首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The calpain-10 gene (CAPN10) has been associated with type 2 diabetes, but information on molecular and physiological mechanisms explaining this association is limited. Here we addressed this question by studying the role of CAPN10 for phenotypes associated with type 2 diabetes and free fatty acid (FFA) metabolism. Among 395 type 2 diabetic patients and 298 nondiabetic control subjects from Finland, the SNP-43 allele 1 (P = 0.011), SNP-63 allele 2 (P = 0.010), and the haplotype combination SNP-44/43/19/63 1121/1121 (P = 0.028) were associated with type 2 diabetes. The SNP-43 genotypes 11 and 12 were associated with higher fasting insulin and homeostasis model assessment (HOMA) insulin resistance index among control subjects (P = 0.021 and P = 0.0076) and with elevated FFA among both control subjects (P = 0.0040) and type 2 diabetic patients (P = 0.0025). Multiple regression analysis further indicated that SNP-43 is an independent predictor of FFA levels (P = 0.0037). Among 80 genotype discordant sibling pairs, the SNP-43 allele 1 was associated with elevated fasting serum insulin and HOMA index (P = 0.013 and P = 0.0068). None of the four SNPs showed distorted transmission of alleles to patients with type 2 diabetes in a qualitative transmission disequilibrium test, including 108 trios. Because FFA and insulin resistance are known to predict type 2 diabetes, the finding that variation in the CAPN10 gene influences FFA levels and insulin resistance may provide an explanation for how the CAPN10 gene increases susceptibility to type 2 diabetes.  相似文献   

2.
Variations in the calpain-10 gene (CAPN10) have been identified among Mexican-Americans, and an at-risk haplotype combination (112/121) defined by three polymorphisms, UCSNP-43, -19, and -63, confers increased risk of type 2 diabetes. Here we examine the three polymorphisms in 1,594 Scandinavian subjects, including 409 type 2 diabetic patients, 200 glucose-tolerant control subjects, 322 young healthy subjects, 206 glucose-tolerant offspring of diabetic patients, and 457 glucose-tolerant 70-year-old men. The frequency of the 112/121 combination was not significantly different in 409 type 2 diabetic subjects compared with 200 glucose-tolerant control subjects (0.06 vs. 0.05; odds ratio 1.32 [95% CI 0.58-3.30]). In glucose-tolerant subjects, neither the single-nucleotide polymorphisms individually nor the 112/121 combination were associated with alterations in plasma glucose, serum insulin, or serum C-peptide levels at fasting or during an oral glucose tolerance test, estimates of insulin sensitivity, or glucose-induced insulin secretion. In conclusion, the frequency of the 112/121 at-risk haplotype of CAPN10 is low among Scandinavians and we were unable to demonstrate significant associations between the CAPN10 variants and type 2 diabetes, insulin resistance, or impaired insulin secretion.  相似文献   

3.
The powerful relation between atherosclerosis and diabetes may have a common genetic basis. However, few genes predisposing to both have been identified. Calpain-10 (CAPN10) was the first gene for type 2 diabetes identified by positional cloning, wherein a combination of haplotypes conferred increased risk of diabetes. We sought to determine whether CAPN10 influences subclinical atherosclerosis. Among nondiabetic subjects from 85 Mexican-American families with a history of coronary artery disease, subclinical atherosclerosis was assessed by common carotid artery intima-media thickness (IMT), insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp, and insulin secretion was estimated by the oral glucose tolerance test. These phenotypes were tested for association with CAPN10 haplotypes. Haplotype 1112 (of single nucleotide polymorphisms [SNPs] 44, 43, 56, and 63) was associated with increased IMT, while haplotype 1221 was associated with decreased IMT. The 112/121 haplotype combination (of SNPs 43, 56, and 63), originally found to confer increased risk for diabetes, was associated with the largest IMT in our study population. CAPN10 was also associated with both insulin sensitivity and insulin secretion. Covariate analysis suggested that CAPN10 affects IMT independently of these diabetes-related phenotypes. The fact that the diabetes gene CAPN10 also influences the risk for atherosclerosis shows that inherited factors may underlie the frequent co-occurrence of these two conditions.  相似文献   

4.
The gene encoding calpain-10 (CAPN10) has been identified as a candidate gene for type 2 diabetes. Our aim was to study the impact of genetic (heritability and polymorphisms) and nongenetic (insulin, free fatty acids, and age) factors on CAPN10 mRNA expression in skeletal muscle using two different study designs. Muscle biopsies were obtained before and after hyperinsulinemic-euglycemic clamps from 166 young and elderly monozygotic and dizygotic twins as well as from 15 subjects with normal (NGT) or impaired glucose tolerance (IGT) exposed to an Intralipid infusion. We found hereditary effects on both basal and insulin-exposed CAPN10 mRNA expression. Carriers of the type 2 diabetes-associated single nucleotide polymorphism (SNP)-43 G/G genotype had reduced CAPN10 mRNA levels compared with subjects carrying the SNP-43 A-allele. Age had no significant influence on CAPN10 mRNA levels. Insulin had no significant effect on CAPN10 mRNA levels, neither in the twins nor in the basal state of the Intralipid study. However, after a 24-h infusion of Intralipid, we noted a significant increase in CAPN10 mRNA in response to insulin in subjects with NGT but not in subjects with IGT. In conclusion, we provide evidence that mRNA expression of CAPN10 in skeletal muscle is under genetic control. Glucose-tolerant but not glucose-intolerant individuals upregulate their CAPN10 mRNA levels in response to prolonged exposure to fat.  相似文献   

5.
Adiponectin (APM1) is an adipocyte-derived peptide. The APM1 gene is located on chromosome 3q27 and linked to type 2 diabetes. In patients with type 2 diabetes, the adiponectin level in plasma is decreased in comparison to healthy subjects. To identify genetic defects of the APM1 gene that contribute to the development of type 2 diabetes, we genotyped 13 single nucleotide polymorphisms (SNPs) in 106 patients with type 2 diabetes, 325 patients with impaired glucose tolerance (IGT), and 497 nondiabetic control subjects in Swedish Caucasians by using dynamic allele-specific hybridization (DASH). We found that SNPs -11426(A/G) and -11377(G/C) in the proximal promoter region had significant differences of allele frequencies between type 2 diabetic patients and nondiabetic control subjects (P = 0.02 and P = 0.04, respectively). SNP-11426(A/G) was significantly associated with fasting plasma glucose in type 2 diabetic patients (P = 0.02) and in IGT subjects (P = 0.04), while the patients carrying CC and CG genotypes for SNP-11377(G/C) had a higher BMI than the patients with the GG genotype (P = 0.03). Haplotype analysis of 13 SNPs in the APM1 gene showed that estimates of haplotype frequencies in Swedish Caucasians are similar to those estimated in French Caucasians. However, no significant association of haplotypes with type 2 diabetes and IGT was detected in our study. The present study provides additional evidence that SNPs in the proximal promoter region of the APM1 gene contribute to the development of type 2 diabetes.  相似文献   

6.
Resistin is an adipokine with putative prodiabetogenic properties. Like other hormones secreted by adipose tissue, resistin is being investigated as a possible etiologic link between excessive adiposity and insulin resistance. Although there is growing evidence that circulating levels of this adipokine are proportional to the degree of adiposity, an effect on insulin resistance in humans remains unproven. To evaluate the relations among resistin, obesity, and insulin resistance, we measured fasting serum resistin levels in 113 nondiabetic (75-g oral glucose tolerance test) Pima Indians (ages 29 +/- 7 years, body fat 31 +/- 8%, resistin 3.7 +/- 1.1 ng/ml [means +/- SD]), who were characterized for body composition (assessed by hydrodensitometry or dual-energy X-ray absorptiometry), whole-body insulin sensitivity (M; assessed by hyperinsulinemic clamp), basal hepatic glucose output (BHGO) and hepatic glucose output during low-dosage insulin infusion of a hyperinsulinemic clamp (HGO; a measure of hepatic insulin resistance), and acute insulin secretory response (AIR; assessed by 25-g intravenous glucose tolerance test). Follow-up measurements of M, BHGO, HGO, and AIR were available for 34 subjects who had normal glucose tolerance at baseline and remained nondiabetic at follow-up. The average time to follow-up was 4.5 +/- 2.7 years. In cross-sectional analyses, serum resistin levels were positively associated with percent body fat (r = 0.37, P = 0.0001) and 2-h glucose (r = 0.19, P = 0.04), respectively. Serum resistin levels were not associated with fasting glucose and insulin levels, M, BHGO, HGO, or AIR (r = 0.17, 0.12, -0.13, -0.06, -0.03, and -0.04, respectively; all P > 0.05). After adjusting for percent body fat, there was no association between serum resistin levels and 2-h glucose (r = 0.06, P = 0.6). In prospective analyses, high serum resistin levels at baseline were not associated with a decline in M (r = -0.1, P > 0.5). Resistin levels were, however, associated with increases in percent body fat, fasting plasma insulin, and HGO (r = 0.34, 0.36, and 0.37; all P < 0.05) after adjusting for sex, age, and time to follow-up. After additional adjustment for the change in percent body fat, there was no association between baseline serum resistin levels and changes in plasma insulin or HGO (r = 0.26 and 0.23; both P > 0.1). We conclude that in Pima Indians, like other human populations, circulating resistin levels are proportional to the degree of adiposity, but not the degree of insulin resistance. We unexpectedly found that high serum resistin levels do predict future increases in percent body fat. Our data suggest that resistin promotes obesity but not obesity-associated insulin resistance in humans.  相似文献   

7.
Ahrén B  Larsson H 《Diabetes》2002,51(Z1):S202-S211
To evaluate mechanisms underlying the close association between insulin secretion and insulin sensitivity, insulin sensitivity was evaluated by the euglycemic-hyperinsulinemic clamp technique (M/I(clamp)) and insulin secretion was determined from the 75-g oral glucose tolerance test (OGTT) and from the glucose-dependent arginine-stimulation test in 81 nondiabetic postmenopausal women, all aged 61 years. M/I(clamp) was normally distributed with mean +/- SD of 69.9 +/- 30.5 nmol glucose center.kg(-1).min(-1)/pmol insulin.l(-1). It was found that the several different measures of insulin secretion from the OGTT and the glucose-dependent arginine-stimulation test were all inversely related to M/I(clamp). However, measures determining the direct insulin responses were more markedly potentiated by low M/I(clamp) than were measures determining glucose potentiation of insulin secretion. Moreover, the product of M/I(clamp) times measures of insulin secretion (disposition index [DI]) was inversely related to the 2-h glucose value. Finally, surrogate insulin sensitivity measures quantified from OGTT and the glucose-dependent arginine-stimulation test only weakly correlated to M/I(clamp) (R(2) approx equal to 0.25). Thus, 1) insulin secretion is adaptively increased when insulin sensitivity is low in nondiabetic postmenopausal women; 2) beta-cell exocytotic ability shows more efficient adaptation than beta-cell glucose recognition to low insulin sensitivity; 3) impaired beta-cell adaptation (i.e., low DI) is associated with higher 2-h glucose values during OGTT, although other regulatory mechanisms also exist; and 4) indirect surrogate measures of insulin sensitivity only weakly correlate to insulin sensitivity as determined by the euglycemic-hyperinsulinemic clamp.  相似文献   

8.
Adiponectin is a protein secreted by adipocytes that modulates insulin action. To assess whether variants of this gene contribute to the prevalence of insulin resistance in Caucasians, we genotyped 413 nondiabetic individuals for two single nucleotide polymorphisms (SNPs) at this locus. The two SNPs (45T-->G and 276G-->T) were chosen because of their association with type 2 diabetes in Japanese. Whereas each polymorphism was significantly associated with some correlate of insulin resistance, the haplotype defined by the two together was strongly associated with many components of the insulin resistance syndrome. Homozygotes for the risk haplotype had higher body weight (P = 0.03), waist circumference (P = 0.004), systolic (P = 0.01) and diastolic (P = 0.003) blood pressure, fasting glucose (P = 0.02) and insulin (P = 0.005) levels, homeostasis model assessment (HOMA) for insulin resistance (P = 0.003), and total to HDL cholesterol ratio (P = 0.01). Homozygotes also had significantly lower plasma levels of adiponectin (P = 0.03), independent of sex, age, and body weight. In an independent study group of 614 Caucasians, including 310 with type 2 diabetes, the risk haplotype was confirmed to be associated with increased body weight (P = 0.03) but not with type 2 diabetes per se. We conclude that variability at the adiponectin locus is associated with obesity and other features of the insulin resistance syndrome, but given the nature of the two SNPs, the risk haplotype is most probably a marker in linkage disequilibrium with an as yet unidentified polymorphism that affects plasma adiponectin levels and insulin sensitivity.  相似文献   

9.
The genes responsible for insulin resistance are poorly defined. Plasma cell differentiation antigen (PC-1) glycoprotein inhibits insulin receptor signaling and is associated with insulin resistance. We describe here a novel polymorphism in exon 4 of the PC-1 gene (K121Q) and demonstrate that it is strongly associated with insulin resistance in 121 healthy nonobese (BMI <30 kg/m2) nondiabetic (by oral glucose tolerance test [OGTT]) Caucasians from Sicily. Compared with 80 KK subjects, Q allele carriers (n = 41, 39 KQ and 2 QQ) showed higher glucose and insulin levels during OGTT (P < 0.001 by two-way analysis of variance) and insulin resistance by euglycemic clamp (M value = 5.25 +/- 1.38 [n = 24] vs. 6.30 +/- 1.39 mg x kg(-1) x min(-1) [n = 49], P = 0.005). Q carriers had higher risk of being hyperinsulinemic and insulin resistant (odds ratio [CI]: 2.99 [1.28-7.0], P < 0.001). Insulin receptor autophosphorylation was reduced (P < 0.01) in cultured skin fibroblasts from KQ versus KK subjects. Skeletal muscle PC-1 content was not different in 11 KQ versus 32 KK subjects (33 +/- 16.1 vs. 17.5 +/- 15 ng/mg protein, P = 0.3). These results suggest a cause-effect relationship between the Q carrying genotype and the insulin resistance phenotype, and raise the possibility that PC-1 genotyping could identify individuals who are at risk of developing insulin resistance, a condition that predisposes to type 2 diabetes and coronary artery disease.  相似文献   

10.
Genetic factors play an important role in the pathogenesis of type 2 diabetes. The relevance to type 2 diabetes of the common polymorphism Glu23Lys in the potassium inward rectifier 6.2 (KIR6.2) gene is still controversial. The aim of this study was to assess whether this polymorphism influences beta-cell function, alpha-cell function, or insulin action. We therefore studied 298 nondiabetic subjects using an oral glucose tolerance test (OGTT) and 75 nondiabetic subjects using a hyperglycemic clamp (10 mmol/l) with additional glucagon-like peptide (GLP)-1 and arginine stimulation. The prevalence of the Lys allele was approximately 37%, and the Lys allele was associated with higher incremental plasma glucose during the OGTT (P = 0.03, ANOVA). Neither first- nor second-phase glucose-stimulated C-peptide secretion was affected by the presence of the polymorphism; nor were maximal glucose-, GLP-1-, or arginine-induced C-peptide secretion rates; nor was insulin sensitivity (all P > 0.7). However, the relative decrease in plasma glucagon concentrations during the 10 min after the glucose challenge was reduced in carriers of the Lys allele (10 +/- 3% decrease from baseline in Lys/Lys, 18 +/- 2% in Glu/Lys, and 20 +/- 2% in Glu/Glu; P = 0.01, ANOVA). In conclusion, our findings suggest that the common Glu23Lys polymorphism in KIR6.2 is not necessarily associated with beta-cell dysfunction or insulin resistance but with diminished suppression of glucagon secretion in response to hyperglycemia. Our findings thus confirm its functional relevance for glucose metabolism in humans.  相似文献   

11.
Recently, an association of the G allele in UCSNP-43 of calpain 10 with type 2 diabetes and decreased glucose disposal was reported. Calpain 10 is also expressed in pancreatic islets. It is not known, however, whether and how this polymorphism contributes to the biological variation of beta-cell function. We studied 73 nondiabetic subjects from the southwest region of Germany (G/G, n = 41; G/A, n = 29; and A/A, n = 3) using a modified hyperglycemic clamp (10 mmol/l glucose, added glucagon-like peptide 1, final arginine bolus). The genotype distribution was not different between subjects with normal glucose tolerance (n = 56) and those with impaired glucose tolerance (n = 17; P = 0.74, chi2 test). First-phase insulin secretion (adjusted for sex and insulin sensitivity from hyperglycemic clamp) was greater in G/G (2,747 +/- 297 pmol/min) than in G/A + A/A (1,612 +/- 156 pmol/min, P = 0.003). Insulin secretion in response to arginine (adjusted for insulin sensitivity) was also greater in G/G (9,648 +/- 1,186 pmol/min) than in G/A + A/A (5,686 +/- 720 pmol/min, P = 0.04). The acute poststimulus proinsulin-to-insulin ratio was lower in G/G (1.6 +/- 0.4% first phase; 1.6 +/- 0.2% arginine) than in G/A + A/A (4.0 +/- 0.5% first phase, P < 0.001; 2.5 +/- 0.4% arginine, P = 0.03). In conclusion, it appears unlikely that any association of the UCSNP-43 polymorphism alone with type 2 diabetes involves impairment of insulin secretion in our population of German Caucasians. This may be entirely different with specific haplotype combinations.  相似文献   

12.
C Ito  K Mito  H Hara 《Diabetes》1983,32(4):343-351
Comparison of the 75-g oral glucose tolerance test (OGTT) method was made with the conventional 50-g method in a fixed population followed for 1--17 yr. The possibility of using the results in establishing the diagnosis of diabetes mellitus was also considered. The following results were obtained: (1) The 75-g method showed significantly higher 2-h and 3-h postchallenge plasma glucose (PG) and immunoreactive insulin values. (2) The two methods showed good correlation in PG values at various time periods, and there was no difference between the two at 1/2 h and 1 h. The 2-h standard value of 200 mg/dl used to diagnose diabetes with the 75-g method was equivalent to 180 mg/dl by the 50-g method. The upper limits of normals were 140 mg/dl and 120 mg/dl, respectively, for the two tests. (3) Those subjects diagnosed as diabetic on the basis of fasting plasma glucose (FPG) values of 140--149 mg/dl only had a high rate of reverting to normal over time. The frequency of "nondiabetic" plasma glucose values after glucose loading steadily decreases as FPG increased, with separation into two asymptotic lines at 150 mg/dl level. Thus, the logical value for diagnosis of diabetes when based only on FPG value is considered to be 150 mg/dl. (4) A smaller number of individuals had 2-h PG values that satisfied criteria for diagnosis of diabetes mellitus, but 1/2-h and 1-h values that were less than 200 mg/dl. Nevertheless, follow-up of these subjects showed a high development rate of diabetes. Thus, the 1/2-h and 1-h values are not considered necessary to establish diagnosis of diabetes mellitus.  相似文献   

13.
We prospectively examined the relationship between leptin and markers of insulin resistance and secretion and future visceral adipose tissue accumulation. In this study, 518 nondiabetic Japanese-American men and women underwent the following measurements at baseline and at 5- and 10-year follow-ups: plasma glucose and insulin measured after an overnight fast and during a 75-g oral glucose tolerance test, insulin secretion ratio (ISR) [(30-min insulin - fasting insulin)/30-min glucose], fasting C-peptide levels, plasma leptin (baseline only), and fat areas (intra-abdominal and subcutaneous) measured by computed tomography. Predictors of future intra-abdominal fat (IAF) were determined using multiple linear regression. Fasting insulin and C-peptide levels at baseline were significantly associated with IAF area at 5 years (coefficient = 0.041, P = 0.001 and coefficient = 1.283, P < 0.001, respectively) and 10 years (coefficient = 0.031, P = 0.020 and coefficient = 0.221, P = 0.035, respectively). ISR was not significantly associated with IAF at 5 or 10 years. Leptin level at baseline was positively associated with IAF at 5 years (coefficient = 0.055, P = 0.002) and 10 years (coefficient = 0.059, P = 0.003). In conclusion, higher levels of fasting insulin, C-peptide, and circulating leptin level predicted visceral fat accumulation independent from subcutaneous fat accumulation in nondiabetic Japanese-American men and women in both short-term (5 years) and long-term (10 years) follow-up.  相似文献   

14.
Buchanan TA  Xiang AH  Kjos SL  Trigo E  Lee WP  Peters RK 《Diabetes》1999,48(12):2430-2436
In this study, we sought to identify antepartum characteristics that predict the de novo development of diabetes 11-26 months after the index pregnancy in a carefully characterized cohort of women with gestational diabetes mellitus (GDM). Oral and frequently sampled intravenous glucose tolerance tests (OGTTs and FSIGTs), hyperinsulinemic-euglycemic clamps with labeled glucose, and body composition studies were performed on 91 islet cell antibody-negative Latino women with GDM during the third trimester of pregnancy. The women were documented to be diabetes-free within 6 months postpartum. Their diabetes status was ascertained again between 11 and 26 months postpartum. Logistic regression analysis was used to identify independent predictors of the development of diabetes within that interval. Fourteen of the women developed diabetes by World Health Organization criteria 11-26 months after delivery of the index pregnancy. Three antepartum variables were independent predictors of diabetes: the 1-h postchallenge plasma glucose concentration from the 100-g OGTT at which GDM was diagnosed (higher = increased risk; P = 0.003); an index of pancreatic beta-cell compensation for insulin resistance, defined as the product of the 30-min incremental plasma insulin:glucose ratio on a 75-g OGTT and the insulin sensitivity index from a hyperinsulinemic-euglycemic clamp (lower = increased risk, P = 0.009); and the basal glucose production rate after an overnight fast (higher = increased risk; P = 0.04). We conclude that postchallenge hyperglycemia, poor pancreatic beta-cell compensation for insulin resistance, and elevated endogenous glucose production during pregnancy precede the development of type 2 diabetes in young Latino women by at least 1-2 years.  相似文献   

15.
16.
To define the pathogenic factors responsible for glucose intolerance in NIDDM, we estimated insulin secretory capacity, SI, and SG in 11 healthy, nondiabetic subjects and 9 NIDDM patients who had no SI impairment. All subjects studied were nonobese and normotensive. Each underwent a 75-g OGTT and a modified FSIGT: glucose was administered (300 mg/kg body weight), and insulin was infused (20 mU/kg over 5 min) from 20 to 25 min after the administration of glucose. SI and SG were estimated by Bergman's minimal-model method. The insulin response to oral glucose was significantly lower in NIDDM patients than in normal control subjects. First-phase insulin secretion expressed as the integrated area of plasma insulin above the basal level during the first 20 min was much smaller in NIDDM subjects (214 +/- 112 pM.min) than in control subjects (4643 +/- 885 pM.min, P < 0.01). SI was not statistically different in normal control subjects (1.27 +/- 0.18 x 10(-4) min-1.pM-1) versus diabetic patients (1.62 +/- 0.33 x 10(-4) min-1.pM-1). However, SG was significantly lower in diabetic subjects (1.11 +/- 0.17 x 10(-2) min-1) than in control subjects (2.35 +/- 0.26 x 10(-2) min-1, P < 0.01). These results suggest that impaired insulin secretion and decreased SG are the factors responsible for glucose intolerance of Japanese NIDDM patients with normal insulin sensitivity. Because SI and SG are the factors responsible for glucose intolerance of NIDDM patients with insulin resistance, it is conceivable that decreased SG is common in NIDDM patients regardless of their SI index.  相似文献   

17.
The high-affinity sulfonylurea receptor 1 (SUR1) plays an important role in regulating insulin secretion. In the Québec Family Study, we genotyped 731 individuals (685 nondiabetic [ND] subjects) for the SUR1 gene IVS15-3c-->t and exon 18 Thr759(ACC-->ACT) polymorphisms using polymerase chain reaction-restriction fragment-length polymorphism analysis. Phenotypes measured were fasting plasma glucose (GLU), fasting plasma insulin (INS), and fasting C-peptide (CPEP), as well as oral glucose tolerance test (OGTT) responses; they were adjusted for age, sex, waist circumference, and the sum of six skinfold thicknesses. In ND subjects, exon 18 Thr759(ACC-->ACT) T allele carriers (T+) had lower CPEP (P = 0.022, -12.8%) and acute C-peptide responses (area above basal in first 30 min [CP30]) (P = 0.051, -12.4%) than noncarriers (T-). Also, in those with the cT/tC haplotype (from both IVS15-3c-->t and exon 18 Thr759[ACC-->ACT] polymorphisms), CPEP (P = 0.005, -21.2%), CP30 (P = 0.034, -19.2%), and total C-peptide responses (P = 0.016, -20.2%) were lower than that in cT- subjects. In overweight individuals (BMI >25 kg/m2), differences between carriers and noncarriers of the T or cT alleles were greater for GLU (P = 0.023-0.034), CPEP (P = 0.021-0.015), acute OGTT insulin response (P = 0.014-0.019), and CP30 (P = 0.034-0.019). These results suggest that the T and cT allele variants are associated with lower insulin secretion parameters, particularly in female and overweight subjects, adding evidence to the role of SUR1 sequence variants in decreased insulin secretion.  相似文献   

18.
Miyazaki Y  He H  Mandarino LJ  DeFronzo RA 《Diabetes》2003,52(8):1943-1950
Thiazolidinediones (TZDs) improve glycemic control and insulin sensitivity in patients with type 2 diabetes. To determine whether the TZD-induced improvement in glycemic control is associated with enhanced insulin receptor signaling in skeletal muscle, 20 type 2 diabetic patients received a 75-g oral glucose tolerance test (OGTT) and euglycemic insulin (80 mU x m(-2) x min(-1)) clamp with [3-(3)H]glucose/indirect calorimetry/vastus lateralis muscle biopsies before and after 16 weeks of rosiglitazone treatment. Six age-matched nondiabetic subjects served as control subjects. RSG improved fasting plasma glucose (185 +/- 8 to 139 +/- 5 mg/dl), mean plasma glucose during the OGTT (290 +/- 9 to 225 +/- 6 mg/dl), HbA(1c) (8.5 +/- 0.3 to 7.1 +/- 0.3%), insulin-mediated total-body glucose disposal (TGD) (6.9 +/- 0.7 to 9.2 +/- 0.8 mg x kg(-1) fat-free mass x min(-1)) (all P < 0.001), and decreased fasting plasma free fatty acid (FFA) (789 +/- 59 to 656 +/- 50 micro Eq/l) and mean FFA during the OGTT (644 +/- 41 to 471 +/- 35 micro Eq/l) (both P < 0.01). Before RSG treatment, insulin infusion did not significantly increase insulin receptor tyrosine phosphorylation (0.95 +/- 0.10 to 1.08 +/- 0.13 density units; NS) but had a small stimulatory effect on insulin receptor substrate (IRS)-1 tyrosine phosphorylation (1.05 +/- 0.10 to 1.21 +/- 0.12 density units; P < 0.01) and the association of p85 with IRS-1 (0.94 +/- 0.06 to 1.08 +/- 0.06 activity units; P < 0.01). RSG therapy had no effect on basal or insulin-stimulated insulin receptor tyrosine phosphorylation but increased insulin stimulation of IRS-1 tyrosine phosphorylation (1.13 +/- 0.11 to 1.56 +/- 0.17 density units; P < 0.01 vs. prerosiglitazone) and p85 association with IRS-1 (1.00 +/- 0.06 to 1.27 +/- 0.07 activity units; P < 0.05 vs. prerosiglitazone). In control and type 2 diabetic subjects, TGD/nonoxidative glucose disposal correlated positively with the insulin-stimulated increments in IRS-1 tyrosine phosphorylation (r = 0.52/r = 0.57, P < 0.01) and inversely with the plasma FFA concentration during the insulin clamp (r = -0.55/r = -0.53, P < 0.01). However, no significant association between plasma FFA concentrations during the insulin clamp and the increment in either IRS-1 tyrosine phosphorylation or the association of p85 with IRS-1 was observed. In conclusion, in type 2 diabetic patients, rosiglitazone treatment enhances downstream insulin receptor signaling in muscle and decreases plasma FFA concentration while improving glycemic control.  相似文献   

19.
Recently, an A-to-G variant in intron 3 (SNP43) of the calcium-activated neutral protease 10 gene (CAPN10) was identified as a possible type 2 diabetes susceptibility gene through positional cloning in Mexican-Americans. We conducted cross-sectional and prospective studies to evaluate the relation between SNP43 and type 2 diabetes and related traits in middle-aged African-American participants of the Atherosclerosis Risk in Communities Study, a population-based longitudinal study. At baseline, 269 prevalent diabetes cases and 1,159 nondiabetic control subjects were studied. Those with the G/G genotype were more likely to have diabetes than those with the A/G or A/A genotype (odds ratio [OR] 1.41, 95% CI 1.00-1.99, P = 0.05). In the prospective study, 166 of the control subjects developed incident diabetes over 9 years of follow-up. The incidence of diabetes for individuals with the G/G genotype did not differ significantly from those with at least one copy of the A allele (23.3 vs. 19.5 per 1,000 person years, P = 0.29). Pooling prevalent and incident diabetic cases together, individuals with the G/G genotype were approximately 40% more likely to have diabetes than those without (OR 1.38, 95% CI 1.04-1.83, P = 0.03). Because of the high frequency of the G allele (0.88), approximately 25% of the susceptibility to type 2 diabetes in African-Americans may be attributed to the G/G genotype at SNP43 of CAPN10, although most of the subjects with the G/G genotype did not develop diabetes over the 9 years of follow-up. We conclude from this large prospective study that the G allele of SNP43 of CAPN10 or another allele or gene that is in linkage disequilibrium with it increases susceptibility to type 2 diabetes in African-Americans.  相似文献   

20.
Highly informative yet simple protocols to assess insulin secretion and action would considerably enhance the quality of epidemiological and large-scale clinical trials. In an effort to develop such protocols, a 5-h, 11-sample oral glucose tolerance test (OGTT) was performed in 100 individuals and a 7-h, 21-sample meal in another 100. Plasma glucose, insulin, and C-peptide concentrations were measured. We show that virtually the same minimal model assessment of beta-cell responsivity (dynamic [Phi(d)] and static [Phi(s)]), insulin sensitivity (Si), and disposition index (DI) can be obtained with a reduced seven-sample 2-h protocol: Phi(d), reduced versus full: 871.50 vs. 873.32, r = 0.98 in OGTT and 494.88 vs. 477.99 10(-9), r = 0.91 in meal; Phi(s): 42.36 vs. 44.35, r = 0.88 in OGTT and 35.31 vs. 35.37 10(-9) min(-1), r = 0.90 in meal; Si: 24.33 vs. 22.77 10(-5) dl x kg(-1) x min(-1) per pmol/l, r = 0.89 in OGTT and 19.03 vs. 19.77 10(-5) dl x kg(-1) x min(-1) per pmol/l, r = 0.85 in meal; and DI: 1,282.26 vs. 1,273.23, r = 0.84 in OGTT and 726.92 vs. 776.97 10(-14) dl . kg(-1) x min(-2) per pmol/l, r = 0.84 in meal. This reduced protocol will facilitate the study of insulin secretion and action under physiological conditions in nondiabetic humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号