首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
QSAR analyses have been performed on the substituted indanone and benzylpiperidine ring substructures of a set of acetylcholinesterase, AChE, inhibitors of which 1-benzyl-4-[(5,6-dimethoxy-1-oxoindan-2-yl)methyl]piperidine hydrochloride is a potent in vitro and ex vivo inhibitor. The method of molecular decomposition-recomposition was used to define the sets of molecular substructures and corresponding in vitro inhibition databases. A QSAR involving the magnitude of the dipole moment, the highest occupied molecular orbital (HOMO) energy, and a specific pi-orbital wave function coefficient of the substituted indanone ring substructure was constructed and found to be significant. The absence of any molecular-shape or bulk term in the QSAR, coupled with some of the relatively large substituents used to construct the QSAR, suggests considerable space is available around the indanone ring during the inhibition process. A set of QSARs were constructed and evaluated for substituents on the aromatic ring of the benzylpiperidine substructure. The most significant QSAR involves a representation of molecular shape, the largest principal moment of inertia, and the HOMO of the substituted aromatic ring. It appears that upon binding the receptor "wall" is closely fit around the benzyl ring, especially near the para position. Overall, the QSAR analysis suggests inhibition potency can be better enhanced by substitution on the indanone ring, as compared to the aromatic sites of the benzylpiperidine ring. Moreover, inhibition potency can be rapidly diminished, presumably through steric interactions with the receptor surface of AChE, by substitution of moderate to large groups on the benzyl ring, particularly at the para position.  相似文献   

2.
Previous studies have shown differences in the biological activity and the structure of two naturally occurring tachykinin peptides, substance P (SP, RPKPQQFFGLM-NH2) and ranatachykinin C (RTKC, HNPASFIGLM-NH2). To further understand the basis for these differences, four analogs that selectively incorporate the amino acid differences between SP and RTKC have been synthesized for study. The four peptide analogs studied have the following amino acid sequences: SP2-11, also known as des-Arg SP (PKPQQFFGLM-NH2); Q5A-SP (RPKPAQFFGLM-NH2); Q6S-SP (RPKPQSFFGLM-NH2); and Q5AQ6S-SP (RPKPASFFGLM-NH2). Nuclear magnetic resonance spectroscopy and molecular modeling calculations were performed on SP, RTKC, SP2-11, Q5A-SP, Q6S-SP, and Q5AQ6S-SP to compare their conformational differences and similarities in the presence of the membrane mimetic system sodium dodecyl sulfate. The molecular modeling data of the analogs Q5A-SP and Q6S-SP show residues 1-3 have a random conformation and residues 4-8 have a helical structure, while the C-terminus contains a poly C7 conformation that is similar to SP but different from RTKC. The molecular modeling data of the analogs SP2-11 and Q5AQ6S-SP show a continuous helix conformation for residues 4-11 at the C-terminus, which is different from SP but similar to RTKC. These structural differences are related to the functional differences of binding of the peptides at the SP receptor (NK1).  相似文献   

3.
A new highly selective inhibitor of acetylcholinesterase (AChE) was discovered by high-throughput screening. Compound 1 was synthesized from a natural product, the N-3-isobutyrylcycloxobuxidine-F 2. A new extraction protocol of this compound is described. The hemisynthesis and optimization of 1 are reported. The analogs of 1 were tested in vitro for the inhibition of both cholinesterases (AChE and BuChE). These compounds selectively inhibited AChE. Extensive molecular docking studies were performed with 2 and AChE employing Discover Biosym software to rationalize the binding interaction. The results suggested that ligand 2 binds simultaneously to both catalytic and peripheral sites of AChE.  相似文献   

4.
5.
6.
1,3,5-Tri-N-alkylcarbamylphloroglucinols (1-4) are synthesized as a new series of bulky inhibitors of acetylcholinesterase that may block the catalytic triad, the anionic substrate binding site, and the entrance of the enzyme simultaneously. Among three series of phloroglucinol-derived carbamates, tridentate inhibitors 1,3,5-tri-N-alkylcarbamylphloroglucinols (1-4), bidentate inhibitors 3,5-di-N-n-alkylcarbamyloxyphenols (5-8), and monodentate inhibitors 5-N-n-alkylcarbamyloxyresorcinols (9-12), tridentate inhibitors 1-4 are the most potent inhibitors of mouse acetylcholinesterase. When different n-alkylcarbamyl substituents in tridentate inhibitors 1-4 are compared, n-octylcarbamate 1 is the most potent inhibitor of the enzyme. All inhibitors 1-12 are characterized as the pseudo substrate inhibitors of acetylcholinesterase. Thus, tridentate inhibitors 1-4 are supposed to be hydrolyzed to bidentate inhibitors 5-8 after the enzyme catalysis. Subsequently, bidentate inhibitors 5-8 and monodentate inhibitors 9-12 are supposed to yield monodentate inhibitors 9-12 and phloroglucinol, respectively, after the enzyme catalysis. This means that tridentate inhibitors 1-4 may act as long period inhibitors of the enzyme. Therefore, inhibitors 1-4 may be considered as a new methodology to develop the long-acting drug for Alzheimer's disease. Automated dockings of inhibitor 1 into the X-ray crystal structure of acetylcholinesterase suggest that the most suitable configuration of inhibitor 1 to the enzyme binding is the (1,3,5)- (cis,trans,trans)-tricarbamate rotamer. The cis-carbamyl moiety of this rotamer does not bind into the acetyl group binding site of the enzyme but stretches out itself to the entrance. The other two trans-carbmayl moieties of this rotamer bulkily block the tryptophan 86 residue of the enzyme.  相似文献   

7.
Enhancement of the activity of cholinergic neurons has been regarded as one of the most promising methods for treating Alzheimer's disease (AD). Donepezil is a representative acetylcholinesterase inhibitor (AChEI) and is a great success among the AChEI drugs. AChEIs are being studied for other mechanisms of action, neuroprotective action, and nicotinic receptor enhancement. AD is a type of neurodegenerative disease and AChEIs have been found to be an effective anti-AD medication. AChEI can alleviate the symptoms and delay the progression of AD, but it cannot cure the disease. However, AChEIs are now the subject of a wide range of clinical studies for other diseases, for example, other types of dementia (such as Lewy body disease, cerebral vascular dementia, and Parkinson's disease dementia), and migraine. These drugs are also being studied as a combination therapy, for example, with an antioxidant, SERM, and NMDA antagonist.  相似文献   

8.
9.
During the last years, solving the X-ray crystallographic structure of both the unliganded acetylcholinesterase (AChE) and AChE complexes with various inhibitors has provided valuable knowledge of the interactions that mediate inhibitor binding. This structural information allows us to rationalize differences in binding affinities for related analogues, and more importantly opens new strategies to design compounds with improved pharmacological properties. This is illustrated in the case of the recently reported huprines, which are a new class of very potent and selective acetylcholinesterase inhibitors.  相似文献   

10.
A set of 17 coumarin and 2 chromone derivatives with known inhibitory activity toward monoamine oxidase (MAO) A and B were tested as acetylcholinesterase (AChE) inhibitors. All compounds inhibited AChE with values in the micromolar range (3-100 microM). A kinetic study showed that most compounds acted as noncompetitive AChE inhibitors. This finding may be of interest in the context of Alzheimer's disease because recent observations suggest that MAO and AChE inhibition might decrease beta-amyloid deposition.  相似文献   

11.
Eleven spiran, and two non-spiran, quaternary ammonium compounds have been examined and some of these compounds found to potentiate the hydrolysis of acetylcholine by acetylcholinesterase at high substrate concentrations. The experiments were made in three reaction media, each differing in its ionic composition. The results obtained in these media differ both quantitatively and qualitatively. The mechanism of the potentiation is discussed in terms of the effect of quaternary ammonium compounds on the deacetylation step of acetylcholine hydrolysis.  相似文献   

12.
A series of new 4-(alkylthio)-substituted androstenedione analogues was designed as potential suicide inhibitors of aromatase on the basis of mechanistic considerations on the mode of action of the enzyme. Their synthesis and biological evaluation are described. Among the most interesting are the 4-[(difluoromethyl)thio]-, 4-[(fluoromethyl)thio]-, and 4-[(chloromethyl)thio]androstenediones 12, 13, and 14 with respective IC50's of 2.7, 0.8, and 0.94 microM. Compound 12 was a reversible inhibitor of aromatase while compounds 13 and 14 displayed time-dependent kinetics of inhibition with respective KI's and half-times of inactivation of 30 nM and 3.75 min for 13 and 30 nM and 3 min for 14. The inhibition of aromatase by 14 was NADPH-dependent, and was protected by the presence of substrate (0.5-1 microM), while beta-mercaptoethanol (0.5 mM) failed to protect the enzyme from inactivation. Dialysis failed to reactivate aromatase previously inactivated by 14. The mechanistic implications of these findings are discussed.  相似文献   

13.
14.
A kinetic analysis of the interaction of 9,10-dihydroergotalkaloids with electrophorus electricus acetylcholinesterase [E.3.1.1.7] and acetylthiocholine as substrate shows a mixed type of inhibition of this enzyme. The inhibitor constants Ki were found to be for 9,10-dihydroergokryptine 198 mumol, 9,10-dihydroergotamine 144 mumol, 9,10-dihydroergocristine 117 mumol. A more potent inhibitor is ergotamine with the inhibitor constant Ki = 15 mumol and a mixed type of inhibition.  相似文献   

15.
A novel series of bispyridinium-type acetylcholinesterase (AChE) inhibitors derived from obidoxime, being active in the lower micromolar range, has been reported recently. According to the hypothesis that shorter pyridinium compounds should exhibit higher activity, a new series of compounds was synthesized that has 2,6-dichlorobenzyl, 2-chlorobenzyl and phthalimidomethyl moieties, respectively, at one end of the molecule and that are systematically shortened from the contralateral end. The concentration inhibiting the AChE and butyrylcholinesterase (BChE) by 50% (IC50) was evaluated by means of Ellman's test. Compounds characterized by a phenylpropyl residue at the contralateral end (3) were found to have IC50 values comparable with tacrine. In addition, the affinity of 3c toward the BChE was lower, indicating a lower degree of side effects.  相似文献   

16.
Dimeric acetylcholinesterase (AChE) inhibitors containing a single 9-amino-1,2,3,4-tetrahydroacridine (tacrine) unit were constructed in an effort to further delineate structural requirements for optimal binding to the AChE peripheral site. Basic amines of differing hydrophobicity were selected as peripheral site ligands, and in each case, improvements in inhibitory potency and selectivity were seen relative to tacrine itself. AChE IC(50) values of the optimum dimers decrease significantly as the peripheral site ligand was permuted in the series ammonia > dimethylamine > 4-aminopyridine > 4-aminoquinoline > tacrine. Calculated desolvation free energies of the optimum dimers match the trend in IC(50) values, suggesting the importance of ligand hydrophobicity for effective cation-pi interaction with the peripheral site.  相似文献   

17.
18.
Because of structural and mechanistic differences between eukaryotic and prokaryotic fatty acid synthesis enzymes, the bacterial pathway, FAS-II, is an attractive target for the design of antimicrobial agents. We have previously reported the identification of a novel series of benzimidazole compounds with particularly good antibacterial effect against Francisella tularensis, a Category A biowarfare pathogen. Herein we report the crystal structure of the F. tularensis FabI enzyme in complex with our most active benzimidazole compound bound with NADH. The structure reveals that the benzimidazole compounds bind to the substrate site in a unique conformation that is distinct from the binding motif of other known FabI inhibitors. Detailed inhibition kinetics have confirmed that the compounds possess a novel inhibitory mechanism that is unique among known FabI inhibitors. These studies could have a strong impact on future antimicrobial design efforts and may reveal new avenues for the design of FAS-II active antibacterial compounds.  相似文献   

19.
20.
A series of N3-substituted coformycin aglycon analogues are described that inhibit adenosine 5'-monophosphate deaminase (AMPDA) or adenosine deaminase (ADA). The key steps involved in the preparation of these compounds are (1) treating the sodium salt of 6, 7-dihydroimidazo[4,5-d][1,3]diazepin-8(3H)-one (4) with an alkyl bromide or an alkyl mesylate to generate the N3-alkylated compound 5 and (2) reducing 5 with NaBH(4). Selective inhibition of AMPDA was realized when the N3-substituent contained a carboxylic acid moiety. For example, compound 7b which has a hexanoic acid side chain inhibited AMPDA with a K(i) = 4.2 microM and ADA with a K(i) = 280 microM. Substitution of large lipophilic groups alpha to the carboxylate provided a moderate potency increase with maintained selectivity as exemplified by the alpha-benzyl analogue 7j (AMPDA K(i) = 0.41 microM and ADA K(i) > 1000 microM). These compounds, as well as others described in this series of papers, are the first compounds suitable for testing whether selective inhibition of AMPDA can protect tissue from ischemic damage by increasing local adenosine concentrations at the site of injury and/or by minimizing adenylate loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号