首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD4+ T cells from alpha beta-T-cell receptor transgenic mice were analyzed for coexpression of cytokine mRNAs during phenotype development using a double-label in situ hybridization technique. T cells that produced cytokines in the primary response were a fraction of the activated population, and only a minority of the cytokine-positive cells coexpressed two cytokines. In secondary responses, frequencies of double-positive cells increased, although they remained a minority of the total. Of the cytokine pairs examined, interleukin (IL)-4 and IL-5 were the most frequently coexpressed. IL-4 and interferon gamma showed the greatest tendency toward segregation of expression, being rarely coexpressed after the primary stimulation. These data indicate that there is significant heterogeneity of cytokine gene expression by individual CD4+ T cells during early antigenic responses. Coexpression of any pairs of cytokines, much less Th1 and Th2 cytokines, is generally the exception. The Th0 phenotype is a population phenotype rather than an individual cell phenotype.  相似文献   

2.
3.
4.
5.
6.
7.
The kinetics and order of rearrangements in the gene complex encoding T-cell-receptor beta chains were studied by Southern blot hybridization in a collection of hybridomas derived from fetal thymocytes at various stages of ontogeny (day 14 to day 17). Our results show a steady increase in the frequency of rearranged beta complexes during this period and suggest that these rearrangements occur within the thymus. beta-chain diversity region (D beta) to beta-chain joining region (J beta) joining preceded other types of rearrangements. More complex hybridization patterns consistent with fully rearranged functional beta-chain genes did not begin to accumulate until day 16, 1 day prior to significant surface expression of the receptor protein.  相似文献   

8.
9.
T cells play fundamental roles in adaptive immunity, relying on a diverse repertoire of T-cell receptor (TCR) α and β chains. Diversity of the TCR β chain is generated in part by a random yet intrinsically biased combinatorial rearrangement of variable (Vβ), diversity (Dβ), and joining (Jβ) gene segments. The mechanisms that determine biases in gene segment use remain unclear. Here we show, using a high-throughput TCR sequencing approach, that a physical model of chromatin conformation at the DJβ genomic locus explains more than 80% of the biases in Jβ use that we measured in murine T cells. This model also predicts correctly how differences in intersegment genomic distances between humans and mice translate into differences in Jβ bias between TCR repertoires of these two species. As a consequence of these structural and other biases, TCR sequences are produced with different a priori frequencies, thus affecting their probability of becoming public TCRs that are shared among individuals. Surprisingly, we find that many more TCR sequences are shared among all five mice we studied than among only subgroups of three or four mice. We derive a necessary mathematical condition explaining this finding, which indicates that the TCR repertoire contains a core set of receptor sequences that are highly abundant among individuals, if their a priori probability of being produced by the recombination process is higher than a defined threshold. Our results provide evidence for an expanded role of chromatin conformation in VDJ rearrangement, from control of gene accessibility to precise determination of gene segment use.  相似文献   

10.
It has recently been shown that CD4(+)CD25(+) T cells are immunoregulatory T cells that prevent CD4(+) T-cell-mediated organ-specific autoimmune diseases. In this study, the regulatory mechanism of CD4(+)CD25(+) T-cell development were investigated using T-cell receptor (TCR) transgenic mice. It was found that CD4(+)CD25(+) T cells preferentially expressed the endogenous TCRalpha chain in DO10(+) TCR transgenic mice compared with CD4(+)CD25(-) T cells. Moreover, it was found that CD4(+)CD25(+) thymocytes were severely decreased in DO10(+) TCR-alpha(-/-) mice in positively selecting and negatively selecting backgrounds, whereas CD4(+)CD25(-) thymocytes efficiently developed by transgenic TCR in DO10(+) TCR-alpha(-/-) mice in positively selecting backgrounds, indicating that the appropriate affinity of TCR to major histocompatibility complex (MHC) for the development of CD4(+)CD25(+) thymocytes is different from that of CD4(+)CD25(-) thymocytes and that a certain TCR-MHC affinity is required for the development of CD4(+)CD25(+) thymocytes. Finally, it was found that, in contrast to thymus, CD4(+)CD25(+) T cells were readily detected in spleen of DO10(+) TCR-alpha(-/-) mice in positively selecting backgrounds and that splenic CD4(+)CD25(+) T cells, but not CD4(+)CD25(+) thymocytes, were significantly decreased in B-cell-deficient mice, suggesting that B cells may control the peripheral pool of CD4(+)CD25(+) T cells. Together, these results indicate that the development of CD4(+)CD25(+) T cells in thymus and the homeostasis of CD4(+)CD25(+) T cells in periphery are regulated by distinct mechanisms.  相似文献   

11.
12.
We have constructed a physical map of the human G gamma-, A gamma-, delta-, and beta-globin genes. The previously described maps of the fetal and adult beta-like globin genes have been linked to one another by identification of a DNA fragment, generated by BamHI, that contains part of each of the A gamma- and delta-globin genes. The map obtained, which spans more than 40 kilobases, shows the following intergene distances: between G gamma and A gamma, 3500 base pairs; between A gamma and delta, 13,500 base pairs; and between delta and beta, 5500 base pairs. All genes are transcribed from the same DNA strand.  相似文献   

13.
The pre-T-cell receptor, composed of the T-cell receptor (TCR) beta chain (TCRbeta), pre-Talpha (pTalpha) chain, and CD3 molecules, has been postulated to be a transducer of signals during the early stages of T-cell development. To examine the function of the transmembrane pTalpha chain during tbymocyte development, we generated pTalpha-/- embryonic stem cells and assayed their ability to differentiate into lymphoid cells in vivo after injection into recombination-activating gene (RAG)-2-deficient blastocysts. Thymocytes representing all stages of T-cell differentiation were detected in the thymus of pTalpha-/- chimeric mice, indicating that thymocyte development can occur without pTalpha. However, greatly reduced thymocyte numbers and substantially increased percentages of both CD4-CD8- thymocytes and TCRgammadelta+ thymocytes suggest that pTalpha plays a critical role in thymocyte expansion. To investigate the role of the pTalpha chain in allelic exclusion at the TCRbeta locus, a functionally rearranged TCRbeta minigene was introduced into pTalpha-/- and pTalpha+/- embryonic stem cells, which were subsequently assayed by RAG-2-deficient blastocyst complementation. In the absence of pTalpha, expression of the transgenic TCRbeta inhibited rearrangement of the endogenous TCRbeta locus to an extent similar to that seen in normal TCRbeta transgenic mice, suggesting that pTalpha may not be required for signaling allelic exclusion at the TCRbeta locus.  相似文献   

14.
A cDNA clone representing the gene encoding the beta chain of the human T-cell antigen receptor has been isolated recently. By using fragments of this cDNA as hybridization probes in Southern blot analysis of restriction endonuclease-digested genomic DNA, we have now examined the structure of the gene in DNA from 26 patients with acute leukemia and from 23 normal individuals. We have found that the T-cell antigen receptor gene has undergone somatic rearrangement in 14 of 14 patients with the phenotypic diagnosis of T-cell acute lymphoblastic leukemia. In this group of patients, similar patterns of rearrangement appear to occur in different patients. This finding suggests that there is either a limited repertoire of possible rearrangements or an association between the development of leukemia and specific patterns of rearrangement. DNA from 6 patients with acute myeloblastic leukemia, 6 patients with non-B, non-T acute lymphoblastic leukemia, and 23 nonleukemic individuals showed no rearrangement or polymorphism. One case of T-cell acute lymphoblastic leukemia, however, showed rearrangement of both the T-cell receptor beta chain and the constant region of the immunoglobulin gene. Studies with mixtures of DNAs from leukemic bone marrow cells and cultured skin fibroblasts, as well as with remission and relapse marrow DNAs from the same patients, indicate that this technique can detect 1% leukemic cells in a mixed population. In addition, DNA from the marrow of a patient in relapse contains a similar rearrangement to that found in the marrow sample taken at the time of diagnosis, which suggests that the original clone of leukemic cells was responsible for relapse. Our results indicate that assessment of rearrangement of the T-cell antigen receptor gene will be valuable in the diagnosis and management of leukemia and can be used to evaluate clonality in T-cell neoplasia.  相似文献   

15.
16.
17.
Asynchronous DNA replication within the human beta-globin gene locus.   总被引:13,自引:0,他引:13       下载免费PDF全文
The timing of DNA replication of the human beta-globin gene locus has been studied by blot hybridization of newly synthesized BrdUrd-substituted DNA from cells in different stages of the S phase. Using probes that span greater than 120 kilobases across the human beta-globin gene locus, we show that the majority of this domain replicates in early S phase in the human erythroleukemia cell line K562 and in middle-to-late S phase in the lymphoid cell line Manca. However, in K562 cells three small regions display a strikingly different replication pattern than adjacent sequences. These islands, located in the inter-gamma-globin gene region and approximately 20 kilobases 5' to the epsilon-globin gene and 20 kilobases 3' to the beta-globin gene, replicate later and throughout S phase. A similar area is also present in the alpha-globin gene region in K562 cells. We suggest that these regions may represent sites of termination of replication forks.  相似文献   

18.
19.
The Xist gene is expressed exclusively from the inactive X chromosome and plays a central role in regulating X chromosome inactivation. Here we describe experiments aimed at defining the extent of the active chromatin domain of the expressed Xist allele. By using an allele-specific general DNaseI sensitivity assay we show that there is preferential digestion of the expressed allele at sites within the transcribed locus but not in flanking sites located up to 70 kb 5'. A putative proximal boundary for the Xist domain is located within 10 kb upstream of promoter P1. Chromatin in the expressed domain was found to be acetylated at H4 in XX somatic cells but also in XY cells, where Xist is never expressed. A single clear exception to this was the Xist promoter, which is acetylated only in XX cells. These observations concur with the view that H4 acetylation may not be a general marker of active chromatin domains and further support data implicating local promoter acetylation as being of primary functional significance in vivo.  相似文献   

20.
In 7 cases of chronic B-cell lymphoproliferative disorders-6 chronic lymphocytic leukaemias and 1 non-Hodgkin lymphoma in leukaemic phase--which co-expressed T-cell markers (CD3, CD2) the clonal origin was investigated at the DNA level. In accordance with the diagnosis, all cases showed a monoclonally rearranged configuration of the immunoglobulin genes. On the contrary, the T-cell receptor beta chain gene always retained a germ-line organization. These findings demonstrate that B-cell chronic lymphoproliferative disorders which co-express T-cell-related markers are truly composed of monoclonal B-cell elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号