首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blockade of Ca2+ channels by omega-conotoxin GVIA, a 27 amino acid peptide from the venom of the marine snail Conus geographus, was investigated with patch-clamp recordings of whole-cell and unitary currents in a variety of cell types. In dorsal root ganglion neurons, the toxin produces persistent block of L- and N-type Ca2+ channels but only transiently inhibits T-type channels. Its actions appear to be neuron-specific, since it blocks high-threshold Ca2+ channels in sensory, sympathetic, and hippocampal neurons of vertebrates but not in cardiac, skeletal, or smooth muscle cells. Block occurs through direct interaction of the toxin with an external site closely associated with the Ca2+ channel, without apparent involvement of a second messenger or dependence on channel gating. The tissue and channel-type specificity and the directness and slow reversibility of the block are features that favor use of omega-conotoxin as a tool for purifying particular neuronal Ca2+ channels and defining their physiological function.  相似文献   

2.
Sympathetic neurons dissociated from the superior cervical ganglion of 2-day-old rats were studied by whole-cell patch clamp and by fura-2 measurements of the cytosolic free Ca2+ concentration, [Ca2+]i. Step depolarizations in the presence of tetrodotoxin and hexamethonium triggered two Ca2+ currents that differed in the voltage dependence of activation and kinetics of inactivation. These currents resemble the L and N currents previously described in chicken sensory neurons [Nowycky, M. C., Fox, A. P. & Tsien, R. W. (1985) Nature (London) 316, 440-442]. Treatment with acetylcholine resulted in the rapid (within seconds), selective, and reversible inhibition of the rapidly inactivated, N-type current, whereas the long-lasting L-type current remained unaffected. The high sensitivity to blocker drugs (atropine, pirenzepine) indicated that this effect of acetylcholine was due to a muscarinic M1 receptor. Intracellular perfusion with nonhydrolyzable guanine nucleotide analogs or pretreatment of the neurons with pertussis toxin had profound effects on the Ca2+ current modulation. Guanosine 5'-[gamma-thio]triphosphate caused the disappearance of the N-type current (an effect akin to that of acetylcholine, but irreversible), whereas guanosine 5'-[beta-thio]diphosphate and pertussis toxin pretreatment prevented the acetylcholine-induced inhibition. In contrast, cAMP, applied intracellularly together with 3-isobutyl-1-methylxanthine, as well as activators and inhibitors of protein kinase C, were without effect. Acetylcholine caused shortening of action potentials in neurons treated with tetraethylammonium to partially block K+ channels. Moreover, when applied to neurons loaded with the fluorescent indicator fura-2, acetylcholine failed to appreciably modify [Ca2+]i at rest but caused a partial blunting of the initial [Ca2+]i peak induced by depolarization with high K+. This effect was blocked by muscarinic antagonists and pertussis toxin and was unaffected by protein kinase activators. Thus, muscarinic modulation of the N-type Ca2+ channels appears to be mediated by a pertussis toxin-sensitive guanine nucleotide-binding protein and independent of both cAMP-dependent protein kinase and protein kinase C.  相似文献   

3.
Somatostatin reduces voltage-dependent Ca2+ current (ICa) and intracellular free Ca2+ concentration in the AtT-20/D16-16 pituitary cell line. We tested whether guanine nucleotide-binding proteins (G or N proteins) are involved in the signal transduction mechanism between the somatostatin receptor and voltage-dependent Ca2+ channels. Treatment of the cells with pertussis toxin, which selectively ADP ribosylates the GTP binding proteins Gi and Go and suppresses the ability of Gi to couple inhibitory receptors to adenylate cyclase, abolished the action of somatostatin on both ICa and intracellular free Ca2+. Intracellular application of the nonhydrolyzable guanine nucleotide analog guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S]), which irreversibly activates G proteins, changed the somatostatin effect on ICa from a reversible to an irreversible inhibition. Intracellular GTP[gamma S] alone caused a very slowly developing inhibition of ICa. When ICa was inhibited by GTP[gamma S] (alone or with somatostatin), it failed to respond to subsequent applications of somatostatin. The effect of GTP[gamma S] on the inhibition of ICa by somatostatin was not altered by the intracellular application of cAMP and 3-isobutyl-1-methylxanthine. The results suggest that a GTP-binding protein is directly involved in the cAMP-independent receptor-mediated inhibition of voltage-dependent Ca2+ channels.  相似文献   

4.
Thyrotropin-releasing hormone (TRH) stimulates pituitary secretion by steps involving a cytosolic Ca2+ rise. We examined various pathways of Ca2+ elevation in pituitary GH3 cells. By using the patch clamp technique in the whole-cell configuration and Ba2+ as divalent charge carrier through Ca2+ channels, TRH (1 microM) reversibly reduced the current by about 55%. This hormonal effect was prevented by infusing guanine 5'-[beta-thio]diphosphate (GDP[beta S]) intracellularly but not by pretreating the cell with pertussis toxin (PT). Since PT-insensitive guanine nucleotide-binding regulatory (G) proteins are known to mediate a hormone-stimulated inositol trisphosphate-mediated Ca2+ release from intracellular stores, we assume that the inhibitory effect of TRH on Ba2+ currents through Ca2+ channels is caused by the increased intracellular Ca2+. To prevent a Ca(2+)-release-dependent inhibition of Ca2+ channels, we preincubated GH3 cells in a medium free of divalent charge carriers and measured the Na+ current through Ca2+ channels. When fura-2 was used as indicator for the cytosolic Ca2+, TRH induced a release from intracellular stores only once and had no effect on the intracellular Ca2+ concentration during further applications. In line with this observation, TRH initially reduced the Na+ current through Ca2+ channels but stimulated it during subsequent applications. The stimulation was sensitive to GDP[beta S] and was abolished by pretreatment with PT, suggesting that the stimulatory action of TRH is mediated by a G protein different from the one that functionally couples the receptor to phosphatidylinositol 4,5-bisphosphate hydrolysis. In conclusion, the present data suggest that TRH increases the intracellular Ca2+ concentration by two interacting pathways, that release from intracellular stores causes a secondary blockage of Ca2+ channels, and that, especially with empty intracellular Ca2+ stores, Ca2+ channels are stimulated by a PT-sensitive G protein.  相似文献   

5.
Inhibition of insulin release by norepinephrine has been attributed to activation of ATP-sensitive K+ channels, inactivation of voltage-dependent Ca2+ channels, and inhibition of adenylyl cyclase. However, direct inhibitory action of norepinephrine at a distal site of stimulus-secretion coupling has also been suggested. To obtain more direct evidence for norepinephrine inhibition of insulin release at a distal site, we performed experiments in intact, non-permeabilized beta cells. In rat pancreatic islets, a combination of glucose, phorbol ester and forskolin under stringent Ca2+-free conditions was used as a trigger of insulin exocytosis at a distal site. Norepinephrine inhibited this Ca2+-independent insulin release in a concentration-dependent manner, with an IC50 of 50 nM. The inhibition was complete, reversible, and pertussis toxin-sensitive, and not associated with any reduction of cAMP content in the islet cells. In conclusion, norepinephrine strongly, yet reversibly, inhibits insulin release in intact beta cells at a late step of exocytosis, through pertussis toxin-sensitive, G protein-mediated mechanism(s).  相似文献   

6.
The addition of bradykinin to NG108-15 cells results in a transient hyperpolarization followed by prolonged cell depolarization. Injection of inositol 1,4,5-trisphosphate or Ca2+ into the cytoplasm of NG108-15 cells also elicits cell hyperpolarization followed by depolarization. Tetraethylammonium ions inhibit the hyperpolarizing response of cells to bradykinin or inositol 1,4,5-trisphosphate. Thus, the hyperpolarizing phase of the cell response may be due to inositol 1,4,5-trisphosphate-dependent release of stored Ca2+ into the cytoplasm, which activates Ca2+-dependent K+ channels. The depolarizing phase of the cell response to bradykinin is due largely to inhibition of M channels, thereby decreasing the rate of K+ efflux from cells and, to a lesser extent, to activation of Ca2+-dependent ion channels and Ca2+ channels. In contrast, injection of inositol 1,4,5-trisphosphate or Ca2+ into the cytosol did not alter M channel activity. Incubation of NG108-15 cells with pertussis toxin inhibits bradykinin-dependent cell hyperpolarization and depolarization. Bradykinin stimulates low Km GTPase activity and inhibits adenylate cyclase in NG108-15 membrane preparations but not in membranes prepared from cells treated with pertussis toxin. Reconstitution of NG108-15 membranes from cells treated with pertussis toxin with nanomolar concentrations of a mixture of highly purified No and Ni [guanine nucleotide-binding proteins that have no known function (No) or inhibit adenylate cyclase (Ni)] restores bradykinin-dependent activation of GTPase and inhibition of adenylate cyclase. These results show that [bradykinin . receptor] complexes interact with No or Ni and suggest that No and/or Ni mediate the transduction of signals from bradykinin receptors to phospholipase C and adenylate cyclase.  相似文献   

7.
PTH release from bovine parathyroid cells is inhibited by increasing concentrations of extracellular calcium (Ca2+). We have proposed that this inhibition is mediated by Ca2+ channels via a G-protein. To further test this hypothesis, we evaluated the effect of lanthanum (La3+), a potent Ca2+ channel antagonist that does not cross the cell membrane. PTH release was determined in dispersed bovine parathyroid cells by radioimmunoassay: extracellular Ca2+ concentration was 0.2 mM. PTH release was inhibited by maximal concentrations of La3+ to a greater extent than by Ca2+: 93% inhibition by La3+ vs. 40% by Ca2+. La3+ was more potent (set-point = 0.12 mM) than Ca2+ (set-point = 1.2 mM). Incubation of parathyroid cells with pertussis toxin, which inactivates a G-protein(s) and blocks inhibition by Ca2+, did not block the inhibition of PTH release by La3+ at the concentrations tested. The Ca2+ ionophore A23187, which potentiates the effect of Ca2+, did not enhance the inhibition of PTH release by La3+. Increasing concentrations of calcium enhanced the inhibition of PTH release by the Ca2+ channel agonist, (+)202-791. The Ca2+ channel antagonist, (-)202-791, shifted the Ca2+ inhibition curve to the right. La3+ did not alter the inhibition of PTH release by the Ca2+ channel agonist but blocked the stimulatory effect of the Ca2+ channel antagonist, (-)202-791. In summary: 1) La3+, which blocks Ca2+ channels and does not cross cell membranes, effects a greater inhibition of PTH release than Ca2+; 2) La3+, like Ca2+, overrides the effect of Ca2+ channel antagonist (-)202-791; and 3) La3+, unlike Ca2+, inhibits PTH release by a mechanism that is independent of a pertussis toxin-sensitive G-protein. There may be two cell surface sites that recognize La3+ and Ca2+ independently.  相似文献   

8.
J Vanecek  D C Klein 《Endocrinology》1992,131(2):939-946
Melatonin inhibits GnRH-stimulated release of LH from neonatal rat pituitary cells, probably by inhibiting GnRH-induced elevation of intracellular Ca2+. This effect of melatonin seems to involve inhibition of Ca2+ influx through voltage-sensitive channels. Accordingly, it is possible that melatonin could act by hyperpolarizing pituitary cells, which would close these channels. This issue was addressed here by determining if melatonin influences membrane potential. Membrane potential and intracellular Ca2+ were studied in neonatal rat pituitary cells in suspension, using bis-oxonol and Fluo-3 as fluorescent indicators, respectively. It was found that treatment with melatonin alone causes membrane hyperpolarization and that it has a repolarizing effect after GnRH-induced membrane depolarization. This effect on membrane potential appears to be mediated by high affinity melatonin receptors and a pertussis toxin-sensitive Na(+)-dependent mechanism; it is not dependent upon Ca2+, Cl-, or bicarbonate. This may be the molecular basis of action of melatonin in other tissues with high affinity melatonin receptors.  相似文献   

9.
In rat pituitary GH3 cells, thyrotropin-releasing hormone (TRH) and other secretion-stimulating hormones trigger an increase in the cytosolic Ca2+ concentration by two mechanisms. Ca2+ is released from intracellular stores in response to inositol 1,4,5-trisphosphate and can enter the cell through voltage-dependent L-type Ca2+ channels. Stimulation of these channels is sensitive to pertussis toxin, indicating that a pertussis toxin-sensitive heterotrimeric guanine nucleotide-binding regulatory protein (G protein) is involved in functional coupling of the receptor to the Ca2+ channel. We identified the G protein involved in the stimulatory effect of TRH on the Ca2+ channel by type-selective suppression of G-protein synthesis. Antisense oligonucleotides were microinjected into GH3 cell nuclei, and 48 h after injection the TRH effect was tested. Whereas antisense oligonucleotides hybridizing to the mRNA of G(o) or Gi1 alpha-subunit sequences did not affect stimulation by TRH, oligonucleotides suppressing the expression of the Gi2 alpha subunit abolished this effect, and oligonucleotides directed against the mRNA of the Gi3 alpha subunit had less effect. The requirement of a concurrent inositol phospholipid degradation and subsequent protein kinase C (PKC) activation for the TRH effect on Ca(2+)-channel activity was demonstrated by inhibitory effects of antisense oligonucleotides directed against Gq/G11/Gz alpha-subunit sequences and treatment of GH3 cells with PKC inhibitors, respectively. Our results suggest that TRH elevates the cytosolic Ca2+ concentration in GH3 cells transiently via Ca2+ release from internal stores, followed by a phase of sustained Ca2+ influx through voltage-dependent Ca2+ channels stimulated by the concerted action of Gi2 (and Gi3) plus PKC.  相似文献   

10.
Dopamine D2 receptors signal through the pertussis toxin (PTX)-sensitive G(i/o) and PTX-insensitive G(z) proteins, as well as through a G protein-independent, beta-arrestin/glycogen synthase kinase-3-dependent pathway. Activation of these receptors in pituitary lactotrophs leads to inhibition of prolactin (PRL) release. It has been suggested that this inhibition occurs through the G(i/o)-alpha protein-mediated inhibition of cAMP production and/or G(i/o)-betagamma dimer-mediated activation of inward rectifier K(+) channels and inhibition of voltage-gated Ca(2+) channels. Here we show that the dopamine agonist-induced inhibition of spontaneous Ca(2+) influx and release of prestored PRL was preserved when cAMP levels were elevated by forskolin treatment. We further observed that dopamine agonists inhibited both spontaneous and depolarization-induced Ca(2+) influx in untreated but not in PTX-treated cells. This inhibition was also observed in cells with blocked inward rectifier K(+) channels, suggesting that the dopamine effect on voltage-gated Ca(2+) channel gating is sufficient to inhibit spontaneous Ca(2+) influx. However, agonist-induced inhibition of PRL release was only partially relieved in PTX-treated cells, indicating that dopamine receptors also inhibit exocytosis downstream of voltage-gated Ca(2+) influx. The PTX-insensitive step in agonist-induced inhibition of PRL release was not affected by the addition of wortmannin, an inhibitor of phosphatidylinositol 3-kinase, and lithium, an inhibitor of glycogen synthase kinase-3, but was attenuated in the presence of phorbol 12-myristate 13-acetate, which inhibits G(z) signaling pathway in a protein kinase C-dependent manner. Thus, dopamine inhibits basal PRL release by blocking voltage-gated Ca(2+) influx through the PTX-sensitive signaling pathway and by desensitizing Ca(2+) secretion coupling through the PTX-insensitive and protein kinase C-sensitive signaling pathway.  相似文献   

11.
We examined the effect of alpha(1)-adrenoceptor subtype-specific stimulation on L-type Ca2+ current (I(Ca)) and elucidated the subtype-specific intracellular mechanisms for the regulation of L-type Ca2+ channels in isolated rat ventricular myocytes. We confirmed the protein expression of alpha(1A)- and alpha(1B)-adrenoceptor subtypes at the transverse tubules (T-tubules) and found that simultaneous stimulation of these 2 receptor subtypes by nonsubtype selective agonist, phenylephrine, showed 2 opposite effects on I(Ca) (transient decrease followed by sustained increase). However, selective alpha(1A)-adrenoceptor stimulation (> or =0.1 micromol/L A61603) only potentiated I(Ca), and selective alpha(1B)-adrenoceptor stimulation (10 mumol/L phenylephrine with 2 micromol/L WB4101) only decreased I(Ca). The positive effect by alpha(1A)-adrenoceptor stimulation was blocked by the inhibition of phospholipase C (PLC), protein kinase C (PKC), or Ca2+/calmodulin-dependent protein kinase II (CaMKII). The negative effect by alpha(1B)-adrenoceptor stimulation disappeared after the treatment of pertussis toxin or by the prepulse depolarization, but was not attributable to the inhibition of cAMP-dependent pathway. The translocation of PKCdelta and epsilon to the T-tubules was observed only after alpha(1A)-adrenoceptor stimulation, but not after alpha(1B)-adrenoceptor stimulation. Immunoprecipitation analysis revealed that alpha(1A)-adrenoceptor was associated with G(q/11), but alpha(1B)-adrenoceptor interacted with one of the pertussis toxin-sensitive G proteins, G(o). These findings demonstrated that the interactions of alpha(1)-adrenoceptor subtypes with different G proteins elicit the formation of separate signaling cascades, which produce the opposite effects on I(Ca). The coupling of alpha(1A)-adrenoceptor with G(q/11)-PLC-PKC-CaMKII pathway potentiates I(Ca). In contrast, alpha(1B)-adrenoceptor interacts with G(o), of which the betagamma-complex might directly inhibit the channel activity at T-tubules.  相似文献   

12.
Substance P excites neurons by suppressing inward rectification channels. We have investigated whether the substance P receptor interacts with the inward rectification channels through a guanine nucleotide-binding protein (G protein) by using dissociated cultured neurons from the nucleus basalis of newborn rats. During intracellular application of guanosine 5'-[gamma-thio]triphosphate and 5'-guanylyl imidodiphosphate, hydrolysis-resistant GTP analogues that irreversibly stimulate G proteins, substance P application almost irreversibly suppressed the inward rectification channels. Pretreatment with pertussis toxin did not significantly influence substance P action. Intracellular application of cAMP and 3-isobutyl-1-methylxanthine or of 9-(tetrahydro-2-furyl)adenine (SQ 22,536), an inhibitor of adenylate cyclase, did not alter the substance P-induced response. We conclude that the inhibition of inward rectification channels by substance P is mediated through a G protein. However, the effect is not mediated through adenylate cyclase or the cAMP system. This G protein, which is insensitive to pertussis toxin, could be an unidentified G protein.  相似文献   

13.
Sensory neurons grown in dispersed cell culture in the absence of non-neuronal cell types contain immunoreactive substance P that is chemically similar to synthetic substance P. When depolarized in high-K+ media (30-120 mM), the neurons release this peptide by a Ca2+-dependent mechanism. An enkephalin analogue, [D-Ala2]enkephalin amide, at 10 micron inhibits the K+-evoked release of substance P. At the same or lower concentrations, [D-Ala2]enkephalin amide and enkephalin decrease the duration of the Ca2+ action potential evoked and recorded in dorsal root ganglion cell bodies without affecting the resting membrane potential or resting membrane conductance. This modulation of voltage-sensitive channels may account for the inhibition of substance P release.  相似文献   

14.
The alpha-amino-3-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) is an ionotropic receptor mediating excitatory synaptic transmission, but it can also interact with intracellular messengers. Here we report that, at the calyx of Held in the rat auditory brainstem, activation of AMPARs induced inward currents in the nerve terminal and inhibited presynaptic Ca2+ currents (I(pCa)), thereby attenuating glutamatergic synaptic transmission. The AMPAR-mediated I(pCa) inhibition was disinhibited by a strong depolarizing pulse and occluded by the nonhydrolyzable GTP analog GTPgammaS loaded into the terminal. We conclude that functional AMPARs are expressed at the calyx of Held nerve terminal and that their activation inhibits voltage-gated Ca2+ channels by an interaction with heterotrimeric GTP-binding proteins (G proteins). Thus, at a central glutamatergic synapse, presynaptic AMPARs have a metabotropic nature and regulate transmitter release by means of G proteins.  相似文献   

15.
The possible involvement of a GTP-binding protein in the regulation of Ca2+ channels by angiotensin II (Ang II) in vascular muscle cells was investigated by the whole-cell voltage-clamp method. Single cells were freshly isolated from guinea pig portal vein. The pipette solution contained high Cs+ to inhibit K+ currents and thereby isolate the Ca2+ channel current. Ba2+ (2 mM) was in the bath solution as a charge carrier for the Ca2+ channel. Application of Ang II (0.1-100 nM) produced an increase in peak amplitude of the Ba2+ current, with a shift of the current-voltage curve in the negative direction. These effects were inhibited by pretreatment with an antagonist of the Ang II receptor, [Sar1,Ile8]-Ang II. Presence of 0.1 mM GTP in the pipette solution stabilized the Ang II action, but 0.3-1.0 mM GDP-beta-S and 1.0 mM GTP-gamma-S inhibited it. GTP-gamma-S alone produced a slowly progressing increase in the basal (unstimulated) current amplitude. Preincubation of muscle tissues with pertussis toxin (1 micrograms/ml, for up to 6 hours at 36 degrees C) or intracellular application of preactivated pertussis toxin (1 micrograms/ml) plus NAD (1 mM) did not inhibit the Ang II action. Cholera toxin (10 micrograms/ml) also had no effect on the Ang II action. These results suggest that the Ang II stimulation of Ca2+ channels in smooth muscle of guinea pig portal vein may be mediated by a G protein that is insensitive to both pertussis toxin and cholera toxin.  相似文献   

16.
The modulation of a family of cloned neuronal calcium channels by stimulation of a coexpressed mu opioid receptor was studied by transient expression in Xenopus oocytes. Activation of the morphine receptor with the synthetic enkephalin [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin (DAMGO) resulted in a rapid inhibition of alpha1A (by approximately 20%) and alpha1B (by approximately 55%) currents while alpha1C and alpha1E currents were not significantly affected. The opioid-induced effects on alpha1A and alpha1B currents were blocked by pertussis toxin and the GTP analogue guanosine 5'-[beta-thio]diphosphate. Similar to modulation of native calcium currents, DAMGO induced a slowing of the activation kinetics and exhibited a voltage-dependent inhibition that was partially relieved by application of strong depolarizing pulses. alpha1A currents were still inhibited in the absence of coexpressed Ca channel alpha2 and beta subunits, suggesting that the response is mediated by the alpha1 subunit. Furthermore, the sensitivity of alpha1A currents to DAMGO-induced inhibition was increased approximately 3-fold in the absence of a beta subunit. Overall, the results show that the alpha1A (P/Q type) and the alpha1B (N type) calcium channels are selectively modulated by a GTP-binding protein (G protein). The results raise the possibility of competitive interactions between beta subunit and G protein binding to the alpha1 subunit, shifting gating in opposite directions. At presynaptic terminals, the G protein-dependent inhibition may result in decreased synaptic transmission and play a key role in the analgesic effect of opioids and morphine.  相似文献   

17.
A significant fraction of differentiated NG108-15 neuroblastoma/glioma cells have Ca2+ channel current different from that of undifferentiated cells. In the former cells, the Ca2+ channel sensitive to omega-conotoxin GVIA had slowed activation kinetics and was facilitated by depolarizing prepulses. These kinetic features are identical to those produced by inhibition of the channel by G proteins. Prolonged treatment with prostaglandin E1 and theophylline, agents that cause cellular differentiation, promoted incidence and extent of the tonic inhibition. Intracellular guanosine 5'-[beta-thio]diphosphate removed the tonic inhibition, suggesting sustained activation of a G protein, but pertussis toxin did not block it. A sulfhydryl alkylating agent, N-ethylmaleimide (0.1 mM), rapidly eliminated agonist-induced inhibition, whereas N-ethylmaleimide spared the tonic inhibition and the one induced by intracellular guanosine 5'-[gamma-thio]triphosphate. An agonist could further inhibit the Ca2+ channel that was already tonically inhibited. After washout of an inhibitory agonist, the tonic inhibition was temporarily removed. This "rebound facilitation" gradually faded within a few minutes. Pertussis toxin or N-ethylmaleimide prevented the rebound facilitation, whereas phorbol ester, forskolin, or arachidonic acid induced neither the rebound facilitation nor the tonic inhibition. Whatever its mechanism, the tonic inhibition of Ca2+ channels may serve as the basis for long-term and bidirectional regulation of activity of neuronal Ca2+ channels.  相似文献   

18.
Two types of calcium channels in guinea pig ventricular myocytes.   总被引:16,自引:4,他引:16       下载免费PDF全文
In cardiac muscle, Ca2+ plays a key role in regulation of numerous processes, including generation of the action potential and development of tension. The entry of Ca2+ into the cell is regulated primarily by voltage-gated channels in the membrane. Until recently, it was felt that only one type of Ca2+ channel existed in cardiac ventricular muscle. Experiments reported here suggest that in isolated guinea pig ventricular myocytes, there are two distinct types of Ca2+ channels with markedly different activation thresholds, inactivation kinetics, and sensitivities to inorganic and organic Ca2+ channel blockers. The channels were also distinguished based on their response to increased frequency of clamping such that the current through the low-threshold channel decreased while that through the high-threshold channel increased. In a few cells, the current through both channels was enhanced by isoproterenol, a beta-adrenergic agonist, but only the high-threshold channel was enhanced by the Ca2+-channel agonist Bay K 8644. Thus, isolated guinea pig ventricular myocytes appear to have two types of Ca2+ channels distinguished by various criteria.  相似文献   

19.
Free fatty acids (FFAs) regulate insulin secretion in a complex pattern and induce pancreatic beta-cell dysfunction in type 2 diabetes. Voltage-dependent Ca2+ channels (VDCC) in beta-cells play a major role in regulating insulin secretion. The aim of present study is to clarify the action of the FFA, linoleic acid, on VDCC in beta-cells. The VDCC current in primary cultured rat beta-cells were recorded under nystatin-perforated whole-cell recording configuration. The VDCC was identified as high-voltage-gated Ca2+ channels due to there being no difference in current amplitude under holding potential between -70 and -40 mV. Linoleic acid (10 microM) significantly inhibited VDCC currents in beta-cells, an effect which was fully reversible upon washout. Methyl-linoleic acid, which does not activate G protein coupled receptor (GPR)40, neither did alter VDCC current in rat beta-cells nor did influence linoleic acid-induced inhibition of VDCC currents. Linoleic acid-induced inhibition of VDCC current was not blocked by preincubation of beta-cells with either the specific protein kinase A (PKA) inhibitor, H89, or the PKC inhibitor, chelerythrine. However, pretreatment of beta-cells with thapsigargin, which depletes intracellular Ca2+ stores, completely abolished linoleic acid-induced decrease in VDCC current. Measurement of intracellular Ca2+ concentration ([Ca2+](i)) illustrated that linoleic acid induced an increase in [Ca2+](i) and that thapsigargin pretreatment inhibited this increase. Methyl-linoleic acid neither did induce increase in [Ca2+](i) nor did it block linoleic acid-induced increase in [Ca2+](i). These results suggest that linoleic acid stimulates Ca2+ release from intracellular Ca2+ stores and inhibits VDCC currents in rat pancreatic beta-cells via Ca2+-induced inactivation of VDCC.  相似文献   

20.
Daunt M  Dale O  Smith PA 《Endocrinology》2006,147(3):1527-1535
Somatostatin potently inhibits insulin secretion from pancreatic beta-cells. It does so via activation of ATP-sensitive K+-channels (KATP) and G protein-regulated inwardly rectifying K+-channels, which act to decrease voltage-gated Ca2+-influx, a process central to exocytosis. Because KATP channels, and indeed insulin secretion, is controlled by glucose oxidation, we investigated whether somatostatin inhibits insulin secretion by direct effects on glucose metabolism. Oxidative metabolism in beta-cells was monitored by measuring changes in the O2 consumption (DeltaO2) of isolated mouse islets and MIN6 cells, a murine-derived beta-cell line. In both models, glucose-stimulated DeltaO2, an effect closely associated with inhibition of KATP channel activity and induction of electrical activity (r > 0.98). At 100 nm, somatostatin abolished glucose-stimulated DeltaO2 in mouse islets (n = 5, P < 0.05) and inhibited it by 80 +/- 28% (n = 17, P < 0.01) in MIN6 cells. Removal of extracellular Ca2+, 5 mm Co2+, or 20 microm nifedipine, conditions that inhibit voltage-gated Ca2+ influx, did not mimic but either blocked or reduced the effect of the peptide on DeltaO2. The nutrient secretagogues, methylpyruvate (10 mm) and alpha-ketoisocaproate (20 mm), also stimulated DeltaO2, but this was unaffected by somatostatin. Somatostatin also reversed glucose-induced hyperpolarization of the mitochondrial membrane potential monitored using rhodamine-123. Application of somatostatin receptor selective agonists demonstrated that the peptide worked through activation of the type 5 somatostatin receptor. In conclusion, somatostatin inhibits glucose metabolism in murine beta-cells by an unidentified Ca2+-dependent mechanism. This represents a new signaling pathway by which somatostatin can inhibit cellular functions regulated by glucose metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号