首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proteasome inhibitor PS-341 in cancer therapy.   总被引:17,自引:0,他引:17  
The anticancer activity of the boronic acid dipeptide proteasome inhibitor PS-341 was examined in vitro and in vivo. PS-341 was a potent cytotoxic agent toward MCF-7 human breast carcinoma cells in culture, producing an IC90 of 0.05 microM on 24 h of exposure to the drug. In the EMT-6 tumor cell survival assay, PS-341 was equally cytotoxic administered p.o. or by i.p. injection up to a dose of 2 mg/kg. PS-341 was also toxic to the bone marrow colony-forming unit-granulocyte macrophage. PS-341 increased the tumor cell killing of radiation therapy, cyclophosphamide, and cisplatin in the EMT-6/Parent tumor, but was not able to overcome the in vivo resistance of the EMT-6/CTX and EMT-6/CDDP tumors. In the tumor growth delay assay, PS-341 administered p.o. had antitumor activity against the Lewis lung carcinoma, both primary and metastatic disease. In combination, regimens with 5-fluorouracil, cisplatin, Taxol and adriamycin, PS-341 seemed to produce primarily additive tumor growth delays against the s.c. tumor and was highly effective against disease metastatic to the lungs. The proteasome is an interesting new target for cancer therapy, and the proteasome inhibitor PS-341 warrants continued investigation in cancer therapy.  相似文献   

2.
3.
PURPOSE: PS-341 (bortezomib, Velcade), the first proteasome inhibitor approved by the Food and Drug Administration for the treatment of patients with relapsed multiple myeloma, induces apoptosis in human cancer cell lines. Vitamin C (ascorbic acid) is an essential water-soluble vitamin required for many normal physiologic functions and has to be obtained through diet or supplemental tablets in humans. Here we studied the potential effect of vitamin C on the anticancer activity of PS-341 in human cancer cell lines. EXPERIMENTAL DESIGN: The effects of vitamin C on apoptosis induction by PS-341 alone and by PS-341 combined with tumor necrosis factor-related apoptosis-inducing ligand were studied. In addition, the effects of vitamin C and other antioxidants on PS-341-mediated proteasome inhibition were also examined. Finally, the direct chemical interaction between vitamin C and PS-341 was determined. RESULTS: Vitamin C abrogated the ability of PS-341 to induce apoptosis in various human cancer cell lines, to induce G(2)-M arrest, and to augment apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand. Moreover, vitamin C suppressed PS-341-mediated inhibition of proteasome activity. PS-341 itself did not induce generation of intracellular reactive oxygen species whereas other antioxidants failed to abrogate its biological activity. Importantly, we detected a direct chemical interaction between vitamin C and PS-341. CONCLUSION: Vitamin C directly binds to PS-431, thus inactivating PS-341 independent of its antioxidant activity. Our findings suggest that vitamin C may have a negative effect on PS-341-mediated anticancer activity.  相似文献   

4.
Proteasome inhibitor PS-341 induces growth arrest and apoptosis of multiple myeloma (MM) cells via inactivation of NF-κB in vitro and has afforded some objective responses in individuals with relapsed, refractory MM. However, the activity of PS-341 against non-hematological malignancies remains to be fully elucidated. In this study, we found that PS-341 induced growth arrest and apoptosis of NCI-H520 and -H460 non-small cell lung cancer (NSCLC) cells in conjunction with markedly up-regulated levels of p21waf1 and p53, and down-regulation of bcl-2 protein in these cells. Also, PS-341 caused phosphorylation of c-Jun NH2-terminal kinase (JNK) and c-Jun, and enhanced AP-1/DNA binding activities in these cells as measured by western blotting and enzyme-linked immunosorbent assay (ELISA), respectively. Interestingly, when the JNK/ c-Jun/AP-1 signal pathway was disrupted by the JNK inhibitor SP600125, the ability of PS-341 to inhibit the growth of NSCLC cells and to up-regulate the levels of p21waf1 in these cells was blunted, but the expression of p53 was sustained at a high level, suggesting that the JNK/c-Jun/AP-1 signal pathway might mediate the anti-lung cancer effects of PS-341, with p21waf1 playing the central role. Thus, PS-341 might be useful for the treatment of individuals with NSCLC.  相似文献   

5.
PS-341, a potent and selective proteasome inhibitor, is the prototype for a new class of therapeutics that targets the ubiquitin-proteasome pathway. It is active as a single agent and potentiates chemotherapy and radiation in pre-clinical models. Early phase clinical studies have demonstrated tolerability and activity in multiple myeloma, lymphoma, prostate cancer and lung cancer. By its mechanism of inhibiting protein degradation, PS-341 targets a wide-range of pathways that are relevant to tumor progression and therapy resistance, and can directly modulate expression of cyclins, p27(Kip1), p53, NF-kappaB, Bcl-2 and Bax. PS-341 is currently in phase I/II clinical development in lung cancer. This paper will review the pre-clinical and clinical experience with PS-341 as it relates to lung cancer.  相似文献   

6.
The proteasome inhibitor PS-341 (Bortezomib, Velcade) is currently being combined with taxanes in several clinical trials for treatment of patients with various solid tumors including lung cancers. It has been shown that the combination of Docetaxel (DTX) and PS-341 generates either enhanced or antagonized antitumor effects in different types of cancer in preclinical settings. However, the preclinical evaluation of the DTX and PS-341 combination in human lung cancer cells has not been reported. In this study, the effects of DTX combined with PS-341 on cell survival and apoptosis induction in a panel of human non-small cell lung cancer (NSCLC) cell lines were assessed. We found that PS-341 when combined with DTX led to either enhanced or antagonistic effects on the decrease of cell survival and the induction of apoptosis depending on cell lines and treatment schedules. In general, a treatment schedule administering DTX first followed by PS-341 works better than other schedules in decreasing cell survival and inducing apoptosis. In addition, we examined several molecules regulated by DTX, PS-341, or both agents in order to reveal the underlying mechanisms of synergy and antagonism. Our results suggest that Bcl-2 and survivin are two important proteins that may determine cells' response to DTX/PS-341-induced apoptosis.  相似文献   

7.
Fang Y  Hu Y  Wu P  Wang B  Tian Y  Xia X  Zhang Q  Chen T  Jiang X  Ma Q  Xu G  Wang S  Zhou J  Ma D  Meng L 《Cancer investigation》2011,29(4):247-252
Histone deacetylase inhibitors and proteasome inhibitor are all emerging as new classes of anticancer agents. We chose TSA and PS-341 to identify whether they have a synergistic efficacy on human ovarian cancer cells. After incubated with 500 nM TSA or/and 40 nM PS-341, we found that combined groups resulted in a striking increase of apoptosis and G2/M blocking rates, no matter in A2780, cisplatin-sensitive ovarian cancer cell line OV2008 or its resistant variant C13*. This demonstrated that TSA interacted synergistically with PS-341, which raised the possibility that combined the two drugs may represent a novel strategy in ovarian cancer.  相似文献   

8.
9.
The ubiquitin-proteasome pathway is responsible for degrading many critical regulatory proteins involved in immune and inflammatory responses, control of cell growth and apoptosis. Recently, proteasome inhibitors have emerged as promising new therapeutic agents in hematological malignancies. Here we show that Bortezomib (PS-341), a proteasome-inhibitor, inhibits cellular proliferation and induces apoptosis in cell lines derived from Primary Effusion Lymphoma (PEL), a subtype of non-Hodgkin's lymphoma associated with infection by human herpes virus 8 (HHV-8). Bortezomib demonstrated more cytotoxicity against PEL cells than against cell lines derived from multiple myeloma, a disease for which is in current clinical use. Apoptosis induced by Bortezomib was associated with inhibition of the classical and alternative NF-kappaB pathways, upregulation of p53, p21 and p27 and activation of caspase cascade. Finally, treatment of PEL cells with Bortezomib exerted a synergistic or additive cytotoxic effect in combination with chemotherapeutic drugs or TRAIL. Taken together, these findings suggest that Bortezomib represents a promising agent for the treatment of PEL.  相似文献   

10.
11.
Flavopiridol, a synthetic flavone that inhibits tumor growth in vitro and in vivo, is a potent cyclin-dependent kinase (cdk) inhibitor presently in clinical trials. In the present study, the effect of 100-500 nM flavopiridol on a panel of non-small cell lung cancer cell lines was examined. All express a wild-type retinoblastoma susceptibility protein and lack p16INK4A, and only A549 cells are known to express wild-type p53. During 72 h of treatment, flavopiridol was shown to be cytotoxic to all seven cell lines, as measured by trypan blue exclusion, regardless of whether cells were actively cycling. In most cycling cells, cytotoxicity was preceded or accompanied by cell cycle arrest. Cell death resulted in the appearance of cells with a sub-G1 DNA content, suggestive of apoptosis, which was confirmed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay and by demonstration of cleavage of caspase targets including poly(ADP-ribose) polymerase, p21Waf1, and p27Kip1. At doses at or below 500 nM, maximal cytotoxicity required 72 h of exposure. Although flavopiridol resulted in the accumulation of p53 in A549 cells, flavopiridol-mediated apoptosis was p53 independent because it occurred to the same degree in A549 cells in which p53 was targeted for degradation by HPV16E6 expression. The data indicate that flavopiridol has activity against non-small cell lung cancers in vitro and is worthy of continued clinical development in the treatment of this disease.  相似文献   

12.
In recent years, a combination of two demographic phenomena, an increase in the number of older people in the population and an increase in the incidence of lung cancer with age, has made it mandatory to develop therapeutic modalities with less toxicity for the treatment of inoperable elderly patients with lung cancer. Our study shows that a cyclooxygenase (COX)-2 inhibitor, nimesulide, can inhibit proliferation of non-small cell lung cancer cell lines in vitro in a dose-dependent manner, in part by inducing apoptosis even at clinically achievable low concentrations. Our observations also suggest that the responsiveness of non-small cell lung cancer to COX-2 inhibitors does not require the presence of wild-type p53, but may be influenced by the degree of COX-2 expression. In addition, we found that nimesulide, when used in combination at clinically achievable concentrations, reduced the IC50 values of various anticancer agents by up to 77%, although the level of reduction varied considerably. Because our previous studies have indicated a significantly increased COX-2 expression in up to 70% of adenocarcinoma cases, the present findings are of great clinical interest. In conjunction with the recent development of next generation, highly selective COX-2 inhibitors, they can be expected to lead to even greater efficacy of their use as adjuncts to various anticancer agents for the treatment of high-risk patients without compromising their quality of life.  相似文献   

13.
Hsu YL  Kuo PL  Liu CF  Lin CC 《Cancer letters》2004,212(1):53-60
In this study, we examined acacetin (5,7-dihydroxy-4'-methoxyflavone), a flavonoid compound, for its effect on proliferation in human non-small cell lung cancer A549 cells. The results first reported that acacetin not only inhibited A549 cell proliferation but also induced apoptosis and blocked cell cycle progression in the G1 phase. ELISA assay demonstrated that acacetin significantly increased the expression of p53 and p21/WAF1 protein, which caused cell cycle arrest. An enhancement in Fas and its two forms of ligands, membrane-bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), might be responsible for the apoptotic effect induced by acacetin. Taken together, p53 and Fas/FasL apoptotic system may participate in the antiproliferative activity of acacetin in A549 cells.  相似文献   

14.
Human multiple myeloma (MM) is a presently incurable hematological malignancy, and novel biologically based therapies are urgently needed. Proteasome inhibitors represent a novel potential anticancer therapy. In this study, we demonstrate that the proteasome inhibitor PS-341 directly inhibits proliferation and induces apoptosis of human MM cell lines and freshly isolated patient MM cells; inhibits mitogen-activated protein kinase growth signaling in MM cells; induces apoptosis despite induction of p21 and p27 in both p53 wild-type and p53 mutant MM cells; overcomes drug resistance; adds to the anti-MM activity of dexamethasone; and overcomes the resistance to apoptosis in MM cells conferred by interleukin-6. PS-341 also inhibits the paracrine growth of human MM cells by decreasing their adherence to bone marrow stromal cells (BMSCs) and related nuclear factor kappaB-dependent induction of interleukin-6 secretion in BMSCs, as well as inhibiting proliferation and growth signaling of residual adherent MM cells. These data, therefore, demonstrate that PS-341 both acts directly on MM cells and alters cellular interactions and cytokine secretion in the BM millieu to inhibit tumor cell growth, induce apoptosis, and overcome drug resistance. Given the acceptable animal and human toxicity profile of PS-341, these studies provide the framework for clinical evaluation of PS-341 to improve outcome for patients with this universally fatal hematological malignancy.  相似文献   

15.
16.
PURPOSE: The malignant Hodgkin and Reed-Sternberg cells of Hodgkin disease (HD) are known to constitutively express high levels of activated nuclear factor kappaB (NF-kappaB), which plays an important role in their survival. The proteasome inhibitor PS-341 has been recently shown to modulate tumor cell proliferation and survival by inhibiting NF-kappaB and modulating critical cellular regulatory proteins, but its activity in cells carrying IkappaBalpha gene mutations has not been reported previously. Experimental Design: The activity of PS-341 in four well-characterized, HD-derived cell lines. Cell proliferation and apoptosis were determined by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfonyl)-2H-tetrazolium (MTS) and Annexin-V binding methods, respectively. Cell cycle analysis was determined by flow cytometry. Intracellular protein levels were determined by Western blot. RESULTS: PS-341 demonstrated a strong antiproliferative activity, which was irrespective of the status of mutations in IkappaBalpha and even the presence of CD30, CD40, or RANK receptor activation. This effect was attributable to the induction of apoptosis and cell cycle arrest at the G(2)-M phase. PS-341 not only inhibited nuclear localization of NF-kappaB but also activated the caspase cascade, increased p21 and Bax levels, and decreased Bcl-2 levels. Furthermore, PS-341 enhanced the effect of gemcitabine chemotherapy and potentiated the effect of tumor necrosis factor-related apoptosis-inducing ligand/APO2L and two agonistic antibodies to tumor necrosis factor-related apoptosis-inducing ligand death receptors R1 and R2. CONCLUSIONS: The in vitro activity of PS-341 against HD-derived cell lines suggests that PS-341 may have a therapeutic value for the treatment of HD.  相似文献   

17.
PS-341 (bortezomib) represents a new class of therapeutics that targets the ubiquitin-proteasome pathway. It has broad-spectrum single-agent anticancer activity and can potentiate chemotherapy and radiation in preclinical models. Early phase clinical studies have shown tolerability and activity in multiple myeloma, lymphoma, prostate cancer, and lung cancers. By its mechanism of inhibiting protein degradation, PS-341 targets a wide range of pathways relevant to tumor progression and therapy resistance and can directly modulate expression of cyclins, p27Kip1, p53, nuclear factor-κB, Bcl-2, and Bax. PS-341 is currently in phase I/II clinical development in both non-small cell lung cancer and small cell lung cancer. This article will review the preclinical and clinical experience with PS-341 as it relates to lung cancer.  相似文献   

18.
19.
Almost all known conventional cytotoxic anticancer drugs are less effective in killing tumor cells grown as multicellular spheroids than in killing tumor cells grown as monolayer cell cultures. This "multicellular resistance" reflects the relative intrinsic drug-resistant phenotype of most solid tumors growing in vivo and is due to factors such as limited drug penetration or reduced fractions of proliferating cells. Proteasome inhibitors such as PS-341, a dipeptide boronic acid analogue, represent an interesting new class of potential anticancer drugs, which are entering early-phase clinical trials. PS-341 has been found to have good broad-spectrum cytotoxic activity in the 60-monolayer cell line National Cancer Institute screen. However, because its relative potency has not been tested in spheroid systems, we analyzed the activity of PS-341 in a spheroid/solid tumor context using four different human ovarian carcinoma cell lines and three prostate carcinoma cell lines, respectively. We found, with one exception, that PS-341 showed equal or greater activity in spheroids than in the respective monolayer cell cultures, even in a prostate cancer spheroid model with a very low growth fraction. PS-341 induced apoptotic cell death in carcinoma cells in both culture systems. We also noted a decrease in XIAP protein, a member of the inhibitor of apoptosis (IAP) family of apoptosis inhibitors, and phosphorylation of Bcl-XL in PS-341-treated ovarian carcinoma cells. Furthermore, DNA fragmentation, a hallmark of apoptosis (in this case, induced by PS-341), was completely inhibited by the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD). Taken together, the results indicate that unlike most other known anticancer cytotoxic drugs, PS-341 appears to be as effective in killing tumor cells grown in the form of multicell spheroids as in killing tumor cells grown in monolayer cell culture. Hence, this compound has the potential to circumvent multicellular drug resistance and, as such, may show promising activity against solid tumors with low growth fractions in vivo, which are frequently intrinsically resistant to conventional cytotoxic anticancer drugs.  相似文献   

20.
PURPOSE: To determine the maximum-tolerated dose (MTD), dose-limiting toxicity (DLT), and pharmacodynamics (PD) of the proteasome inhibitor bortezomib (previously known as PS-341) in patients with refractory hematologic malignancies. PATIENTS AND METHODS: Patients received PS-341 twice weekly for 4 weeks at either 0.40, 1.04, 1.20, or 1.38 mg/m(2), followed by a 2-week rest. The PD of PS-341 was evaluated by measurement of whole blood 20S proteasome activity. RESULTS: Twenty-seven patients received 293 doses of PS-341, including 24 complete cycles. DLTs at doses above the 1.04-mg/m(2) MTD attributed to PS-341 included thrombocytopenia, hyponatremia, hypokalemia, fatigue, and malaise. In three of 10 patients receiving additional therapy, serious reversible adverse events appeared during cycle 2, including one episode of postural hypotension, one systemic hypersensitivity reaction, and grade 4 transaminitis in a patient with hepatitis C and a substantial acetaminophen ingestion. PD studies revealed PS-341 induced 20S proteasome inhibition in a time-dependent manner, and this inhibition was also related to both the dose in milligrams per meter squared, and the absolute dose of PS-341. Among nine fully assessable patients with heavily pretreated plasma cell dyscrasias completing one cycle of therapy, there was one complete response and a reduction in paraprotein levels and/or marrow plasmacytosis in eight others. In addition, one patient with mantle cell lymphoma and another with follicular lymphoma had shrinkage of nodal disease. CONCLUSION: PS-341 was well tolerated at 1.04 mg/m(2) on this dose-intensive schedule, although patients need to be monitored for electrolyte abnormalities and late toxicities. Additional studies are indicated to determine whether incorporation of dose/body surface area yields a superior PD model to dosing without normalization. PS-341 showed activity against refractory multiple myeloma and possibly non-Hodgkin's lymphoma in this study, and merits further investigation in these populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号