首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Ly49Q is a member of the polymorphic Ly49 family of NK cell receptors that displays both a high degree of conservation and a unique expression pattern restricted to myeloid lineage cells, including plasmacytoid dendritic cells (pDC). The function and ligand specificity of Ly49Q are unknown. Here, we use reporter cell analysis to demonstrate that a high-affinity ligand for Ly49Q is present on H-2(b), but not H-2(d), H-2(k), H-2(q), or H-2(a)-derived tumor cells and normal cells ex vivo. The ligand is peptide-dependent and MHC Ia-like, as revealed by its functional absence on cells deficient in TAP-1, beta(2)m, or H-2K(b)D(b) expression. Furthermore, Ly49Q is specific for H-2K(b), as the receptor binds peptide-loaded H-2K(b) but not H-2D(b) complexes, and Ly49Q recognition can be blocked using anti-K(b) but not anti-D(b) mAb. Greater soluble H-2K(b) binding to ligand-deficient pDC also suggests cis interactions of Ly49Q and H-2K(b). These results demonstrate that Ly49Q efficiently binds H-2K(b) ligand, and suggest that pDC function, like that of NK cells, is regulated by classical MHC Ia molecules. MHC recognition capability by pDC has important implications for the role of this cell type during innate immune responses.  相似文献   

2.
Functional MHC class I molecules are expressed on the cell surface in the absence of beta(2)-microglobulin (beta(2)m) light chain that can interact with CD8(+) T lymphocytes. Whether their assembly requires peptide binding and whether their recognition by CD8(+) T lymphocytes involves the presentation of peptide epitopes remains unknown. We show that beta(2)m-free H-2D(b) assembles with short peptides that are approximately 9 amino acid residues in length, akin to ligands associated with completely assembled beta(2)m(+) H-2D(b). Remarkably, a subset of the peptides associated with the beta(2)m-free H-2D(b) has an altered anchor motif. However, they also include peptides that contain a beta(2)m(+)H-2D(b) binding anchor motif. Further, the H-2K(b)- and H-2D(b)-restricted peptide epitopes derived from SV-40 T antigen also assemble with H-2(b) class I in beta(2)m-deficient cells and are recognized by epitope-specific CD8(+) T lymphocytes. Taken together our data reveal that functional MHC class I molecules assemble in the absence of beta(2)m with peptides and form CD8(+) T lymphocyte epitopes.  相似文献   

3.
The Ly49 family of natural killer (NK) receptors regulates NK cell function by sensing major histocompatibility complex (MHC) class I. Ly49 receptors show complex patterns of MHC class I cross-reactivity and, in certain cases, peptide selectivity. To investigate whether specificity differences result from topological differences in MHC class I engagement, we determined the structure of the peptide-selective receptor Ly49C in complex with H-2K(b). The Ly49C homodimer binds two MHC class I molecules in symmetrical way, a mode distinct from that of Ly49A, which binds MHC class I asymmetrically. Ly49C does not directly contact the MHC-bound peptide. In addition, MHC crosslinking by Ly49C was demonstrated in solution. We propose a dynamic model for Ly49-MHC class I interactions involving conformational changes in the receptor, whereby variations in Ly49 dimerization mediate different MHC-binding modes.  相似文献   

4.
NK cells acquire the ability to recognize MHC class I molecules during development. Studies with Qa-1(b) tetramers (Qa-1 tetramers) showed that nearly all NK1.1(+) cells from newborn C57BL/6 mice express Qa-1-binding receptors. Cytotoxic activity of these cells is fully inhibited by Qa-1 ligands on target cells. In contrast, neither receptors for H-2K(b) nor H-2D(b) were observed on NK1.1(+) cells from newborn mice. After birth, frequencies of Qa-1 tetramer(+)/ NK1.1(+) cells gradually decrease as the number of Ly49(+) /NK1.1(+) cells increases. Cell transfer studies showed that Qa-1 tetramer(+) cells from newborn mice do not lose expression of Qa-1 receptors, but that they further acquire expression of Ly49 molecules. Acquisition of Qa-1-binding receptors appears largely independent of host MHC class I molecules, as observed in studies using beta2-microglobulin-deficient (beta2m(-/-)) mice as well as K(b)/ D(b-/-) and K(b)/D(b)/beta2m(-/-) mice. The present results suggest that Qa-1-binding receptors play an important role in the specificity of developing NK cells, and suggest that these cells rely mainly on inhibitory receptors specific for non-classical MHC class I molecules to maintain self tolerance during the first weeks of life.  相似文献   

5.
F1 hybrid mice often reject parental hematopoietic grafts, a phenomenon known as hybrid resistance. Hybrid resistance is mediated by natural killer (NK) cells and although the molecular interactions responsible for this phenomenon are largely unknown, one hypothesis suggests that parental cells are rejected because they fail to express a complete set of host major histocompatibility complex (MHC) class I molecules. Inherent in this theory is that NK cells in the F1 hybrid are instructed by self MHC class I molecules to form an NK cell repertoire capable of reacting against cells lacking these self MHC class I molecules. Here, we show that C57BL/6 x DBA/2 mice (H-2b/d) devoid of β2-microglobulin (β2m) are incapable of rejecting β2m?/? parental C57BL/6 cells (H-2b) both in vivo and in vitro. From this, we conclude that the development of an NK cell repertoire, at least in F1 mice of the H-2b/d haplotype, requires expression of MHC class I molecules complexed with β2m.  相似文献   

6.
The K(bm1) and K(bm8) natural mutants of the murine MHC class I molecule H-2K(b) were originally identified by allograft rejection. They also bind viral peptides VSV8 and SEV9 with high affinity, but their peptide complexes have substantially decreased thermostability, and the K(bm1) complexes do not elicit alloreactive T cell responses. Crystal structures of the four mutant complexes at 1.7-1.9 A resolution are similar to the corresponding wild-type K(b) structures, except in the vicinity of the mutated residues, which alter the electrostatic potential, topology, hydrogen bonding, and local water structure of the peptide binding groove. Thus, these natural K(b) mutations define the minimal perturbations in the peptide environment that alter antigen presentation to T cells and abolish alloreactivity.  相似文献   

7.
Ly49A is a C-type lectin-like receptor on NK cells that recognizes MHC class I ligands, H-2D(d) and D(k). The engagement of Ly49A with the ligands inhibits activation of NK cells and protects target cells from lysis by NK cells. Here we express the extracellular region of Ly49A with an N-terminal biotinylation tag in Escherichia coli to obtain soluble Ly49A (sLy49A) after refolding. sLy49A is indistinguishable from native Ly49A expressed on NK cells serologically and in the ability to specifically bind H-2D(d) after tetramerization with R-phycoerythrin-coupled streptavidin. The fluorescently labeled tetramer of sLy49A is applied to explore MHC class I haplotype specificity of Ly49A. We demonstrate the hierarchical reactivity of Ly49A with H-2 of various alleles in the order of d > k, r > p > v > q > s > z. Reactivity of sLy49A tetramer to spleen lymphocytes from B10.QBR mice (H-2K(b), I(b), D(q), Qa-1/Tla(b)) but not from C57BL/10 mice (H-2(b)) identifies H-2D(q) and L(q) as candidates for a Ly49A ligand. Binding of sLy49A tetramer to H-2D(q)- or L(q)-transfected cell lines demonstrates that the two highly related MHC class I molecules, H-2D(q) and L(q), are ligands for Ly49A. sLy49A tetramer staining also demonstrates preferential expression of Ly49A ligand on a subset of B cells in P/J mice. These results provide the basis to examine the molecular mechanism by which Ly49A discriminates polymorphic MHC class I molecules.  相似文献   

8.
We previously demonstrated that Bacillus Calmette-Guerin (BCG) immunization activated D(b) restricted CD8+ cytolytic T lymphocyte (CTL) recognizing target cells incubated with mycobacterial culture filtrate. Here, we show that in vitro restimulation of spleen cells from BCG vaccinated or Mycobacterium tuberculosis infected mice with culture filtrate antigens leads to the appearance of a high percentage of D(b) restricted IFNgamma synthesizing CD8+ T cell blasts. Transporter associated protein-2 mutated RMA-S cells incubated with soluble culture filtrate proteins had their MHC class I D(b) but not K(b) molecules stabilized at the surface indicating that only D(b) ligands might be generated by antigen presenting cells. MHC class I bound peptides were acid eluted from the surface of RMA-S cells incubated with M. tuberculosis culture filtrate proteins. The crude peptide preparation was able to sensitize RMA-S cells for recognition by culture filtrate-specific cytolytic T cells. Peptides were subsequently fractionnated by reverse-phase high performance liquid chromatography and the main biological activity was identified in two fractions. These results provide a further evidence that the processing of exogenous culture filtrate proteins in vitro leads to the presentation of a restricted number or even a single immunodominant peptide to culture filtrate-specific CD8+ T cells.  相似文献   

9.
Two major histocompatibility complex (MHC) class I-reactive T cell clones derived from H-2b mice, generated against the allogeneic Ld molecule, were found to recognize the H-2b class II mutant Abm12 molecule as well. In addition, these clones also recognize the class II As molecule, and display a class II-dependent reactivity to staphylococcal enterotoxin B. Neither the class I nor the class II alloreactivities of the clones were found to be dependent on other MHC molecules. Both clones express CD4+CD8? phenotypes. The CD4 molecule appears to be involved in their class II reactivity, while little or no role for CD4 could be detected in the class I reactivity. This is the first report of a class I/class II cross-reactivity being mediated by CD4+ T cells. The structural basis for this cross-reactivity is discussed.  相似文献   

10.
In this study the immunogenic tryptic fragment from a horse cytochrome c (cyt c) digest recognized by cytotoxic T lymphocytes (CTL), induced by in vitro peptide stimulation from C57BL/6 (B6) and mutant B6.C-H-2bm1 (bm1) mice is identified. An identical sequence, p40—53, is recognized by CTL from both B6 and bm1 mice. In addition, both B6 and bm1 cloned CTL lines display unusual major histocompatibility complex (MHC) class I-restricted recognition of this peptide in that they respond to it in the context of H-2Kb, H-2Db, and H-2Kbm1 class I molecules, although the sequence lacks the usual structural Kb and Db peptide-binding motifs. Truncated analogues which resemble the lengths of naturally processed MHC class I-presented peptides, confer reactivity for B6 and bm1 CTL against EL4 (H-2b) targets as well as the L cell transfectants, L + Kb, L + Db, and L + Kbm1. The antigenic peptide with the greatest potency is p41—49, which appears to be generated by angiotensin converting enzyme cleavage of the full-length p40—53 tryptic peptide. The minimum antigenic peptide recognized by both B6 and bm1 CTL, and which targets lysis on each of the transfectants, is the hexamer p43—48 peptide from horse cyt c. Residues Pro44 and Thr47, which occupy polymorphic positions with respect to other species-variant cyt c molecules, influence recognition of these peptides differently for the B6 and bm1 CTL. The ability of H-2Kb, H-2Db, and mutant H-2Kbm1 class I molecules to present the same peptide to a single cloned CTL is discussed in the context of current knowledge of peptide anchor residues and side chain-specific binding pockets in the MHC class I peptide-binding site.  相似文献   

11.
Murine natural killer (NK) cells are inhibited from killing their targets by the interaction between inhibitory, C-type lectin like Ly49 receptors and major histocompatibility complex (MHC) class I molecules. The receptors have overlapping specificity, and it has been difficult to analyze specific aspects of the interaction between different Ly49 receptors and their respective ligands. We have addressed this problem using tetramers of bacterially expressed, non-glycosylated, MHC class I molecules refolded with different peptides. Our results indicate that this technology is useful for analysis of Ly49 receptor specificity as well as for monitoring of NK cell subsets, with the following major conclusions emerging from this study: (1) tetramers of H-2D(d) bound the Ly49A receptor; the MHC associated glycan, previously suggested to be involved in recognition by this receptor, is thus not required for Ly49A receptor binding; (2) in support and extension of a recent report indicating peptide selectivity in the recognition of H-2K(b) by Ly49C(+) cells, H-2K(b) tetramer binding to Ly49C receptors was strongly influenced by the peptide presented by the MHC class I molecule; (3) tetramer binding allowed visualization of interactions that have not previously been detected in functional studies, such as the recognition of H-2D(b) by Ly49A and Ly49C.  相似文献   

12.
Natural killer cells have been shown to interact with MHC class I molecules via inhibitory receptors. However, it is not known whether the inhibition induced by MHC class I molecules requires other NK cell-target cell interactions. Thus, we examined whether purified MHC class I molecules alone were able to inhibit NK cell function. Purified H-2K(b) and H-2D(b) molecules inhibited the release of IFN-gamma from spleen (H-2(b))-derived lymphokine-activated killer (LAK) cell cultures stimulated by anti-NK1.1 antibody in a concentration-dependent manner. LAK cells generated from newborn mice that express low levels of MHC class I binding Ly49 inhibitory receptors were significantly less sensitive to inhibition by H-2K(b) compared to LAK cells from adult mice. Furthermore, LAK cells generated from spleen cells of Ly49C-transgenic mice were significantly more sensitive to inhibition by H-2K(b) compared to non-transgenic littermates. Taken together, the data indicate that MHC class I induced inhibition of NK cell mediated effector functions, as assessed by IFN-gamma release after NK1.1 triggering, does not require additional cell surface molecules other than MHC class I.  相似文献   

13.
CD8 can serve as a co-receptor or accessory molecule on the surface of CTL. As a co-receptor, CD8 can bind to the alpha3 domain of the same MHC class I molecules as the TCR to facilitate TCR signaling. To evaluate the role of the MHC class I molecule alpha3 domain in the activation of CD8(+) CTL, we have produced a soluble 227 mutant of H-2D(d), with a point mutation in the alpha3 domain (Glu227 --> Lys). 227 mutant class I-peptide complexes were not able to effectively activate H-2D(d)-restricted CD8 T cells in vitro, as measured by IFN-gamma production by an epitope-specific CD8(+) CTL line. However, the 227 mutant class I-peptide complexes in the presence of another MHC class I molecule (H-2K(b)) (that cannot present the peptide) with a normal alpha3 domain can induce the activation of CD8(+) CTL. Therefore, in order to activate CD8(+) CTL, the alpha3 domain of MHC class I does not have to be located on the same molecule with the alpha1 and alpha2 domains of MHC class I. A low-avidity CD8(+) CTL line was significantly less sensitive to stimulation by the 227 mutant class I-peptide complexes in the presence of the H-2K(b) molecule. Thus, low-avidity CTL may not be able to take advantage of the interaction between CD8 and the alpha3 domain of non-presenting class I MHC molecules, perhaps because of a shorter dwell time for the TCR-MHC interaction.  相似文献   

14.
The RMA-S lymphoma mutant cannot process and present antigens to H-2-restricted cytotoxic T lymphocytes. It synthesizes major histocompatibility complex class I heavy (H-2KbDb) and light beta 2-microglobulin (beta 2mb) chains of normal size and charge, but only a fraction of these assemble and reach the cell surface. As a first step investigating the genetic defect of this line, we have fused it to a L cell fibroblast line (H-2KkDk/beta 2ma). The fusion restored H-2Kb, Db and beta 2mb expression as well as the ability to process and present internally derived (minor histocompatibility and influenza virus nucleoprotein) antigens in RMA-S. This shows that the mutation(s) responsible for the phenotype of RMA-S is (are) not located within the MHC class I heavy and light chain genes. Other cellular factors, derived from the L cell fusion partner, can control antigen processing and transport of MHC class I molecules. These findings are discussed in relation to the observation that assembly and transport of MHC class I molecules can be induced in the mutant by H-2b-restricted peptides. The recessive nature of the defect and its independence of MHC class I genes in the mutant has important implications for future transfection studies, of this and similar mutants, aiming at establishing cells containing non-assembled MHC class I molecules of different alleles and identifying the gene(s) controlling processing of endogenous antigens.  相似文献   

15.
Characterizing peptide epitopes targeted by major histocompatibility complex (MHC)-restricted T cells of unknown specificity would have broad implications. In this article we introduce and validate an original phage-displayed library of noncovalent complexes of peptide and MHC (P/MHC). We show that soluble MHC molecules associate with peptides presented by a phage, thereby resulting in the formation of multivalent P/MHC phages. Complex formation is stabilized by the interaction of the soluble partner (MHC) with two components, peptide and beta2-microglobulin, both of which are covalently linked to the phage. As proof of concept, we have used this strategy to express peptide libraries in the context of H-2K(b). Using monoclonal antibody 25D (specific for ovalbumin/H-2K(b)) as a template to screen the library, we were able to select a variant epitope functionally and structurally related to the wild-type peptide. Interaction studies between monoclonal antibody 25D and cells suggest that the variant peptide has been selected on the basis of a decreased dissociation rate between the peptide/H-2K(b) complex and its ligand. A weak agonist of the N15 TCR (vesicular stomatitis virus/H-2K(b)-specific) was also isolated from another P/MHC library. This strategy opens up new perspectives for antigen discovery and the manipulation of T cell responses.  相似文献   

16.
The molecular event governing the assembly of the MHC class I heavy chain-beta(2)-microglobulin-peptide complex is still not fully understood. In order to characterize the transport properties of MHC class I molecules, several truncated H-2K(b) genes were constructed and expressed in COS7 cells. Surprisingly, the expressed soluble molecule containing connecting peptide (CP) segment (sK(b)(CP)) did not secrete as efficiently as the one without CP (sK(b)(CYT)). When the sK(b)(CP) gene was transfected into a calnexin-deficient cell line CEM.NK(R), the amount of soluble K(b) molecules in the supernatant was comparable with sK(b)(CYT)-transfected CEM.NK(R). To further demonstrate the different transport of sK(b)(CP) and sK(b)(CYT) within living cells, we attached green fluorescent protein (GFP) to the C-termini of both molecules and, as a comparison, to the full-length transmembrane counterpart (mK(b)-GFP). While the mK(b)-GFP-transfected cells showed the green fluorescence in the reticular network and the nuclear envelope, sK(b)(CP)-GFP showed obviously lump fluorescence of high intensity within cells. However, the distribution of sK(b)(CYT)-GFP was fairly uniform. Furthermore, GFP-tagged molecules allow us to analyze their interaction with other proteins in a direct, simple and quantitative method, designated immunofluorescence precipitation. The results showed that 60% of sK(b)(CP)-GFP molecules were associated with calnexin, while <10% with tapasin. Taken together with the results from sK(b)(CYT)-GFP and mK(b)-GFP, it is reasonable to deduce that the CP segment is involved in the association of class I molecules with calnexin and the transmembrane region might play a dynamic role in the dissociation from calnexin. The suggested kinetic association of class I molecules with calnexin is likely to contribute to the different maturation rate between several class I alleles.  相似文献   

17.
A "hybrid gene" (MTKb) comprised of the human metallothionein IIA promoter ligated to the genomic sequence of the major histocompatibility complex class I (H-2Kb) gene was subcloned into the expression vector pSV2neo and transfected into the natural killer (NK) cell-sensitive YAC-1 lymphoma. The Kb gene product was readily detectable on the cell surface of G418-resistant transfectants using both Kb-specific monoclonal antibodies and H-2b-specific cytolytic T cells. Unlike control pSV2neo transfectants, MTKb-pSV2neo transfectants were relatively resistant to lysis by NK cells from H-2a, H-2b, H-2k or H-2 (a x b)F1 haplotype mice. These data strongly suggest that the effects of MHC expression on susceptibility to NK cells can be mediated by a single and well-defined class I molecule, Kb.  相似文献   

18.
19.
The concentration of MHC class I (H-2K and H-2D) antigens on stimulating cells and target cells may influence the induction of responses in cytotoxic T-cell precursors, and the efficiency of cytotoxicity mediated by activated T cells, respectively. Using FACS analysis, we found that exposure of BALB/c mouse embryo fibroblasts (MEF) under different culture conditions to the supernatant from concanavalin A(Con A)-stimulated splenocyte cultures (CS) could result either in H-2K antigens increasing significantly more than H-2D antigens or in H-2D antigens increasing significantly more than H-2K antigens. Furthermore, we observed that the concentrations of H-2K antigens on MEF that were not exposed to CS in vitro could vary independently of H-2D antigen concentration during a period of several days in vitro. Thus we propose that the cell surface concentration of H-2K and H-2D antigens may be independently regulated, and we discuss how such regulation may be biologically advantageous during protective T-cell responses.  相似文献   

20.
The expression of certain major histocompatibility complex (MHC) class I ligands on target cells is one important determinate of their susceptibility to lysis by natural killer (NK) cells. NK cells express receptor molecules that bind to MHC class I. Upon binding to their MHC class I ligand, the NK cell is presumed to receive a signal through its receptor that inhibits lysis. It is unclear what role the MHC class I molecules of the effector and target cells play in signaling to the NK cell. We have investigated the role of the cytoplasmic and transmembrane domains of MHC class I molecules by producing a glycosylphosphatidylinositol (GPI)-linked H-2Dd molecule. The GPI-linked H-2Dd molecule is recognized by H-2Dd-specific antibodies and cytotoxic T lymphocytes. Expression of the GPI-linked H-2Dd molecule on H-2b tumor cells resulted in protection of the tumor cells after transplantation into D8 mice (H-2b, H-2Dd) from rejection by NK cells. In addition, NK cells from mice expressing the GPI-linked H-2Dd molecule as a transgene were able to kill nontransgenic H-2b lymphoblast target cells. The GPI-linked MHC class I molecule was able to alter NK cell specificity at the target and effector cell levels. Thus, the expression of the cytoplasmic and transmembrane domains of MHC class I molecules are not necessary for protection and alteration of NK cell specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号