首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nucleotide excision repair (NER) is the most flexible of all known DNA‐repair mechanisms, and XPG is a 3′‐endonuclease that participates in NER. Mutations in this gene (ERCC5) may result in the human syndrome xeroderma pigmentosum (XP) and, in some cases, in the complex phenotype of Cockayne syndrome (CS). Two Brazilian XP siblings, who were mildly affected, were investigated and classified into the XP‐G group. The cells from these patients were highly ultraviolet (UV) sensitive but not sensitive to photosensitized methylene blue, an agent that causes oxidative stress. This phenotype is in contrast to XP‐G/CS cells, which are highly sensitive to this oxidative agent. Sequencing revealed a compound heterozygous genotype with two novel missense mutations: c.83C>A (p.Ala28Asp) and c.2904G>C (p.Trp968Cys). The first mutation maps to the catalytic site of the XPG protein, whereas the second may compromise binding to DNA. Functional assays indicated that the mutated alleles were unable to perform the complete repair of UV‐irradiated plasmids; however, full correction was observed for oxidatively damaged plasmids. Therefore, the XP phenotype of these patients is caused by novel missense mutations that specifically affect DNA repair for UV‐ but not oxidative‐stress‐induced DNA damage, and implications for XP versus XP/CS phenotype are discussed.  相似文献   

3.
Mutations in two branch‐point sequences (BPS) in intron 3 of the XPC DNA repair gene affect pre‐mRNA splicing in association with xeroderma pigmentosum (XP) with many skin cancers (XP101TMA) or no skin cancer (XP72TMA), respectively. To investigate the mechanism of these abnormalities we now report that transfection of minigenes with these mutations revealed abnormal XPC pre‐mRNA splicing that mimicked pre‐mRNA splicing in the patients' cells. DNA oligonucleotide‐directed RNase H digestion demonstrated that mutations in these BPS disrupt U2 snRNP–BPS interaction. XP101TMA cells had no detectable XPC protein but XP72TMA had 29% of normal levels. A small amount of XPC protein was detected at sites of localized ultraviolet (UV)‐damaged DNA in XP72TMA cells which then recruited other nucleotide excision repair (NER) proteins. In contrast, XP101TMA cells had no detectable recruitment of XPC or other NER proteins. Post‐UV survival and photoproduct assays revealed greater reduction in DNA repair in XP101TMA cells than in XP72TMA. Thus mutations in XPC BPS resulted in disruption of U2 snRNP‐BPS interaction leading to abnormal pre‐mRNA splicing and reduced XPC protein. At the cellular level these changes were associated with features of reduced DNA repair including diminished NER protein recruitment, reduced post‐UV survival and impaired photoproduct removal. Hum Mutat 30:1–9, 2009. Published 2009 Wiley‐Liss, Inc.  相似文献   

4.
5.
6.
Nestin is a marker for the neuronal and glial precursor cells and is expressed in reactive astrocytes after brain injury. Following restricted neocortical injury, we found that cells with neuronal morphology in the adult rat striatum became immunoreactive for both nestin and the neuronal marker, microtubule-associated protein 2 (MAP-2), but not for the astroglial marker, glial fibrillary acidic protein (GFAP). The number of nestin-positive cells transiently increased in the striatum. Continuous administration of 5-bromo-2'-deoxyuridine (BrdU) after cortical injury did not reveal any newly generated neurons in the striatum. Double-labeling fluorescent immunocytochemistry revealed that the nestin-positive striatal cells were also substance-P-positive. These findings suggest that some factors released from the injured cortex may induce nestin immunoreactivity in striatal neurons.  相似文献   

7.
8.
Nucleotide excision repair (NER) pathways remove a wide variety of bulky and helix-distorting lesions from DNA, and involve the coordinated action of damage detection, helicase and nuclease proteins. Most archaeal genomes encode eucaryal-type NER proteins, including the helicases XPB and XPD and nuclease XPF. These have been a valuable resource, yielding important mechanistic and structural insights relevant to human health. However, the nature of archaeal NER remains very uncertain. Here we review recent studies of archaeal NER proteins relevant to both eucaryal and archaeal NER systems and the evolution of repair pathways.  相似文献   

9.
10.
A deficiency in DNA repair is associated with increased cancer risk. Inter-individual variations in DNA repair capacity observed in humans may result from genetic polymorphisms in DNA repair genes. In order to provide a basis for future functional and molecular epidemiology studies on cancer susceptibility, we screened 35 individuals for polymorphisms in coding regions of XPA and XPB genes involved in nucleotide excision repair (NER). Relevant cDNA sequences were amplified by PCR, sequenced with fluorescently labeled terminators and analyzed with automated sequencer. Two polymorphisms in XPB were found: AAA-->AGA (445A>G; GenBank M31899) causing K117R substitution and GGC-->TGC (1299G>T; GenBank M31899) causing G402C exchange. Also, two polymorphisms in XPB were detected: CGA-->CAA (709G>A; GenBank D14533) causing R228Q exchange, and A-->G (23A>G; GenBank D14533) substitution in the 5' non-coding region of the gene. The three aforementioned amino acid substitutions were uncommon in this population (1.4%). In contrast, the substitution located 4 nucleotides upstream of the ATG start codon of XPB was frequent (57%). To our best knowledge this is the first report of these sequence variants. The location of these polymorphisms in evolutionary conserved regions suggest that they may be of functional significance.  相似文献   

11.
The distribution of transforming growth factor-beta isoforms 1, 2 and 3 and transforming growth factor-beta 2 and 3 mRNAs in adult rat central and peripheral nervous system was examined using Northern blotting and isoform specific antibodies for immunocytochemistry. Transforming growth factor-beta 2 and 3 mRNA were present in all brain areas including cerebral cortex, hippocampus, striatum, cerebellum and brainstem. In sciatic nerve, transforming growth factor-beta 3 mRNA was highly expressed, but transforming growth factor-beta 2 mRNA was not detectable. Transforming growth factor-beta 1-like immunoreactivity was confined to meninges and choroid plexus in the brain and connective tissue in peripheral ganglia and nerves. Transforming growth factor-beta 2 and 3 immunoreactivity entirely overlapped and, in general, were found in large multipolar neurons. Highest densities of immunoreactive neuronal perikarya were present in spinal cord and brainstem motor nuclei, hypothalamus, amygdaloid complex, hippocampus and cerebral cortical layers II, III and V. Most thalamic nuclei, superior colliculi, periaqueductal gray and striatum were almost devoid of transforming growth factor-beta 2- and 3-immunoreactive neurons. Fibrous astrocytes in white matter areas were intensely immunostained. Most dorsal root ganglionic neurons, their satellite cells and Schwann cells in peripheral nerves were also labeled. Transforming growth factor-beta 2- and 3-immunoreactive neurons were localized in brain regions that have been shown to contain neurons synthesizing and/or storing basic fibroblast growth factor suggesting possible opposing or synergistic effects of these peptide growth factors. However, the precise functions of local synthesis and storage of the transforming growth factor-beta isoforms in the nervous system are as yet unknown.  相似文献   

12.
13.
一氧化氮合酶阳性神经元在小鼠脑内的分布   总被引:14,自引:1,他引:14  
目的 :研究一氧化氮合酶 (NOS)在小鼠脑内的分布。方法 :用NADPH 黄递酶组织化学技术 ,观察了NOS阳性神经元在小鼠脑内的分布和形态。结果 :在大脑皮质、纹状体、基底前脑、杏仁核、下丘脑和脑干等处有较多一氧化氮合酶阳性神经元的分布。结论 :表明NO与中枢神经系统的诸多功能有关  相似文献   

14.
NGF在成年猴脑的分布   总被引:1,自引:1,他引:1  
为了解NGF在成年猴脑的分布,采用免疫组化SP法对成年猴脑多个冠状位切片进行免疫组化反应。结果证明,NGF阳性反应神经元主要分布于大脑皮质Ⅲ、V层,小脑Purkinje细胞,海马,齿状回,纹状体,脑干网状结构等处。此外,在黑质、舌下神经核、迷走神经背核、前庭神经核、三叉神经核、疑核、下橄榄核也出现NGF阳性反应。在大脑和脑干还观察到NGF阳性胶质细胞。本实验结果表明,在成年猴脑的多个脑区有NGF表达,提示NGF可能涉及猴脑某些神经元及胶质细胞的生理过程。  相似文献   

15.
Rett syndrome is an X-linked neurodevelopmental disorder caused by mutations in methyl-CpG binding protein 2. Females with identical mutations in the methyl-CpG binding protein 2 gene can display varying severity of symptoms, suggesting that other factors such as X-chromosome inactivation affect phenotypic expression in Rett syndrome. Although X-chromosome inactivation is random and balanced in the blood and brain of the majority of girls with classic Rett syndrome, skewing in the ratio of expression of the mutant methyl-CpG binding protein 2-X to the wildtype-X affects the severity of symptoms. In this study, the pattern of immunostaining for methyl-CpG binding protein 2 was compared with that of neuronal nuclei specific protein, a pan-neuronal marker, to assess X-chromosome inactivation in a Rett syndrome mouse model. The number of cortical neurons and cortical volume were assessed by unbiased stereological measurements in younger adult (7-9 week old) wildtype (wildtype/methyl-CpG binding protein 2+/+), female heterozygous (heterozygous/methyl-CpG binding protein 2+/-), and null (methyl-CpG binding protein 2-/y) male mice and in older adult (24-95 week old) wildtype and heterozygous mice. The results showed that the number of neuronal nuclei specific protein-positive cells and cortical volume did not differ by genotype or age. However, younger adult heterozygous mice had significantly fewer methyl-CpG binding protein 2 cells and the pattern of methyl-CpG binding protein 2 staining was less distinct than in younger adult wildtype mice. However, in older adult heterozygous mice, the number and pattern of methyl-CpG binding protein 2-expressing neurons were similar to the wildtype. The ratio of methyl-CpG binding protein 2 to neuronal nuclei specific protein-stained neurons, a potential measure of X-chromosome inactivation, was close to 50% in the younger adult heterozygous mice, but nearly 70% in the older adult heterozygous mice. These results suggest that X-chromosome inactivation status changes with age. Such a change may underlie the more stable neurological function in older Rett syndrome patients.  相似文献   

16.
Mitomycin C (MMC) is a DNA crosslinking agent that is used in cancer chemotherapy. Unlike the DNA crosslinks formed by cisplatin or psoralen, which significantly distort the DNA helix, the MMC crosslink does not significantly disturb the B-DNA helical structure. Nonetheless, MMC interstrand crosslinks and total MMC adducts are rapidly removed in vivo. We investigated whether mammalian nuclear proteins can recognize and bind to a model 23 bp DNA duplex containing a single MMC lesion. Electrophoretic mobility shift assays identified two complexes in nuclear extracts from rodent cell lines and three complexes in human cell lines, containing proteins that appeared to specifically recognize the MMC interstrand crosslink. Nuclear extracts from normal and excision repair-defective mutant Chinese hamster ovary (CHO) cell lines, from human Xeroderma Pigmentosum (XP) complementation group A and E cell lines, and a Fanconi's Anemia cell line were also examined. The UV-20 CHO line, defective in ERCC-1, was missing one of the two rodent complexes. Two of the three human complexes were also absent in the XPA human cell line and the intensity of the third complex was significantly diminished. Based on these results, a model for MMC crosslink recognition is proposed in which ERCC-1 and XPA each participate in formation of one or more multimeric complexes on the crosslinked DNA and XPA also aids in the formation, but is not a component of a higher molecularweight multimeric complex that may contain ERCC-1. Environ. Mol. Mutagen. 31:70–81, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Neurogenesis is known to occur in response to injury in the brain, for example, as a result of neurodegenerative diseases. However, there have been few investigations into how the brain responds to damage to peripheral sensory nerves, in other areas such as the brainstem. Here, we report that bilateral surgical lesions of the cochlea result in increased incorporation of the DNA replication marker, bromodeoxyuridine (BrdU), in cells of the brainstem cochlear nucleus (CN) of the adult rat, suggesting either cell proliferation or DNA repair. Some of the BrdU-labelled cells colabelled for the mature neuron marker, NeuN and the GABAergic enzyme GAD-65, suggesting the possibility that neurogenesis might have occurred and resulted in the generation of new neurons with a GABAergic phenotype. However, some of the mature neurons also re-expressed immature neuronal intermediate filament and microtuble-associated proteins, without apoptotic neuronal death, which suggests that the colabelling of BrdU with NeuN and GAD-65 may not be a true reflection of neurogenesis, but injury-stimulated neuronal dedifferentiation. These results suggest the possibility that DNA repair, neuronal de-differentiation or possible neurogenesis occurs in the cochlear nucleus, in response to damage to the peripheral auditory system.  相似文献   

18.
19.
20.
Studies of ultraviolet (UV) light mutagenesis have demonstrated mutations at common sites in the target genes of shuttle vector plasmids replicated in cultured cells or by cellular extracts. The reasons for the specific pattern of mutagenesis are largely unknown. We have examined the specificity of UV-induced mutagenesis by replicating plasmid pLS189, irradiated with 40 J/m(2) UVC or unirradiated, in either xeroderma pigmentosum group A (XP-A) or HeLa cellular extracts. The XP-A extract displayed slightly lower replication ability, but produced a higher mutant frequency, compared to that of HeLa extract. Use of irradiated plasmid inhibited replication by an average of 63% and increased the mutant frequency by an average of 16.7-fold. Analysis of mutation spectra revealed nonrandom patterns of mutagenesis that differed significantly between HeLa and XP-A extracts. In comparison to HeLa extract, replication in XP-A extract resulted in lower frequencies of GC --> AT transitions and tandem double-base substitutions, and a higher frequency of deletions. Replication in HeLa extract produced hotspots at positions 100, 108, and 156 that were not produced by XP-A extract. Furthermore, XP-A extract produced hotspots at positions 124, 133, and 164, sites not characteristic of previous UV-induced mutagenesis studies using XPA-expressing cells. Addition of purified XPA protein to reactions containing XP-A extract altered each of these parameters, including loss of the hotspots at positions 124 and 133, to yield a more HeLa-like spectrum. These results indicate a previously uncharacterized role of the XPA protein in influencing the specificity of UV-induced mutagenesis during DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号