, which articulates with the upper limb, is derived from the somatopleure of the forelimb field. In the second and third part of the review we discuss the compartmental origin of this bone and the signalling molecules that control the scapula development. It is very interesting that the scapula blade originates from the dorsal compartment, dermomyotome, which has been previously been associated as a source of muscle and dermis, but not of cartilage. Thus, the development of the scapula blade can be considered a case of dermomyotomal chondrogenesis. Our results show that the dermomyotomal chondrogenesis differ from the sclerotomal chondrogenesis. Firstly, the scapula precursors are located in the hypaxial domain of the dermomyotome, from which the hypaxial muscles are derived. The fate of the scapula precursors, like the hypaxial muscle, is controlled by ectoderm-derived signals and BMPs from the lateral plate mesoderm. Ectoderm ablation and inhibition of BMP activity interfers the scapula-specific Pax1 expression and scapula blade formation. However, only somite cells in the cervicothoracic transition region appear to be committed to form scapula. This indicates that the intrinsic segment specific information determines the scapula forming competence of the somite cells. Taken together, we conclude that the scapula forming cells located within the hypaxial somitic domain require BMP signals derived from the somatopleure and as yet unidentified signals from ectoderm for activation of their coded intrinsic segment specific chondrogenic programme. In the last part we discuss the new data that provides evidence that neural crest contributes for the development of the scapula.  相似文献   

3.
A detailed account of mouse neurulation is given based mostly on SEM analysis over 20 hr of development. Many observations and measurements were made on staged living embryos and on embryos prepared for scanning and light microscopy to help deduce what mechanisms may contribute to neural tube formation. Each-lateral half of the early cephalic neural plate makes a convex bulge, opposite to the way it must fold to form a tube. Underlying mesenchyme and matrix are reported to have a role in forming these bulges. Processes that form the tube must overcome this opposed folding and the forces that produce it. Cranial flexure begins long before tube formation. The flexure commences at the rostral tip of the cephalic neural plate, then the apex of the flexure migrates caudally to the mesencephalic region. Early appearance of this flexure imposes a mechanical impediment to tube closure in forebrain and midbrain regions. Tube closure begins in the cervical region exactly where the neural plate is reflected dorsally by a bend in the embryo. This bend may mechanically assist closure in this region. Cells of the mouse neural plate are reported to contain organized microfilaments and microtubules, and the plate cells appear to change shape (reduce apical area and increase cell height) in the same manner as that suggested in embryos of some other species to contribute to neural tube formation. Measurements show that the lateral edges of the cephalic neural plate elongate craniocaudally more than the midline of the plate through each period. This elongation could contribute to the folding of the plate into a tube. The progress of cranial ventral flexure pauses while tube formation occurs, but edge elongation continues, presumably contributing to tube formation. There is considerable increase in volume of the neural plate during tube closure, and cell proliferation and enlargement of daughter cells seem sufficient to account for this growth. Mitotic spindles are positioned to place the majority of the daughter cells into the long axis of the neural plate, so ordered growth may be the main mechanism of elongation of the plate in the craniocaudal direction, which in turn may assist in tube formation. Mouse cephalic neural plates appear overlying already segmented cranial mesenchyme according to previous reports, and neuromeres develop precociously in the open plates, where their positions correlate exactly with the underlying segmented mesenchyme.  相似文献   

4.
Early stages of chick somite development   总被引:17,自引:0,他引:17  
We report on the formation and early differentiation of the somites in the avian embryo. The somites are derived from the mesoderm which, in the body (excluding the head), is subdivided into four compartments: the axial, paraxial, intermediate and lateral plate mesoderm. Somites develop from the paraxial mesoderm and constitute the segmental pattern of the body. They are formed in pairs by epithelialization, first at the cranial end of the paraxial mesoderm, proceeding caudally, while new mesenchyme cells enter the paraxial mesoderm as a consequence of gastrulation. After their formation, which depends upon cell-cell and cell-matrix interactions, the somites impose segmental pattern upon peripheral nerves and vascular primordia. The newly formed somite consists of an epithelial ball of columnar cells enveloping mesenchymal cells within a central cavity, the somitocoel. Each somite is surrounded by extracellular matrix material connecting the somite with adjacent structures. The competence to form skeletal muscle is a unique property of the somites and becomes realized during compartmentalization, under control of signals emanating from surrounding tissues. Compartmentalization is accompanied by altered patterns of expression of Pax genes within the somite. These are believed to be involved in the specification of somite cell lineages. Somites are also regionally specified, giving rise to particular skeletal structures at different axial levels. This axial specification appears to be reflected in Hox gene expression. MyoD is first expressed in the dorsomedial quadrant of the still epithelial somite whose cells are not yet definitely committed. During early maturation, the ventral wall of the somite undergoes an epithelio-mesenchymal transition forming the sclerotome. The sclerotome later becomes subdivided into rostral and caudal halves which are separated laterally by von Ebner's fissure. The lateral part of the caudal half of the sclerotome mainly forms the ribs, neural arches and pedicles of vertebrae, whereas within the lateral part of the rostral half the spinal nerve develops. The medially migrating sclerotomal cells form the peri-notochordal sheath, and later give rise to the vertebral bodies and intervertebral discs. The somitocoel cells also contribute to the sclerotome. The dorsal half of the somite remains epithelial and is referred to as the dermomyotome because it gives rise to the dermis of the back and the skeletal musculature. The cells located within the lateral half of the dermomyotome are the precursors of the muscles of the hypaxial domain of the body, whereas those in the medial half are precursors of the epaxial (back) muscles. Single epithelial cells at the cranio-medial edge of the dermomyotome elongate in a caudal direction, beneath the dermomyotome, and become anchored at its caudal margin. These post-mitotic and muscle protein-expressing cells form the myotome. At limb levels, the precursors of hypaxial muscles undergo an epithelio-mesenchymal transition and migrate into the somatic mesoderm, where they replicate and later differentiate. These cells express the Pax-3 gene prior to, during and after this migration. All compartments of the somite contribute endothelial cells to the formation of vascular primordia. These cells, unlike all other cells of the somite, occasionally cross the midline of the developing embryo. We also suggest a method for staging somites according to their developmental age.  相似文献   

5.
The development of the avian vertebral column   总被引:5,自引:0,他引:5  
Segmentation of the paraxial mesoderm leads to somite formation. The underlying molecular mechanisms involve the oscillation of ”clock-genes” like c-hairy-1 and lunatic fringe indicative of an implication of the Notch signaling pathway. The cranio-caudal polarity of each segment is already established in the cranial part of the segmental plate and accompanied by the expression of genes like Delta1, Mesp1, Mesp2, Uncx-1, and EphA4 which are restricted to one half of the prospective somite. Dorsoventral compartmentalization of somites leads to the development of the dermomyotome and the sclerotome, the latter forming as a consequence of an epithelio-to-mesenchymal transition of the ventral part of the somite. The sclerotome cells express Pax-1 and Pax-9, which are induced by notochordal signals mediated by sonic hedgehog (Shh) and noggin. The craniocaudal somite compartmentalization that becomes visible in the sclerotomes is the prerequisite for the segmental pattern of the peripheral nervous system and the formation of the vertebrae and ribs, whose boundaries are shifted half a segment compared to the sclerotome boundaries. Sclerotome development is characterized by the formation of three subcompartments giving rise to different parts of the axial skeleton and ribs. The lateral sclerotome gives rise to the laminae and pedicles of the neural arches and to the ribs. Its development depends on signals from the notochord and the myotome. The ventral sclerotome giving rise to the vertebral bodies and intervertebral discs is made up of Pax-1 expressing cells that have invaded the perinotochordal space. The dorsal sclerotome is formed by cells that migrate from the dorso-medial angle of the sclerotome into the space between the roof plate of the neural tube and the dermis. These cells express the genes Msx1 and Msx2, which are induced by BMP-4 secreted from the roof plate, and they later form the dorsal part of the neural arch and the spinous process. The formation of the ventral and dorsal sclerotome requires directed migration of sclerotome cells. The regionalization of the paraxial mesoderm occurs by a combination of functionally Hox genes, the Hox code, and determines the segment identity. The development of the vertebral column is a consequence of a segment-specific balance between proliferation, apoptosis and differentiation of cells. Accepted: 25 May 2000  相似文献   

6.
7.
Summary In the chick embryo the interdigital tissue in the stages previous to cell death exhibits in vitro a high chondrogenic potential, and forms extra digits when subjected in vivo to local ectodermal removal. In the present work we have analyzed the chondrogenic potential both in vivo and in vitro of the interdigital mesenchyme of the duck leg bud. As distinct from the chick, the interdigital mesenchyme of the duck leg bud exhibits a low degree of degeneration, resulting in the formation of webbed digits. Our results show that duck interdigital mesenchyme exhibits also a high chondrogenic potential in vitro until the stages in which cell death starts. Once cell death is finished chondrogenesis becomes negative and the interdigital mesenchyme forms a fibroblastic tissue. In vivo the interdigital mesenchyme of the duck leg bud subjected to ectoderm removal forms ectopic foci of chondrogenesis with a range of incidence similar to that in the chick. Unlike those of the chick the ectopic cartilages of the duck are rounded and smaller, and appear to be located at the distal margin of the interdigital mesenchyme. Formation of extra digits in the duck occurs with a lower incidence than in the chick. It is concluded that ectopic chondrogenesis and formation of extra digits is related to the intensity of interdigital cell death. The non-degenerating interdigital mesenchymal cells destined to form the interdigital webs of the duck appear to contribute very little to the formation of interdigital cartilages.  相似文献   

8.
To investigate the roles that matrix-degrading proteases may have in development of the chicken embryo, we documented the expression pattern of matrix metalloprotease-2 (MMP-2, 72-kDa type IV collagenase or gelatinase A) and perturbed its function in vitro and in vivo. MMP-2 is expressed as neural crest cells detach from the neural epithelium during an epithelial-mesenchymal transformation (EMT) but is rapidly extinguished as they disperse. It is also expressed in the sclerotome and in the dermis at the time that the EMT is initiated, and also as these cells migrate, and is down-regulated once motility has ceased. These patterns suggest that MMP-2 plays a role in cell motility during the EMT and during later morphogenesis. Inhibitors of MMPs, including BB-94 and TIMP-2 (tissue inhibitor of metalloprotease-2), prevent the EMT that generates neural crest cells, both in tissue culture and in vivo, but do not affect migration of the cells that have already detached from the neural tube. Similarly, knockdown of MMP-2 expression in the dorsal neural tube using antisense morpholino oligos perturbs the EMT, but also does not affect migration of neural crest cells after they have detached from the neural tube. On the other hand, when somites in culture are treated with TIMP-2, some mesenchymal cells are produced, suggesting that they undergo the EMT, but show greatly reduced migration through the collagen gel. MMP-2 is also expressed in mesenchyme where tissue remodeling is in progress, such as in the developing feather germs, in the head mesenchyme, in the lateral plate mesoderm, and in the limb dermis, especially in the regions where tendons are developing. Comparisons of these expression patterns in multiple embryonic tissues suggest a probable role for MMP-2 in the migration phase of the EMT, in addition to mesenchyme dispersion and tissue remodeling. Developmental Dynamics 229:42-53, 2004.  相似文献   

9.
The cell adhesion molecule N-cadherin is implicated in many morphogenetic processes, including mesenchyme condensation during limb development. To further understand N-cadherin function, we characterized a new N-cadherin allele containing the lacZ reporter gene under the regulation of the mouse N-cadherin promoter. The reporter gene recapitulates the expression pattern of the N-cadherin gene, including expression in heart, neural tube, and somites. In addition, strong expression was observed in areas of active cellular condensation, a prerequisite for chondrogenic differentiation, including the developing mandible, vertebrae, and limbs. Previous studies from our laboratory have shown that limb buds can form in N-cadherin-null embryos expressing a cardiac-specific cadherin transgene, however, these partially rescued embryos do not survive long enough to observe limb development. To overcome the embryonic lethality, we used an organ culture system to examine limb development ex vivo. We demonstrate that N-cadherin-deficient limb buds were capable of mesenchymal condensation and chondrogenesis, resulting in skeletal structures. In contrast to previous studies in chicken using N-cadherin-perturbing antibodies, our organ culture studies with mouse tissue demonstrate that N-cadherin is not essential for limb mesenchymal chondrogenesis. We postulate that another cell adhesion molecule, possibly cadherin-11, is responsible for chondrogenesis in the N-cadherin-deficient limb.  相似文献   

10.
Previous work has indicated that signals from the floor plate and notochord promote chondrogenesis of the somitic mesoderm. These tissues, acting through the secreted signaling molecule Sonic hedgehog (Shh), appear to be critical for the formation of the sclerotome. Later steps in the differentiation of sclerotome into cartilage may be independent of the influence of these axial tissues. Although the signals involved in these later steps have not yet been pinpointed, there is substantial evidence that the analogous stages of limb bud chondrogenesis require bone morphogenetic protein (BMP) signaling. We show here that presomitic mesoderm (psm) cultured in the presence of Shh will differentiate into cartilage, and that the later stages of this differentiation process specifically depend on BMP signaling. We find that Shh not only acts in collaboration with BMPs to induce cartilage, but that it changes the competence of target cells to respond to BMPs. In the absence of Shh, BMP administration induces lateral plate gene expression in cultured psm. After exposure to Shh, BMP signaling no longer induces expression of lateral plate markers but now induces robust chondrogenesis in cultured psm. Shh signals are required only transiently for somitic chondrogenesis in vitro, and act to provide a window of competence during which time BMP signals can induce chondrogenic differentiation. Our findings suggest that chondrogenesis of somitic tissues can be divided into two separate phases: Shh-mediated generation of precursor cells, which are competent to initiate chondrogenesis in response to BMP signaling, and later exposure to BMPs, which act to trigger chondrogenic differentiation.  相似文献   

11.
There is a significant difference between the developmental patterns of cranial and trunk neural crest cells in the amniote. Thus, whereas cranial neural crest cells generate bone and cartilage, trunk neural crest cells do not contribute to skeletal derivatives. We examined whether mouse trunk neural crest cells can undergo chondrogenesis to analyze how the difference between the developmental patterns of cranial and trunk neural crest cells arises. Our present data demonstrate that mouse trunk neural crest cells have chondrogenic potential and that fibroblast growth factor (FGF) 2 is an inducing factor for their chondrogenesis in vitro. FGF2 altered the expression patterns of Hox9 genes and Id2, a cranial neural crest cell marker. These results suggest that environmental cues may play essential roles in generating the difference between developmental patterns of cranial and trunk neural crest cells.  相似文献   

12.
Background: The neural tube and its overlying tissues (skin and mesenchyme) interact along the dorsal midline during early development. This has been previously demonstrated experimentally in chicken embryos by the fact that the dorsal neural tube transplanted ectopically induced expression of Msx 2 in the adjacent tissues. It is important to identify the molecules responsible for these interactions. Results: We observed that BMP-4, a member of the TGFβ-family, is expressed in the dorsal neural tube in a pattern closely correlated with that of Msx 2. hi order to investigate whether BMP-4 mediates the signal between the neural tube and the skin/ mesenchyme, BMP-4 was ectopically administered in ovo either by implantation of the recombinant protein or transplantation of COS cells producing BMP-4. Both manipulations resulted in ectopic induction of Msx 2 expression in the adjacent skin/mesenchyme. In addition, the activity of BMP-4 in inducing Msx 2 was counteracted by the floor plate. Conclusion: These data suggest that BMP-4 positively mediates the signals from the neural tube to the adjacent tissues and that this signal may be an essential step for the establishment of the dorsal midline structures.  相似文献   

13.
The spatial and temporal distribution of apoptosis in the dorsal midline of the developing chick hindbrain was examined in relation to the development of the neuroepithelium and neural crest using scanning and transmission electron microscopy, immunocytochemistry and in situ hybridization. The pattern of TUNEL labeling and Slug expression in the dorsal midline at stages 10 and 11 differed from that at stages 12-15. At stages 10 and 11, TUNEL labeling and Slug expression were observed in the dorsal part of location II of rhombomere 1/2 (i.e., between the surface ectoderm and the neuroepithelium), but from stage 12 onward, they were observed in both the dorsal and ventral parts of location II. The implication is that whereas apoptosis may be restricted to a subpopulation of the early migrating neural crest at stages 10 and 11, it presumably occurs in subpopulations of both neural crest and neuroepithelial cells from stage 12 onward. Furthermore, as judged by the pattern of TUNEL labeling and Slug expression in r3 and r5, apoptosis in these two rhombomeres likely occurs in subpopulations of both neural crest and neuroepithelial cells. The eminence present in location I of r1/r2 between stages 10 and 12 consisted of both neural crest and neuroepithelial cells. These cells gradually underwent apoptosis until stage 12, when the eminence disappeared in most embryos. The formation of the inner (neuroepithelial) aspect of the hindbrain roof plate involved both cell migration from adjacent neuroepithelium and an alteration in the shapes of the cells, such that cells with flattened surfaces eventually lined the roof plate. During these processes, some of the neuroepithelial cells underwent apoptosis (i.e., in location IV). The results of this study thus demonstrate that subpopulations of both neuroepithelial and neural crest cells may be involved in programmed cell death in the hindbrain. Additionally, apoptosis in the hindbrain contributes significantly to morphogenetic thinning during roof plate formation.  相似文献   

14.
Liu K  Zhou GD  Liu W  Zhang WJ  Cui L  Liu X  Liu TY  Cao Y 《Biomaterials》2008,29(14):2183-2192
In vivo niche plays an important role in determining the fate of implanted mesenchymal stem cells (MSCs) by directing committed differentiation. An inappropriate in vivo niche can also alter desired ultimate fate of exogenous MSCs even they are in vitro induced to express a specific phenotype before in vivo implantation. Studies have shown that in vitro chondrogenically differentiated MSCs are apt to lose their phenotype and fail to form stable cartilage in subcutaneous environment. We hypothesized that failure of maintaining the phenotype of induced MSCs in subcutaneous environment is due to the insufficient chondrogenic differentiation in vitro and fully differentiated MSCs can retain their chondrocyte-like phenotype and form stable ectopic cartilage. To test this hypothesis, extended in vitro chondrogenic induction and cartilage formation were carried out before implantation. Human bone marrow stem cells (hBMSCs) were seeded onto polylactic acid coated polyglycolic acid scaffolds. The cell-scaffold constructs were chondrogenically induced from 4 to 12 weeks for in vitro chondrogenesis, and then implanted subcutaneously into nude mice for 12 or 24 weeks. The engineered cartilages were evaluated by gross view, glycosaminoglycan content measurement, and histological staining before and after implantation. Histological examination showed typical cartilage structure formation after 8 weeks of induction in vitro. However, part of the constructs became ossified after implantation when in vitro induction lasted 8 weeks or less time. In contrast, those induced for 12 weeks in vitro could retain their cartilage structure after in vivo implantation. These results indicate that a fully differentiated stage achieved by extended chondrogenic induction in vitro is necessary for hBMSCs to form stable ectopic chondrogenesis in vivo.  相似文献   

15.
The dorso-ventral pattern formation of the somites becomes manifest by the formation of the epithelially organized dorsal dermomyotome and the mesenchymal ventrally situated sclerotome. While the dermomyotome gives rise to dermis and muscle, the sclerotome differentiates into cartilage and bone of the axial skeleton. The onset of muscle differentiation can be visualized by immunohistochemistry for proteins associated with muscle contractility, e.g. desmin. The sclerotome cells and the epithelial ventral half of the somite express Pax-1, a member of a gene family with a sequence similarity to Drosophila paired-box-containing genes. In the present study, changes of Pax-1 expression were studied after grafting an additional notochord into the paraxial mesoderm region. The influence of the notochord and the floor-plate on dermomyotome formation and myotome differentiation has also been investigated. The notochord is found to exert a ventralizing effect on the establishment of the dorso-ventral pattern in the somites. Notochord grafts lead to a suppression of the formation and differentiation of the dorsal somitic derivatives. Simultaneously, a widening of the Pax-1-expressing domain in the sclerotome can be observed. In contrast, grafted roof-plate and aorta do not interfere with dorso-ventral patterning of the somitic derivatives.  相似文献   

16.
HOX genes expressed in a specific spatial and temporal manner play a crucial role in determining the body plan during the early development of vertebrates. In adult tissues, many HOX genes participate in normal hematopoiesis and carcinogenesis. We previously found that overexpression of the homeobox gene HOXD3 alters expression levels of cell adhesion molecules in human cancer cell lines. Here, we have investigated whether HOXD3 expression is related to the cell adhesion processes during mouse development focusing on dorsal midline cells or roof-plate cells of the neural tube and neural crest cells. We created transgenic mouse embryos, in which HOXD3 is expressed in the dorsal midline under the control of the Wnt1 regulatory element, and analyzed these embryos at embryonic day 10.5-13.5. In HOXD3-expressing transgenic embryos, although neural crest-derived structures in the trunk region appeared to be normal, striking abnormalities were found in the neural tube. In transgenic embryos expressing the lacZ gene under the control of the Wnt1 regulatory element, expression of lacZ was restricted to roof-plate cells within the neural tube. By contrast, in HOXD3-expressing transgenic embryos, expression of HOXD3 was not only located in the dorsal neural tube, but also had spread inside the ventricular zone in more ventral regions of the neural tube. These findings show that the HOXD3 transgene is expressed more broadly than the Wnt1 gene is normally expressed. Expression of both Wnt1 and Msx1, marker genes in the roof plate, was further extended ventrally in HOXD3-expressing embryos than in normal embryos, suggesting that expression of the HOXD3 transgene expands the roof plate ventrally within the neural tube. In the ventricular zone of HOXD3-expressing embryos at embryonic day 10.5, we observed an increase in the number of mitotic cells and failure of interkinetic nuclear migration of progenitor cells. Furthermore, in HOXD3-expressing embryos at embryonic day 12.5, the ventricular zone, in which progenitor cells became more loosely connected to each other, was composed of a large number of cells that did not express N-cadherin. Our results indicate that expression of HOXD3 is closely associated with modulation of cell-adhesive properties during embryonic development.  相似文献   

17.
Previous work has indicated that signals from the neural tube, notochord, and surface ectoderm promote somitic myogenesis. Here, we show that somitic myogenesis is under negative regulation as well; BMP signaling serves to inhibit the activation of MyoD and Myf5 in Pax3-expressing cells. Furthermore, we show that the BMP antagonist Noggin is expressed within the dorsomedial lip of the dermomyotome, where Pax3-expressing cells first initiate the expression of MyoD and Myf5 to give rise to myotomal cells in the medial somite. Consistent with the expression of Noggin in dorsomedial dermomyotomal cells that lie adjacent to the dorsal neural tube, we have found that coculture of somites with fibroblasts programmed to secrete Wnt1, which is expressed in dorsal neural tube, can induce somitic Noggin expression. Ectopic expression of Noggin lateral to the somite dramatically expands MyoD expression into the lateral regions of the somite, represses Pax3 expression in this tissue, and induces formation of a lateral myotome. Together, our findings indicate that the timing and location of myogenesis within the somite is controlled by relative levels of BMP activity and localized expression of a BMP antagonist.  相似文献   

18.
19.
目的 探讨不同发育时期的鸡胚脊髓内背侧抑制性轴突导向蛋白(draxin)表达与神经嵴迁移之间在空间分布上的相关性。方法 选
取HH 15-16、HH19-20阶段鸡胚各10只,应用原位杂交、免疫组织化学等方法,观察各阶段鸡胚脊髓内draxin的表达部位及神经嵴细胞迁移路
径,同时比较两者在空间分布上的相关性;应用活组织切片与碱性磷酸酶标记的draxin融合蛋白(draxin-AP)体外孵育的方法,检测迁移路
径内的神经嵴细胞是否具有与draxin蛋白直接结合的能力。结果 随着发育时间的推移,鸡胚脊髓内draxin的表达和神经嵴迁移都具有明显的
由颅侧向尾侧渐进性分布的特性,且draxin的表达部位位于神经管背侧、顶板和背侧生皮肌节之间,这些部位恰均位于神经嵴迁移路径的周围;
同时迁移路径内的神经嵴细胞具有与draxin蛋白体外直接结合的能力。结论 draxin表达在神经嵴迁移路径周围且部分神经嵴具有与draxin蛋白
体外直接结合的能力,推测draxin可能在鸡胚脊髓神经嵴迁移过程中发挥重要的调节作用。  相似文献   

20.
It was previously speculated that TGFbeta acts as an "activator"-molecule in chondrogenic pattern formation in the limb micromass culture system, but its precise role and relationship with the cell sorting phenomenon have not been properly studied. In the present study, we examined whether the TGFbeta2 molecule satisfies the necessary conditions for an "activator"-molecule in the reaction-diffusion model. Firstly, we showed that TGFbeta2 became localized at chondrogenic sites during the establishment of a chondrogenic pattern, and exogenous TGFbeta2 promoted chondrogenesis when added in the culture medium. Secondly, TGFbeta2 protein was shown to promote the production of its own mRNA after 3 hr, indicating that a positive feedback mechanism exists which may be responsible for the emergence of the chondrogenic pattern. We then found that when locally applied with beads, TGFbeta2 suppressed chondrogenesis around the beads, indicating it induces the lateral inhibitory mechanism, which is a key element for the formation of the periodic pattern. We also examined the possible effects of TGFbeta2 on the cell sorting phenomenon and found that TGFbeta2 exerts differential chemotactic activity on proximal and distal mesenchyme cells of the limb bud, and at very early phases of differentiation TGFbeta2 promotes the expression of N-cadherin protein which is known to be involved in pattern formation in this culture system. These findings suggest that TGFbeta2 acts as an "activator"-like molecule in chondrogenic pattern formation in vitro, and is possibly responsible for the cell sorting phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号