首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Karyotypes of most bird species are characterized by around 2n = 80 chromosomes, comprising 7–10 pairs of large- and medium-sized macrochromosomes including sex chromosomes and numerous morphologically indistinguishable microchromosomes. The Falconinae of the Falconiformes has a different karyotype from the typical avian karyotype in low chromosome numbers, little size difference between macrochromosomes and a smaller number of microchromosomes. To characterize chromosome structures of Falconinae and to delineate the chromosome rearrangements that occurred in this subfamily, we conducted comparative chromosome painting with chicken chromosomes 1–9 and Z probes and microchromosome-specific probes, and chromosome mapping of the 18S–28S rRNA genes and telomeric (TTAGGG) n sequences for common kestrel (Falco tinnunculus) (2n = 52), peregrine falcon (Falco peregrinus) (2n = 50) and merlin (Falco columbarius) (2n = 40). F. tinnunculus had the highest number of chromosomes and was considered to retain the ancestral karyotype of Falconinae; one and six centric fusions might have occurred in macrochromosomes of F. peregrinus and F. columbarius, respectively. Tandem fusions of microchromosomes to macrochromosomes and between microchromosomes were also frequently observed, and chromosomal locations of the rRNA genes ranged from two to seven pairs of chromosomes. These karyotypic features of Falconinae were relatively different from those of Accipitridae, indicating that the drastic chromosome rearrangements occurred independently in the lineages of Accipitridae and Falconinae.  相似文献   

2.
The water monitor lizard (Varanus salvator macromaculatus (VSA), Platynota) has a chromosome number of 2n?=?40: its karyotype consists of 16 macrochromosomes and 24 microchromosomes. To delineate the process of karyotype evolution in V. salvator macromaculatus, we constructed a cytogenetic map with 86 functional genes and compared it with those of the butterfly lizard (Leiolepis reevesii rubritaeniata (LRE); 2n?=?36) and Japanese four-striped rat snake (Elaphe quadrivirgata (EQU); 2n?=?36), members of the Toxicofera clade. The syntenies and gene orders of macrochromosomes were highly conserved between these species except for several chromosomal rearrangements: eight pairs of VSA macrochromosomes and/or chromosome arms exhibited homology with six pairs of LRE macrochromosomes and eight pairs of EQU macrochromosomes. Furthermore, the genes mapped to microchromosomes of three species were all located on chicken microchromosomes or chromosome 4p. No reciprocal translocations were found in the species, and their karyotypic differences were caused by: low frequencies of interchromosomal rearrangements, such as tandem fusions, or centric fissions/fusions between macrochromosomes and between macro- and microchromosomes; and intrachromosomal rearrangements, such as paracentric inversions or centromere repositioning. The chromosomal rearrangements that occurred in macrochromosomes of the Varanus lineage were also identified through comparative cytogenetic mapping of V. salvator macromaculatus and V. exanthematicus. Morphologic differences in chromosomes 6–8 between the two species could have resulted from pericentric inversion or centromere repositioning.  相似文献   

3.
Chicken chromosome paints for macrochromosomes 1-10, Z, and the nine largest microchromosomes (Griffin et al. 1999) were used to analyze chromosome homologies between chicken (Gallus gallus domesticus: Galliformes), domestic pigeon (Columba livia: Columbiformes), chaffinch (Fringilla coelebs Passeriformes), and redwing (Turdus iliacus: Passeriformes). High conservation of syntenies was revealed. In general, both macro- and microchromosomes in these birds showed very low levels of interchromosomal rearrangements. Only two cases of rearrangements were found. Chicken chromosome 1 corresponds to chromosome 1 in pigeon, but to chromosomes 3 and 4 in chaffinch and chromosomes 2 and 5 in redwing. Chicken chromosome 4 was shown to be homologous to two pairs of chromosomes in the karyotypes of pigeon and both passerine species. Comparative analysis of chromosome painting data and the results of FISH with (TTAGGG)n probe did not reveal any correlation between the distribution of interstitial telomere sites (ITSs) and chromosome rearrangements in pigeon, chaffinch and redwing. In chaffinch, ITSs were found to co-localize with a tandem repeat GS (Liangouzov et al. 2002), monomers of which contain an internal TTAGGG motif.  相似文献   

4.
A distinctive feature of the avian genome is the large heterogeneity in the size of chromosomes, which are usually classified into a small number of macrochromosomes and numerous microchromosomes. These chromosome classes show characteristic differences in a number of interrelated features that could potentially affect the rate of sequence evolution, such as GC content, gene density, and recombination rate. We studied the effects of these factors by analyzing patterns of nucleotide substitution in two sets of chicken-turkey sequence alignments. First, in a set of 67 orthologous introns, divergence was significantly higher in microchromosomes (chromosomes 11-38; 11.7% divergence) than in both macrochromosomes (chromosomes 1-5; 9.9% divergence; P = 0.016) and intermediate-sized chromosomes (chromosomes 6-10; 9.5% divergence; P = 0.026). At least part of this difference was due to the higher incidence of CpG sites on microchromosomes. Second, using 155 orthologous coding sequences we noted a similar pattern, in which synonymous substitution rates on microchromosomes (13.1%) were significantly higher than were rates on macrochromosomes (10.3%; P = 0.024). Broadly assuming neutrality of introns and synonymous sites, or constraints on such sequences do not differ between chromosomal classes, these observations imply that microchromosomal genes are exposed to more germ line mutations than those on other chromosomes. We also find that dN/dS ratios for genes located on microchromosomes (average, 0.094) are significantly lower than those of macrochromosomes (average, 0.185; P = 0.025), suggesting that the proteins of genes on microchromosomes are under greater evolutionary constraint.  相似文献   

5.
Chickens and the great flightless emu belong to two distantly related orders of birds in the carinate and ratite subclasses that diverged at least 80 million years ago. In the first ZOO-FISH study between bird species, we hybridized single chromosome paints from the chicken (Gallus domesticus) onto the emu chromosomes. We found that the nine macrochromosomes show remarkable homology between the two species, indicating strong conservation of karyotype through evolution. One chicken macrochromosome (4) was represented by a macro- and a microchromosome in the emu, suggesting that microchromosomes and macrochromosomes are interconvertible. The chicken Z chromosome paint hybridized to the emu Z and most of the W, confirming that ratite sex chromosomes are largely homologous; the centromeric region of the W which hybridized weakly may represent the location of the sex determining gene(s).  相似文献   

6.
The distribution of the vertebrate telomeric sequence (TTAGGG)n in four species of armadillos (Dasypodidae, Xenarthra), i.e. Chaetophractus villosus (2n = 60), Chaetophractus vellerosus (2n = 62), Dasypus hybridus (2n = 64) and Zaedyus pichiy (2n = 62) was examined by FISH with a peptide nucleic acid (PNA) probe. Besides the expected telomeric hybridization, interstitial (centromeric) locations of the (TTAGGG)n sequence were observed in one chromosome pair of Chaetophractus vellerosus and Zaedyus pichiy, suggesting chromosome fusion of ancestral chromosomes occurring during the evolution of Dasypodidae. In addition, all the species analysed showed one to four apparently telocentric chromosomes, exhibiting only two telomeric signals. However, the immunodetection study of kinetochore proteins on synaptonemal complex spreads from C. villosus showed that the apparently telocentric chromosomes have a tiny short arm that can be resolved only in the more elongated pachytene bivalents. This finding suggests that none of the species of armadillos possess true telocentric chromosomes. Our present results support a reduction in the diploid number by fusion of acrocentrics with loss of chromosome material as a tendency in Dasypodidae.  相似文献   

7.
8.
The butterfly lizard (Leiolepis reevesii rubritaeniata) has the diploid chromosome number of 2n = 36, comprising two distinctive components, macrochromosomes and microchromosomes. To clarify the conserved linkage homology between lizard and snake chromosomes and to delineate the process of karyotypic evolution in Squamata, we constructed a cytogenetic map of L. reevesii rubritaeniata with 54 functional genes and compared it with that of the Japanese four-striped rat snake (E. quadrivirgata, 2n = 36). Six pairs of the lizard macrochromosomes were homologous to eight pairs of the snake macrochromosomes. The lizard chromosomes 1, 2, 4, and 6 corresponded to the snake chromosomes 1, 2, 3, and Z, respectively. LRE3p and LRE3q showed the homology with EQU5 and EQU4, respectively, and LRE5p and LRE5q corresponded to EQU7 and EQU6, respectively. These results suggest that the genetic linkages have been highly conserved between the two species and that their karyotypic difference might be caused by the telomere-to-telomere fusion events followed by inactivation of one of two centromeres on the derived dicentric chromosomes in the lineage of L. reevesii rubritaeniata or the centric fission events of the bi-armed macrochromosomes and subsequent centromere repositioning in the lineage of E. quadrivirgata. The homology with L. reevesii rubritaeniata microchromosomes were also identified in the distal regions of EQU1p and 1q, indicating the occurrence of telomere-to-telomere fusions of microchromosomes to the p and q arms of EQU1.  相似文献   

9.
The karyotype of the black-winged kite (Elanus caeruleus), a small diurnal raptor living in Africa, Asia and southern Europe, was studied with classical (G-, C-, R-banding, and Ag-NOR staining) and molecular cytogenetic methods, including primed in-situ labelling (PRINS) and fluorescence in-situ hybridization (FISH) with telomeric (TTAGGG) and centromeric DNA repeats. The study revealed that the genome size, measured by flow cytometry (3.1pg), is in the normal avian range. However, the black-winged kite karyotype is particularly unusual among birds in having a moderate diploid number of 68 chromosomes, and containing only one pair of dot-shaped microchromosomes. Moreover, the macrochromosomes are medium-sized, with the Z and W gonosomes being clearly the largest in the set. C-banding shows that constitutive heterochromatin is located at the centromeric regions of all chromosomes, and that two pairs of small acrocentrics and the pair of microchromosomes are almost entirely heterochromatic and G-band negative. The distribution pattern of a centromeric repeated DNA sequence, as demonstrated by PRINS, follows that of C-heterochromatin. The localization of telomeric sequences by FISH and PRINS reveals many strong telomeric signals but no extratelomeric signal was observed. The atypical organization of the karyotype of the black-winged kite is considered in the context of the modes of karyotypic evolution in birds.  相似文献   

10.
Arrangements of macro- and microchromosomes in chicken cells   总被引:1,自引:0,他引:1  
Arrangements of chromosome territories in nuclei of chicken fibroblasts and neurons were analysed employing multicolour chromosome painting, laser confocal scanning microscopy and three-dimensional (3D) reconstruction. The chicken karyotype consists of 9 pairs of macrochromosomes and 30 pairs of microchromosomes. Although the latter represent only 23% of the chicken genome they contain almost 50% of its genes. We show that territories of microchromosomes in fibroblasts and neurons were clustered within the centre of the nucleus, while territories of the macrochromosomes were preferentially located towards the nuclear periphery. In contrast to these highly consistent radial arrangements, the relative arrangements of macrochromosome territories with respect to each other (side-by-side arrangements) were variable. A stringent radial arrangement of macro- and microchromosomes was found in mitotic cells. Replication labelling studies revealed a pattern of DNA replication similar to mammalian cell nuclei: gene dense, early replicating chromatin mostly represented by microchromosomes, was located within the nuclear interior, surrounded by a rim of late replicating chromatin. These results support the evolutionary conservation of several features of higher-order chromatin organization between mammals and birds despite the differences in their karyotypes.  相似文献   

11.
The chicken karyotype, like that of the vast majority of avian species, shows a large number of dot-shaped microchromosomes that are characterized, like most telomeric regions of the macrochromosomes, by the highest GC levels and the highest gene densities. In interphase nuclei, these gene-dense regions are centrally located, and are characterized by an open chromatin structure (a similar situation also exists in mammals). Avian species belonging to the Accipitridae family (diurnal raptors) show a karyotype with no very large chromosomes, and with only a very small number of microchromosomes. To identify the GC-rich (and gene-rich) regions of the chromosomes and nuclei from Accipitridae, we performed heterologous in-situ hybridizations using chicken GC-richest isochores as probes. Our results clearly show that the gene-rich regions are prevalently located in the few microchromosome pairs and in the telomeric regions of the middle-sized chromosomes, as well as in the interior of the interphase nuclei. This result is consistent with a common organization of the genome in the nuclei of warm-blooded vertebrates. Indeed, in spite of the different size and morphology of the chromosomes, the gene-dense regions are always located in the interior of the nuclei.  相似文献   

12.
Crocodilians have several unique karyotypic features, such as small diploid chromosome numbers (30–42) and the absence of dot-shaped microchromosomes. Of the extant crocodilian species, the Siamese crocodile (Crocodylus siamensis) has no more than 2n = 30, comprising mostly bi-armed chromosomes with large centromeric heterochromatin blocks. To investigate the molecular structures of C-heterochromatin and genomic compartmentalization in the karyotype, characterized by the disappearance of tiny microchromosomes and reduced chromosome number, we performed molecular cloning of centromeric repetitive sequences and chromosome mapping of the 18S-28S rDNA and telomeric (TTAGGG) n sequences. The centromeric heterochromatin was composed mainly of two repetitive sequence families whose characteristics were quite different. Two types of GC-rich CSI-HindIII family sequences, the 305 bp CSI-HindIII-S (G+C content, 61.3%) and 424 bp CSI-HindIII-M (63.1%), were localized to the intensely PI-stained centric regions of all chromosomes, except for chromosome 2 with PI-negative heterochromatin. The 94 bp CSI-DraI (G+C content, 48.9%) was tandem-arrayed satellite DNA and localized to chromosome 2 and four pairs of small-sized chromosomes. The chromosomal size-dependent genomic compartmentalization that is supposedly unique to the Archosauromorpha was probably lost in the crocodilian lineage with the disappearance of microchromosomes followed by the homogenization of centromeric repetitive sequences between chromosomes, except for chromosome 2.  相似文献   

13.
Many families of centromeric repetitive DNA sequences isolated from Struthioniformes, Galliformes, Falconiformes, and Passeriformes are localized primarily to microchromosomes. However, it is unclear whether chromosome size-correlated homogenization is a common characteristic of centromeric repetitive sequences in Aves. New World and Old World quails have the typical avian karyotype comprising chromosomes of two distinct sizes, and C-positive heterochromatin is distributed in centromeric regions of most autosomes and the whole W chromosome. We isolated six types of centromeric repetitive sequences from three New World quail species (Colinus virginianus, CVI; Callipepla californica, CCA; and Callipepla squamata, CSQ; Odontophoridae) and one Old World quail species (Alectoris chukar, ACH; Phasianidae), and characterized the sequences by nucleotide sequencing, chromosome in situ hybridization, and filter hybridization. The 385-bp CVI-MspI, 591-bp CCA-BamHI, 582-bp CSQ-BamHI, and 366-bp ACH-Sau3AI fragments exhibited tandem arrays of the monomer unit, and the 224-bp CVI-HaeIII and 135-bp CCA-HaeIII fragments were composed of minisatellite-like and microsatellite-like repeats, respectively. ACH-Sau3AI was a homolog of the chicken nuclear membrane repeat sequence, whose homologs are common in Phasianidae. CVI-MspI, CCA-BamHI, and CSQ-BamHI showed high homology and were specific to the Odontophoridae. CVI-MspI was localized to microchromosomes, whereas CVI-HaeIII, CCA-BamHI, and CSQ-BamHI were mapped to almost all chromosomes. CCA-HaeIII was localized to five pairs of macrochromosomes and most microchromosomes. ACH-Sau3AI was distributed in three pairs of macrochromosomes and all microchromosomes. Centromeric repetitive sequences may be homogenized in chromosome size-correlated and -uncorrelated manners in New World quails, although there may be a mechanism that causes homogenization of centromeric repetitive sequences primarily between microchromosomes, which is commonly observed in phasianid birds.  相似文献   

14.
We have tested the tandem fusion hypothesis of the origin of the Indian muntjac karyotype (2n=6/7) by using reciprocal chromosome painting between the Indian muntjac, Chinese muntjac (n=46) and brown brocket deer (2n=70+3B)with chromosome-specific paint probes derived from flow-sorted chromosomes of these three deer species. Our results have shown that the euchromatic blocks of all chromosome arms of the brown brocket deer have been conserved apparently unchanged in number and content in the Indian muntjac. While confirming the conservation in toto of most of Chinese muntjac euchromatin in the karyotype of the Indian muntjac, we demonstrate that the synteny of chromosomes 1, 2, 3, 4 and 5 of the Chinese muntjac has been disrupted by chromosome rearrangements other than fusions. This indicates that the present karyotype of the Indian muntjac cannot be reconstructed from the hypothetical Chinese muntjac-like 2n=46 ancestral karyotype exclusively by chromosome fusions. Furthermore, we have shown that the breakpoints of these rearrangements appear to have occurred near to the fusion points formed during the origin of the 2n=46 karyotype of the Chinese muntjac from a 2n=70 karyotype, which is believed to be ancestral for the family Cervidae. Moreover, we substantiate that on the Indian muntjac chromosomes, the C5 probe, which is derived from the centromeric satellite sequences of the Chinese muntjac, maps to the putative fusion points determined by comparative chromosome painting and presumably represents the remnants of ancestral centromeric sequences.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

15.
We present the results of a cytogenetic study on Mus (Nannomys) minutoides from Kenya by means of C- and G- banding and in-situ fluorescence hybridization (FISH) to localize the telomeric sequences. The karyotype is characterized by the occurrence of several Rb chromosomes Rb(1.X), Rb(1.Y). Rb(2.17), Rb(3.13), Rb(4.10), Rb(5.11), Rb(6.7), Rb(8.12), not previously described for this species. This finding suggests a high level of chromosomal diversification, which means it is possible to consider this cytotype as a new, well-differentiated, chromosomal lineage within the subgenus. The C-banding of the metaphases illustrated conspicuous blocks of centromeric heterochromatin at the paracentromeric regions of all telocentric chromosomes. Centromeric heterochromatin is not visible on all biarmed chromosomes. Following hybridization with telomeric probes, bright interstitial telomeric sequence (ITS) fluorescence signals are evident at the pericentromeric area of all Rb chromosomes, with the exception of Rb(2.17). Considering the localization of the C-positive heterochromatin and of the telomeric sequences, the events leading to the Kenyan cytotype from an all-telocentric condition probably included two steps: first, fusion without loss of heterochromatin and pericentromeric telomeric sequences; second, the reduction of the C-positive satellite DNA followed by the amplification of telomeric sequences in the C-negative paracentromeric region of Rb chromosomes. The presence of a single Rb(2.17) without ITS indicates possible variations of this mechanism.  相似文献   

16.
The chromosomes of longnose gar, Lepisosteus osseus, an extant representative of early radiation of actinopterygian fishes, were studied using conventional Giemsa-staining, Ag-staining, CMA3-fluorescence and fluorescence in-situ hybridization (FISH). The diploid chromosome number was 2n = 56 and the karyotype contained 11 pairs of metacentric, 6 pairs of submetacentric, 3 pairs of subtelocentric macrochromosomes and 16 microchromosomes. Nearly all macrochromosomes showed large CMA3-positive regions resembling the R-bands of higher vertebrates, indicating extensive distribution of GC-rich DNA along chromosomes. The nucleolar organizer regions (NORs) were located on the end of the short arm of a single small metacentric macrochromosomal pair. These sites were strongly CMA3-positive, suggesting that ribosomal sites are associated with GC- rich DNA. In-situ hybridization (FISH) with a rDNA probe gave consistently positive signals in the same regions detected by Ag- staining and CMA3-fluorescence. The evolutionary conservation of positive CMA3-fluorescence of ribosomal sites in holostean and teleostean fishes is discussed.  相似文献   

17.
The chicken is the most extensively studied species in birds and thus constitutes an ideal reference for comparative genomics in birds. Comparative cytogenetic studies indicate that the chicken has retained many chromosome characters of the ancestral avian karyotype. The homology between chicken macrochromosomes (1–9 and Z) and their counterparts in more than 40 avian species of 10 different orders has been established by chromosome painting. However, the avian homologues of chicken microchromosomes remain to be defined. Moreover, no reciprocal chromosome painting in birds has been performed due to the lack of chromosome-specific probes from other avian species. Here we have generated a set of chromosome-specific paints using flow cytometry that cover the whole genome of the stone curlew (Burhinus oedicnemus, Charadriiformes), a species with one of the lowest diploid number so far reported in birds, as well as paints from more microchromosomes of the chicken. A genome-wide comparative map between the chicken and the stone curlew has been constructed for the first time based on reciprocal chromosome painting. The results indicate that extensive chromosome fusions underlie the sharp decrease in the diploid number in the stone curlew. To a lesser extent, chromosome fissions and inversions occurred also during the evolution of the stone curlew. It is anticipated that this complete set of chromosome painting probes from the first Neoaves species will become an invaluable tool for avian comparative cytogenetics.  相似文献   

18.
Thylogale spp. (pademelons) retain the plesiomorphic (ancestral) 2n = 22 karyotype for the marsupial family Macropodidae (kangaroos and wallabies). The swamp wallaby, Wallabia bicolor, has the most derived macropodid karyotype with the lowest chromosome number (2n = 10 female, 11 male), and a multiple sex chromosome system (XX female, XY1Y2 male). All but one of the W. bicolor chromosomes are fusion chromosomes. Two of these chromosomes, the X chromosome and chromosome 1, are composed of three plesiomorphic Thylogale-like chromosomes. The distribution of the vertebrate telomeric sequence (T2AG3)n was examined by fluorescence in situ hybridization (FISH) in both species and a 'map' of non-telomeric (T2AG3)n sites on W. bicolor chromosomes relative to Thylogale chromosomes was constructe d. (T2AG3)n signals were observed at six fusion sites in the four fusions chromosomes examined, indicating that the (T2AG3)n sequence is consistently retained during fusions. The distribution of the interstitial signals on the long arm of chromosome 1 of W. bicolor and the X chromosome suggests how a combination of inversions, fusions and centromeric transpositions have resulted in interstitial telomeric sequence.  相似文献   

19.
The diploid complements of mitotic metaphase plates of three species of Botriocephaluswere studied using conventional Giemsa staining and karyometric analysis. Botriocephalus claviceps and Botriocephalus gregarius showed a karyotype with 2n=14 chromosomes. All chromosomes of B. claviceps were biarmed, metacentric or meta-submetacentric. The two first pairs of homologues were markedly larger than the remaining elements and represented 48.62% of the total chromosome length. The karyotype of B. gregarius had similar metric values for the chromosomes, but clearly differed in the chromosome morphology of pairs 5, 6 and 7, which had terminally located centromeres. The diploid number 2n=12 was found in Botriocephalus scorpii. The karyotype consists of five pairs of metacentric and one pair of submeta-metacentric chromosomes. The possible pathways of karyotype evolution within Bothriocephalus spp. and their phylogenetic relations with the other karyologically studied groups in the order Pseudophyllidea are discussed.  相似文献   

20.
High-resolution bivariate flow karyotypes were obtained using fibroblast cell lines from a sheep with a normal karyotype (2n=54), from sheep carrying Robertsonian translocation chromosomes and from sheep—hamster somatic cell hybrids. By taking advantage of the presence of chromosome polymorphisms, translocation chromosomesand sheep—hamster somatic cell hybrids, all sheep chromosomes were isolated by flow sorting. Chromosome-specific paints were generated from each sorted peak using degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR). The sheep chromosome present in each peak was identified by chromosome-specific microsatellite analysis of the DOP-PCR products and fluorescence in situ hybridization (FISH) onto DAPI-banded sheep metaphase chromosomes. The chromosome-specific DNA obtained in this study can be used for the production of genomic libraries and as a resource for mapping randomly cloned DNA sequences that will greatly aid the construction of genetic and physical maps in the sheep. The chromosome-specific paints will facilitate chromosome identification and contribute to the study of karyotype evolution in the sheep and related species.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号