首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ideal therapeutic for cancer would be one that selectively targets to tumor cells, is nontoxic to normal cells, and that could be systemically delivered, thereby reaching metastases as well as primary tumor. Immunoliposomes directed by monoclonal antibody or its fragments are promising vehicles for tumor-targeted drug delivery. However, there is currently very limited data on gene delivery using these vehicles. We have recently described a cationic immunoliposome system directed by a lipid-tagged, single-chain antibody Fv fragment (scFv) against the human transferrin receptor (TfR) that shows promising efficacy for systemic p53 tumor suppressor gene therapy in a human breast cancer metastasis model. However, the extremely low yield of this lipid-tagged scFv limited further downstream development and studies. Here we report a different expression strategy for the anti-TfR scFv, which produces high levels of protein without any tags, and a different approach for complexing the targeting scFv to the liposomes. This approach entails covalently conjugating the scFv to the liposome via a cysteine at the 3'-end of the protein and a maleimide group on the liposome. Our results show that this conjugation does not impair the immunological activity or targeting ability of the scFv. The scFv-cys targets the cationic liposome-DNA complex (lipoplex) to tumor cells and enhances the transfection efficiencies both in vitro and in vivo in a variety of human tumor models. This scFv-immunoliposome can deliver the complexed gene systemically to tumors in vivo, where it is efficiently expressed. In comparison with the whole antibody or transferrin molecule itself, the scFv has a much smaller size for better penetration into solid tumors. It is also a recombinant protein rather than a blood product; thus, large scale production and strict quality control are feasible. This new approach provides a promising system for tumor-targeted gene delivery that may have potential for systemic gene therapy of various human cancers.  相似文献   

2.
Herein, a multifunctional traceable and ultrasound-responsive drug targeted delivery system based on indocyanine green (ICG) and folic acid (FA) covalently conjugated lipid microbubbles (ILMBs–FA) is proposed. After encapsulation of the anticancer drug resveratrol (RV), the composite (RILMBs–FA) with fluorescence and ultrasound imaging capacity was studied for highly sensitive dual-imaging guided tumor targeted therapy. The resulting RILMBs–FA with an average particle size of 1.32 ± 0.14 μm exhibited good stability and biocompatibility characteristics. The RILMBs–FA featured a high RV loading ratio and the encapsulated RV has been demonstrated to be released from the microbubbles triggered by ultrasound (US) waves. In addition, it was found that the linked FA could facilitate a high cellular uptake of RILMBs–FA via the FA receptor-mediated endocytosis pathway. Compared to free RV and RILMBs, RILMBs–FA with US irradiation demonstrated a more significant tumor cell-killing efficacy mediated by apoptosis in vitro. Eight hours post intravenous injection of RILMBs–FA, the composites showed maximum accumulation in tumorous tissues according to in vivo fluorescence and US images. This ultimately led to the best tumor inhibition effect among all tested drugs under US irradiation. In vivo biosafety evaluations showed that RILMBs–FA featured high biocompatibility characteristics and no significant systemic toxicity over the course of one month. Taken in concert, these results demonstrate the versatility of this drug delivery system with dual-imaging and ultrasound-triggered drug release characteristics for potential future applications in cancer theranostics.

Schematic representation of the synthesis of RILMBs–FA and application in tumor therapy.  相似文献   

3.
Gene delivery into the nucleus of eukaryotic cells is inefficient, largely because of the significant barriers within the target cell of the plasma membrane and nuclear envelope. Recently, a group of basic proteins, including the HIV-1 Tat protein and the four core histones, have been shown to enter cells through a novel energy- and receptor-independent manner. Here, we show that engineered histone H2B proteins are able to mediate the efficient delivery of either green fluorescent protein or DNA into HeLa cells through the process of "Histone-Mediated Transduction" (HMT), with further enhancement achieved by utilizing a dimer of histones H2B and H2A. Subsequent nuclear delivery was accelerated approximately two-fold by the addition of an optimized nuclear localization signal to histone H2B, thereby increasing the affinity of interaction with components of the cellular nuclear import machinery, resulting in increased expression of a reporter gene. Further, we demonstrate that the domains responsible for this histone transduction are located in the N-terminal tail and globular regions of histone H2B. HMT represents a new, efficient, and technically non-demanding means to deliver DNA to the nucleus of intact cells, including embryonic stem cells, which has important applications in gene therapy and cancer therapeutics.  相似文献   

4.
A novel non-viral gene vector based on poly[poly(ethylene glycol) methacrylate] (PMPEG) and l-glutathione (GSH) grafted chitosan (CS) has been fabricated. First, well-defined brush-like PMPEG living polymers with dithioester residues were prepared by the reversible addition-fragmentation chain transfer (RAFT) polymerization and grafted onto the allylchitosan via radical coupling method. Then, the tripeptide GSH was introduced onto the end of PMPEG chain to give a CS-PMPEG-GSH conjugate. In comparison with pristine chitosan, CS-PMPEG-GSH conjugate could not only condense plasmid DNA (pDNA) and prevent the condensed CS-PMPEG-GSH/pDNA nanoparticle self-aggregation, but also increase the binding ability to cell membrane efficiently and improve decondensed ability of pDNA from the nanoparticles in cytoplasm which thus has resulted in the higher transfection efficiency in mouse embryonic fibroblast cells (NIH3T3). In addition, cytotoxicity assays showed that the conjugate is less cytotoxic than CS, and still retain the cationic polyelectrolyte characteristic as chitosan. These results indicate that the non-viral vector is a promising candidate for gene therapy in clinical application.  相似文献   

5.
6.
Structural modifications of the siRNA backbone improved its physiochemical properties for incorporating in gene carriers without loss of gene-silencing efficacy. These modifications provide a wider variety of choice of vector systems for siRNA delivery. We developed a tumor-targeted siRNA delivery system using polymerized siRNA (poly-siRNA) and natural polymer gelatin. The polymerized siRNA (poly-siRNA) was prepared through self-polymerization of thiol groups at the 5′-end of sense and anti-sense strands of siRNA and was encapsulated in the self-assembled thiolated gelatin (tGel) nanoparticles (NPs) with chemical cross-linking. The resulting poly-siRNA-tGel (psi-tGel) nanoparticles (average of 145 nm in diameter) protect siRNA molecules from enzymatic degradation, and can be reversibly reduced to release functional siRNA molecules in reductive conditions. The psi-tGel NPs presented efficient siRNA delivery in red fluorescence protein expressing melanoma cells (RFP/B16F10) to down-regulate target gene expression. In addition, the NPs showed low toxicity at a high transfection dose of 125 μg/ml psi-tGel NPs, which included 1 μM of siRNA molecules. In tumor-bearing mice, the psi-tGel NPs showed 2.8 times higher tumor accumulation than the naked poly-siRNA, suggesting tumor-targeted siRNA delivery of psi-tGel NPs. Importantly, the psi-tGel NPs induced effective tumor RFP gene silencing in vivo without remarkable toxicity. The psi-tGel NPs have great potential for a systemic siRNA delivery system for cancer therapy, based on their characteristics of low toxicity, tumor accumulation, and effective siRNA delivery.  相似文献   

7.
Bio-electrospray technology is a very attractive tool for preparing scaffolds and depositing desired solutions on various targets by electric force. In this study, we focused on the application of a bio-electrospray (BES) technique to spray cells on the target and to simultaneously deliver genetic constructs into the cells, called non-viral gene delivery-based bio-electrospray (NVG-BES). Using this method, we tried to harvest the electric charge produced during electrospray for the cellular internalization of cationic polymer/DNA nanoparticles as well as the delivery of living cells on the desired substrate. Furthermore, we optimized the voltage, culture medium and polymeric cationic charges for high transfection efficiency and cell viability during NVG-BES. As a result, the solutions used during the NVG-BES process played an important role in improving transfection efficiency. We determined that a voltage of 10 kV with PBS as the spraying solution showed high transfection efficiency, probably due to the facilitation of cationic polymer/DNA nanocomplexes in cellular internalization and their subsequent expression. In conclusion, NVG-BES, as a novel method, is expected to deliver genes to cells and simultaneously deliver transfected cells to any substrate or scaffold.

The NVG-BES system facilitated to introduce DNA to cells and delivered cells to a target simultaneously. In this method, a cationic polymer was used as non-viral carrier with electric force by bio-electrospray (BES) system to electrospray living cells onto a target.  相似文献   

8.
Here we report the design, synthesis and biological evaluation of surface-modified silica nanoparticles (SNP) for the delivery of camptothecin (CPT). Drug has been covalently linked to the nanoparticle through an ester bond with the 20-hydroxy moiety, in order to stabilize its lactone ring and to avoid unspecific release of the drug. The obtained material is highly stable in plasma, with low release of the cargo at physiological pH. Cell internalization and in vitro efficacy assays demonstrated that nanoparticles carrying CPT (SNP-CPT) entered cells via endocytosis and the intracellular release of the cargo induced cell death with half maximal inhibitory concentration (IC50) values and cell cycle distribution profiles similar to those observed for the naked drug. Further, in vivo biodistribution, therapeutic efficacy and biocompatibility of the SNP-CPT were evaluated in human colorectal cancer xenografts using in vivo fluorescence or bioluminescence optical imaging. In vivo tumor-accumulation and whole-body tissue distribution were carried out based on the acquisition of fluorescence emission of a fluorophore (Cy5.5) conjugated to the SNP-CPT, as well as by HPLC quantification of tissue CPT levels. The results showed that, although SNP-CPT tended to accumulate in organs of the reticulo-endothelial system, nanoparticles boost CPT concentration in tumor vs administration of the free drug. Accordingly, SNP-CPT treatment delayed the growth of subcutaneous tumors while significantly reducing the systemic toxicity associated with CPT administration. These results indicate that the SNP-CPT could be used as a robust drug delivery system for antitumoral treatments based on CPT.  相似文献   

9.
Immunopotentiating reconstituted influenza virosomes possess several characteristics defining them as vaccine adjuvants. Virosomes have been shown to provide vaccine components with protection from extracellular degradation; a regular, repetitive antigen structure aiding presentation to B lymphocytes and fully functional, fusion-active, influenza haemagglutinin envelope proteins that enables receptor-mediated uptake and intracellular processing of the antigen. In addition, virosomes, as vaccine delivery systems, have been shown to be safe and not to engender any antibodies against the phospholipid components. Through the use of virosomes as a delivery vehicle, a number of vaccines have been developed. In humans, virosome-based vaccines containing inactivated hepatitis A and influenza antigens have been found to be efficacious and well-tolerated and have been on the market for several years. Hepatitis B, nucleic acids, cytotoxic drugs, and tetanus and diphtheria toxoids have also been incorporated into virosomes. Further investigations are ongoing in order to define the full potential of virosomes in both prophylactic and immunotherapeutic applications.  相似文献   

10.
For a variety of reasons, including production limitations, potential unanticipated side effects, and an immunological response upon repeated systemic administration, virus-based vectors are as yet not ideal gene delivery vehicles, justifying further research into alternatives. Unlike viral vectors, non-viral vectors pose minimal health risks, but to meet therapeutic requirements their efficacy needs major improvement. This goal may be accomplished by better defining the mechanism of non-viral gene delivery and exploiting specific cellular properties. Here we demonstrate that transfection of epithelial cells with lipoplexes is almost exclusively mediated by the beta1 integrin cell surface receptor. More important, we show that in general, adhesion receptors can be exploited by lipoplexes to gain access to cells, including difficult-to-transfect primary neural stem cells and suspension cells, thereby leading to productive transfection. We propose that adhesion receptors serve as "natural" receptors for lipoplexes. As no natural cellular receptors for lipoplexes have previously been identified, our results are an important step forward in understanding the mechanisms of non-viral gene delivery. Moreover, the finding that adhesion receptors mediate efficient non-viral gene delivery paves the way for the optimization of (standard) transfection procedures as well as ex vivo gene therapy protocols using non-viral vectors.  相似文献   

11.
Immunopotentiating reconstituted influenza virosomes possess several characteristics defining them as vaccine adjuvants. Virosomes have been shown to provide vaccine components with protection from extracellular degradation; a regular, repetitive antigen structure aiding presentation to B lymphocytes and fully functional, fusion-active, influenza haemagglutinin envelope proteins that enables receptor-mediated uptake and intracellular processing of the antigen. In addition, virosomes, as vaccine delivery systems, have been shown to be safe and not to engender any antibodies against the phospholipid components. Through the use of virosomes as a delivery vehicle, a number of vaccines have been developed. In humans, virosome-based vaccines containing inactivated hepatitis A and influenza antigens have been found to be efficacious and well-tolerated and have been on the market for several years. Hepatitis B, nucleic acids, cytotoxic drugs, and tetanus and diphtheria toxoids have also been incorporated into virosomes. Further investigations are ongoing in order to define the full potential of virosomes in both prophylactic and immunotherapeutic applications.  相似文献   

12.
Lee M  Rentz J  Han SO  Bull DA  Kim SW 《Gene therapy》2003,10(7):585-593
Water-soluble lipopolymer (WSLP), which consisted of polyethylenimine (PEI, 1800 Da) and cholesterol, was characterized as a gene carrier to smooth muscle cells and myocardium. Acid-base titration showed that WSLP had a proton-buffering effect. The size of WSLP/plasmid DNA (pDNA) complex was around 70 nm. WSLP/pDNA complex was transfected to A7R5 cells, a smooth muscle cell line. WSLP showed the highest transfection at a 40/1 N/P ratio. WSLP has higher transfection efficiency than PEI (1800 and 25 000 Da), SuperFect, and lipofectamine. In addition, WSLP has less cytotoxicity than PEI (25 000 Da), SuperFect, and lipofectamine. Since WSLP has cholesterol moiety, it may utilize cellular cholesterol uptake pathway, in which low-density lipoprotein (LDL) is involved. An inhibition study with free cholesterol or low-density lipoprotein (LDL) showed that transfection was inhibited by cholesterol or LDL, suggesting that WSLP/pDNA complex is transfected to the cells through the cholesterol uptake pathway. To evaluate the transfection efficiency to myocardium, WSLP/pDNA complex was injected into the rabbit myocardium. WSLP showed higher transfection than PEI and naked pDNA. WSLP expressed the transgene for more than 2 weeks. In conclusion, WSLP is an efficient carrier for local gene transfection to myocardium, and useful in in vivo gene therapy.  相似文献   

13.
Transcoronary gene delivery represents a desirable option to achieve global myocardial transgene expression but still requires aggressive surgical preparation in rodents. We therefore developed a catheter-based approach for cardiac gene transfer in the closed chest rat. A double-lumen balloon catheter was used to create aortic occlusion for specific infusion of adenoviral vectors carrying a beta-galactosidase transgene (1 x 10(11) PFU) into the coronaries. Simultaneously, venous return was obstructed by a second balloon catheter in the right atrium. To prolong viral incubation time, we induced a transient cardiac arrest (2 and 5 min) by a combination of acetylcholine and the beta-receptor antagonist, esmolol. At 72 h after transfection, the hearts showed a homogeneous and widespread beta-galactosidase expression, and the transduction efficiency increased and up to about 43% of cardiac myocytes (histochemistry) with a 400-fold increase of beta-galactosidase activity (luminescence assay) compared to sham-operated hearts. Pharmacological treatment aimed at increasing vascular permeability (SNAP and histamine) did not bring about synergistic effects on transfection efficiency. In addition, the method using high intracoronary pressure delivery (>300 mmHg) in a single-pass manner resulted in rather sparse beta-galactosidase expression in the myocardium (3-5% of cardiac myocytes). Therefore, the percutaneous gene delivery system described here provides a simple and minimally invasive procedure that represents a novel strategy for a homogeneous and highly efficient in vivo gene transfer to rodent hearts. Our results also suggest that prolongation of viral incubation time is an effective means for achieving highly efficient myocardial gene transduction.  相似文献   

14.
Anaerobic bacteria as a gene delivery system for breast cancer therapy   总被引:1,自引:0,他引:1  
A fundamental obstacle in systemic therapy for metastatic breast cancer patients is specific targeting of therapy directly to a solid tumor. Hypoxic or necrotic regions are characteristic of solid tumors in many murine and human tumors, including the majority of primary tumors of the breast. A strain of anaerobic bacteria such as Bifidobacterium or Clostridium selectively localizes to and proliferates in solid tumors after systemic application. Another approach uses attenuated Salmonella strains that need tumor-specific nutrients to selectively proliferate and is a potential gene delivery system. We constructed a plasmid, pBLES100-S-eCD, which included the cytosine deaminase gene. Transfected Bifidobacterium longum produced cytosine deaminase in the hypoxic tumor. Enzyme/pro-drug therapy was confirmed to be effective for systemic administration.  相似文献   

15.
背景:近年来,两亲性聚合物胶束作为难溶性药物载体和叶酸介导的肿瘤细胞靶向给药系统在药剂学研究领域受到极大的关注。目的:制备包载9-硝基喜树碱的叶酸聚合物胶束并进行理化表征及体外药效评价。方法:采用薄膜-水化法制得载药胶束,利用激光粒度分析仪检测胶束粒径大小,反相高效液相层析法检测载药量,透析法进行体外释放试验;利用肿瘤细胞摄取及体外生长抑制试验,对叶酸聚合物胶束作体外药效评价。结果与结论:制得的9-硝基喜树碱叶酸聚合物胶束粒径为24~26nm,载药量为3.24%,24h累积释放百分率约90%。叶酸修饰的聚合物胶束对肿瘤细胞的亲和性及抗肿瘤活性显著高于普通胶束。提示叶酸修饰的聚合物胶束可为难溶性药物提供一种具有良好应用前景的肿瘤主动靶向纳米载药系统。  相似文献   

16.
17.
Enhanced drug-loading and therapeutic efficacies are highly essential properties for nanoparticles as tumor-targeting drug carriers. Herein, we developed the glycol chitosan nanoparticles with hydrotropic oligomers (HO-CNPs) as a new tumor targeting drug delivery system. For enhancing drug-loading efficiency of paclitaxel in drug carriers, hydrotropic 2-(4-(vinylbenzyloxy)-N,N-diethylnicotinamide) (VBODENA-COOH) oligomers, that were used for enhancing the aqueous solubility of paclitaxel, were directly conjugated to glycol chitosan polymers. The amphiphilic conjugates readily formed nanoparticle structure (average size = 302 ± 22 nm) in aqueous condition. Water-insoluble paclitaxel (PTX) was readily encapsulated into HO-CNPs with a high drug-loading amount up to 24.2 wt.% (2.4 fold higher than other polymeric nanoparticles) by a simple dialysis method. The PTX encapsulated HO-CNPs (PTX-HO-CNPs; average size = 343 ± 12 nm) were very stable in aqueous media up to 50 days. Also, PTX-HO-CNPs presented rapid cellular uptake and lower cytotoxicity in cell culture system, compared to Cremophor EL/ethanol formulation of PTX. In tumor-bearing mice, the extravasation and accumulation of PTX-HO-CNPs in tumor tissue were precisely observed by intravital fluorescence imaging techniques. Furthermore, PTX-HO-CNPs showed the higher therapeutic efficacy, compared to Abraxane®, a commercialized PTX-formulation. These overall results demonstrate its potential as a new nano-sized PTX carrier for cancer treatment.  相似文献   

18.
The present work reports the effect of conjugation of the anticarcinogenic and antitumor soybean Bowman-Birk protease inhibitor (BBI) with amphiphilic block copolymer of ethylene oxide and propylene oxide (PEO-PPO) as well as with monoclonal antibody via clinical dextran (D) on tumor-targeted delivery of BBI.  相似文献   

19.
20.
Gene therapy is a promising approach, yet so far it has shown limited effectiveness in many clinical trials, mainly due to insufficient gene transduction. Recombinant vaccinia virus (rVV) has been well developed as a gene delivery vector, initially for protein expression in mammalian cells. rVV has been further developed to express antigens in vivo in generating immunity for protection against specific infectious diseases and cancer. rVVs, as non-replicating viral vectors, have been demonstrated for their great potential as vaccines, for their diminished cytopathic effects, high levels of protein expression and strong immunogenicity, and they are relatively safe in animals and in human patients. A number of clinical trials using rVVs as vaccines have shown promising results for treating infectious diseases and cancer. In the last few years, due to its exceptional ability to replicate in tumour cells, the Western Reserve strain vaccinia has been explored as a replicating oncolytic virus for cancer virotherapy. As more is learned about the functions of viral gene products in controlling the mammalian cell cycle and in disabling cellular defence mechanisms, specific viral functions can be augmented or eliminated to enhance antitumour efficacy and improve tumour cell targeting. General mechanisms by which this oncolytic virus achieves the antitumour efficacy and specificity are reviewed. Specifically, the deletion of the viral genes for thymidine kinase and vaccinia growth factor resulted in a vaccinia mutant with enhanced tumour targeting activity and fully retaining its efficiency of replication in cancer cells. Other potential strategies for improving this vector for gene delivery will also be discussed in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号