首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
Previous studies suggest that endotoxin (LPS) stimulation of CD14 receptors may be coupled to heterotrimeric G proteins. However, characterization of the G protein-coupled signaling pathways is incomplete. Also, specific changes in the transduction pathways occur in a phenomenon known as LPS tolerance or desensitization induced by prior exposure to LPS. In the present study, we examined potential CD14-dependent G protein-coupled signaling events in response to LPS, and changes in signaling in these pathways during LPS desensitization in Chinese Hamster Ovary (CHO) cells. LPS stimulated inhibitory kappa B alpha (IkappaB alpha) degradation and p38 phosphorylation in CHO cells transfected with human CD14 receptor (CHO-CD14), but not in CHO cells transfected with vector only. However, activation of these signaling events diverged early in the signal transduction pathways. Pretreatment with pertussis toxin, which inactivates inhibitor G protein (G alpha i) function, significantly inhibited LPS-induced p38 phosphorylation, but not LPS-induced IkappaB alpha degradation. Mastoparan, a putative G alpha i agonist, synergized with LPS to induce p38 phosphorylation. Thus, LPS stimulation of p38 phosphorylation is, in part, G alpha i coupled, whereas IkappaB alpha degradation is not. In subsequent studies, CHO-CD14 cells were desensitized by prior LPS exposure. LPS-desensitized cells exhibited augmented IkappaB alpha content and were refractory to LPS-induced IkappaB alpha degradation and p38 phosphorylation. Pretreatment with cycloheximide, a protein synthesis inhibitor, prevented the effect of LPS desensitization on augmenting cellular IkappaB alpha content and its refractoriness to LPS-induced degradation. However, cycloheximide pretreatment did not prevent impaired p38 phosphorylation in desensitized cells. IkappaB alpha upregulation in LPS tolerance may occur through increased synthesis and/or induction of protein that suppress IkappaB alpha degradation. The latter protein synthesis-dependent mechanisms may be distinct from mechanismis inhibiting p38 phosphorylation in tolerance. These findings suggest that LPS tolerance induces CD14-dependent signaling alterations in G alpha i-coupled pathways leading to mitogen-activated (MAP) kinase activation as well as G alpha i-independent pathways inducing IkappaB alpha degradation.  相似文献   

3.
The lipopolysaccharide (LPS)-receptor complex, CD14/toll-like receptor 4, is known to play a role in the immune responses during sepsis. Excessive inflammation and tumor necrosis factor (TNF)-alpha synthesis have been reported to cause morbidity and mortality in endotoxemia and sepsis. Cell-to-cell interaction through the engagement between intercellular adhesion molecule 1, B7.1, and CD40 on monocytes and their ligands on T cells has been suggested to play a role in the inflammatory response such as TNF-alpha and interleukin 10 production. Nicotine, with the stimulation of the nicotinic acetylcholine receptor alpha7 subunit (alpha7-nAChR), has now become the focus of attention because of its anti-inflammatory effects. However, little is known about the mechanism of the inhibitory effects induced by nicotine on the LPS-induced immune responses. In the present study, we found that nicotine suppressed the expression of CD14, toll-like receptor 4, intercellular adhesion molecule 1, B7.1, and CD40 on monocytes and the production of TNF-alpha, but not interleukin 10, in human peripheral blood mononuclear cells in the presence of LPS. The actions of nicotine were reversed by a nonselective and a selective alpha7-nAChR antagonist, mecamylamine and alpha-bungarotoxin, respectively. Therefore, nicotine might inhibit the LPS receptor complex expression via alpha7-nAChR, thus leading to a decrease in the adhesion molecule expression and TNF-alpha production. Moreover, we demonstrated that a nuclear factor-kappaB and a p38 mitogen-activated protein kinase inhibitor mimicked the actions of nicotine in the presence of LPS. These results suggested that the nuclear factor-kappaB and p38 mitogen-activated protein kinase might be involved in the actions of nicotine.  相似文献   

4.
Exposure of rabbit peritoneal exudate macrophages (PEM) or whole blood to picomolar concentrations of LPS induces adaptation or hyporesponsiveness to LPS. Because of the importance of plasma LPS-binding protein (LBP) and the macrophage cell membrane protein CD14 in recognition of LPS, we examined the effect of LBP on LPS-induced adaptation in PEM. PEM exposed to LPS in the presence of LBP for 8 h were markedly less responsive to subsequent stimulation by LPS than monocytes/macrophages (M phi) adapted in the absence of LBP. LPS-induced expression of TNF was sharply reduced in LBP-LPS-adapted PEM, but in contrast these cells remained fully responsive to Staphylococcus aureus peptidoglycan. We considered that specific hyporesponsiveness in LPS-adapted M phi or in blood monocytes could be due to decreased expression of CD14 or diminished binding of LBP-LPS complexes to CD14. However, flow cytometry analysis revealed only minimal reduction of CD14 expression or CD14-dependent binding of a fluorescent LPS derivative when normo- and hyporesponsive cells were compared. These results show that complexes of LPS and LBP are more effective than LPS alone in inducing adaptation to LPS, and LPS-induced hyporesponsiveness probably results from changes in cellular elements distinct from CD14 that are involved in either LPS recognition or LPS-specific signal transduction.  相似文献   

5.
CD14/toll-like receptor (TLR)-4 complex on monocytes/macrophages can bind lipopolysaccharide (LPS) and transduce the signals intracellularly. An antibacterial drug, ciprofloxacin (CIP), has been reported to modulate the inflammatory and immune responses. In the present study, we examined the effects of CIP on the LPS-induced activation of monocytes isolated from human peripheral blood mononuclear cells (PBMC). CIP suppressed the expression of CD14, TLR-4, intercellular adhesion molecule (ICAM)-1, B7.1, B7.2, and CD40 and the production of tumor necrosis factor (TNF)-alpha induced by LPS in monocytes. CIP induced the production of prostaglandin (PG)E2 and increased intracellular cyclic adenosine monophosphate (cAMP) levels. Cyclooxygenase (COX)-2 inhibitors, NS398 and indomethacin, reversed the effects of CIP on TNF-alpha production and reduced the levels of different surface antigens, whereas a protein kinase A (PKA) inhibitor, H89, did not. Therefore, CIP might regulate the TNF-alpha production induced by LPS by inhibiting the expression of LPS receptor complex, which seems to be mediated by COX-2 but not the cAMP/PKA pathway.  相似文献   

6.
LPS stimulates CD14/Toll-like receptor (TLR) 4, leading to induce TNF-alpha production. Cell-to-cell interaction through the engagement between intercellular adhesion molecule (ICAM) 1 on monocytes and its ligand on T cells has been suggested to play a role in the TNF-alpha production by LPS-treated human peripheral blood mononuclear cells (PBMCs). Adenosine is reported to inhibit LPS-induced TNF-alpha production. However, little is known about the mechanism of the inhibitory effects induced by adenosine on the LPS-induced immune responses. We found that adenosine inhibited the expression of ICAM-1 and the production of TNF-alpha by human PBMC via adenosine A2A receptor in the presence of LPS. However, the stimulation of A1R or A3R enhanced the actions of adenosine. Adenosine had no effect on the expression of CD14 and TLR-4, suggesting that the inhibitory effects of adenosine on the LPS actions might be independent of the expression of CD14 and TLR-4. Thus, adenosine differentially regulates the expression of ICAM-1 and the production of TNF-alpha through plural subtypes of receptors.  相似文献   

7.
Bacterial endotoxin (lipopolysaccharide [LPS]) causes fatal shock in humans and experimental animals. The shock is mediated by cytokines released by direct LPS stimulation of cells of monocytic origin (monocyte/macrophage [MO]). Recent studies have supported the concept that the plasma protein, LPS binding protein (LBP), plays an important role in controlling MO responses to LPS. Specifically, evidence has been presented to suggest that CD14, a membrane protein present in MO, serves as a receptor for complexes of LPS and the plasma protein LPS binding protein (LBP). In this function CD14 mediates attachment of LPS-bearing particles opsonized with LBP and appears to play an important role in regulating cytokine production induced by complexes of LPS and LBP. The CD14-, murine pre-B cell line 70Z/3 responds to LPS by synthesis of kappa light chains and consequent expression of surface IgM. To better understand the role of CD14 in controlling cellular responses to LPS, we investigated the effect of transfection of CD14 into 70Z/3 cells on LPS responsiveness. We report here that transfection of human or rabbit CD14 cDNA into 70Z/3 cells results in membrane expression of a glycosyl-phosphatidylinositol-anchored CD14. When LPS is complexed with LBP, CD14-bearing 70Z/3 cells bind more LPS than do the parental or 70Z/3 cells transfected with vector only. Remarkably, the expression of CD14 lowers the amount of LPS required to stimulate surface IgM expression by up to 10,000-fold when LPS dose-response curves in the CD14-, parental and CD14-bearing, transfected 70Z/3 cells are compared. In contrast, the response of CD14-bearing 70Z/3 cells and the parental 70Z/3 cell line (CD14-) to interferon gamma is indistinguishable. LPS stimulation of the parental and CD14-bearing 70Z/3 cells results in activation of NF-kB. These data provide evidence to support the concept that the LPS receptor in cells that constitutively express CD14 may be a multiprotein complex containing CD14 and membrane protein(s) common to a diverse group of LPS-responsive cells.  相似文献   

8.
Soluble CD14 participates in the response of cells to lipopolysaccharide   总被引:54,自引:10,他引:54  
CD14 is a 55-kD protein found both as a glycosylphosphatidyl inositol-linked protein on the surface of mononuclear phagocytes and as a soluble protein in the blood. CD14 on the cell membrane (mCD14) has been shown to serve as a receptor for complexes of lipopolysaccharide (LPS) with LPS binding protein, but a function for soluble CD14 (sCD14) has not been described. Here we show that sCD14 enables responses to LPS by cells that do not express CD14. We have examined induction of endothelial-leukocyte adhesion molecule 1 expression by human umbilical vein endothelial cells, interleukin 6 secretion by U373 astrocytoma cells, and cytotoxicity of bovine endothelial cells. None of these cell types express mCD14, yet all respond to LPS in a serum-dependent fashion, and all responses are completely blocked by anti-CD14 antibodies. Immunodepletion of sCD14 from serum prevents responses to LPS, and the responses are restored by addition of sCD14. These studies suggest that a surface anchor is not needed for the function of CD14 and further imply that sCD14 must bind to additional proteins on the cell surface to associate with the cell and transduce a signal. They also indicate that sCD14 may have an important role in potentiating responses to LPS in cells lacking mCD14.  相似文献   

9.
The circulating monocyte possesses a markedly different functional phenotype relative to the macrophage (Mphi). The adhesive interactions encountered by the monocyte, en route to the inflammatory focus, generate signals that culminate in the expression of a pro-inflammatory Mphi phenotype, marked by enhanced cytokine production. Previously, we demonstrated that calcium and calmodulin are essential for maximal Mphi activation and, in particular, TNFalpha production. These effects are likely to be mediated through signal transduction kinases that require the calcium/calmodulin complex. Here, we investigated the effect of adherence on calcium/calmodulin-dependent protein kinase (CaMK) II and IV activation of the extracellular-signal regulated kinase (ERK) 1/2 cascade and on lipopolysaccharide (LPS)-induced TNFalpha production by human monocytes. Adherence activated ERK 1/2 and led to an 8-fold potentiation in LPS-induced TNFalpha production over similarly stimulated non-adherent cells. Inhibition of CaMK II prior to adherence prevented ERK 1/2 activation and attenuated by up to 40%, the TNFalpha response to subsequent LPS stimulation. CaMK II inhibition after adherence, however, failed to modify cytokine release. Inhibition of CaMK IV, both after adherence and in non-adherent monocytes, significantly inhibited LPS-induced ERK 1/2 activation and abrogated TNFalpha production by up to 75%. These data suggest that the function of CaMK II in TNFalpha production by adherent monocytes occurs during adhesion, is mediated in part by activation of ERK 1/2, and appears to "prime" the monocyte for enhanced cytokine production. CaMK IV, through activation of ERK 1/2, appears to have a direct role in the LPS signal transduction for TNFalpha production.  相似文献   

10.
CD14 is a 55-kD protein found as a glycosylphosphatidylinositol (GPI)- anchored protein on the surface of monocytes, macrophages, and polymorphonuclear leukocytes, and as a soluble protein in the blood. Both forms of CD14 participate in the serum-dependent responses of cells to bacterial lipopolysaccharide (LPS). While CD14 has been described as a receptor for complexes of LPS with LPS-binding protein (LBP), there has been no direct evidence showing whether a ternary complex of LPS, LBP, and CD14 is formed, or whether CD14 binds LPS directly. Using nondenaturing polyacrylamide gel electrophoresis (native PAGE), we show that recombinant soluble CD14 (rsCD14) binds LPS in the absence of LBP or other proteins. Binding of LPS to CD14 is stable and of low stoichiometry (one or two molecules of LPS per rsCD14). Recombinant LBP (rLBP) does not form detectable ternary complexes with rsCD14 and LPS, but it does accelerate the binding of LPS to rsCD14. rLBP facilitates the interaction of LPS with rsCD14 at substoichiometric concentrations, suggesting that LBP functions catalytically, as a lipid transfer protein. Complexes of LPS and rsCD14 formed in the absence of LBP or other serum proteins strongly stimulate integrin function on PMN and expression of E-selectin on endothelial cells, demonstrating that LBP is not necessary for CD14-dependent stimulation of cells. These results suggest that CD14 acts as a soluble and cell surface receptor for LPS, and that LBP may function primarily to accelerate the binding of LPS to CD14.  相似文献   

11.
Antibodies against CD14 protect primates from endotoxin-induced shock.   总被引:17,自引:3,他引:17       下载免费PDF全文
Lipopolysaccharide (LPS), residing in the outer membrane of all gram-negative bacteria, is considered a major initiating factor of the gram-negative septic shock syndrome in humans. LPS forms a complex with the LPS binding protein (LBP) in plasma, and LPS-LBP complexes engage a specific receptor, CD14, on the surface of myeloid cells, leading to the production of potent proinflammatory cytokines. The major goal of this study was to test the importance of the CD14 pathway in vivo in a primate model that is similar to human septic shock. Primates were pretreated with one of two different inhibitory anti-CD14 mAbs, then challenged with intravenous endotoxin (375 microg/kg/h) for 8 h. The anti-CD14 treatment regimens were successful in preventing profound hypotension, reducing plasma cytokine levels (TNF-alpha, IL-1beta, IL-6, and IL-8), and inhibiting the alteration in lung epithelial permeability that occurred in animals treated with LPS and an isotype-matched control antibody. These results demonstrate for the first time the importance of the CD14 pathway in a primate model that is similar to human septic shock. Inhibition of the CD14 pathway represents a novel therapeutic approach to treating this life-threatening condition.  相似文献   

12.
13.
Lipopolysaccharide (LPS) is the main inducer of shock and death in Gram-negative sepsis. Recent evidence suggests that LPS-induced signal transduction begins with CD14-mediated activation of 1 or more Toll-like receptors (TLRs). The lipid A analogues lipid IVa and Rhodobacter sphaeroides lipid A (RSLA) exhibit an uncommon species-specific pharmacology. Both compounds inhibit the effects of LPS in human cells but display LPS-mimetic activity in hamster cells. We transfected human TLR4 or human TLR2 into hamster fibroblasts to determine if either of these LPS signal transducers is responsible for the species-specific pharmacology. RSLA and lipid IVa strongly induced NF-kappaB activity and IL-6 release in Chinese hamster ovary fibroblasts expressing CD14 (CHO/CD14), but these compounds antagonized LPS antagonists in CHO/CD14 fibroblasts that overexpressed human TLR4. No such antagonism occurred in cells overexpressing human TLR2. We cloned TLR4 from hamster macrophages and found that human THP-1 cells expressing the hamster TLR4 responded to lipid IVa as an LPS mimetic, as if they were hamster in origin. Hence, cells heterologously overexpressing TLR4 from different species acquired a pharmacological phenotype with respect to recognition of lipid A substructures that corresponded to the species from which the TLR4 transgene originated. These data suggest that TLR4 is the central lipid A-recognition protein in the LPS receptor complex.  相似文献   

14.
Postoperative infection is one of the main factors that affect mortality after hepatic resection, especially in patients with liver cirrhosis. In the pathogenesis of postoperative organ failures complicating endotoxemia or other surgical injuries, inflammatory cytokine has proved to play an important role. We herein report the changes in tumor necrosis factor-alpha, interleukin-1 beta, and granulocyte colony-stimulating factor in production from macrophages/monocytes stimulated with lipopolysaccharide (LPS) after hepatic resection of cirrhotic livers. Seven hepatocellular carcinoma patients with liver cirrhosis who were undergoing limited resection or segmental resection of the liver were examined. Peripheral blood monocytes were separated and incubated with 10 microg/ml LPS, and cytokine release was measured by ELISA before surgery as well as on Postoperative Days (PODs) 1, 3, 7, and 14. Preoperative cytokine production in cirrhotic patients was greater than cytokine production in noncirrhotic controls. Cytokine productivity increased after hepatic resection. TNF-alpha production was 1,846.6 +/- 882.6 pg/ml, 1,947.3 +/- 221.9 pg/ml, 2,486.9 +/- 519.7 pg/ml, and 1,640.2 +/- 416.0 pg/ml on PODs 1, 3, 7, and 14, respectively. The values on all PODs were significantly greater than the healthy control value, and the value on POD 7 was significantly greater than the preoperative value. Interleukin-1 beta and granulocyte colony-stimulating factor production values corroborated this result in general. In conclusion, macrophages/monocytes are primed in cirrhotic patients preoperatively, and they are supposed to carry greater cytokine producing abilities after hepatic resection. When endotoxin spills over in the blood or in the liver after hepatic resection, postoperative hepatic failure could develop as a result of hypercytokinemia.  相似文献   

15.
The susceptibility to infections induced by Gram-negative bacteria is largely determined by innate immune responses to bacteria cell wall lipopolysaccharide (LPS). The stimulation of B cells by LPS enhances their antigen-presenting capacity and is accompanied by B cell proliferation and secretion of large quantities of LPS-neutralizing antibodies. Similar to macrophages and neutrophils, the LPS-induced activation of B cells is dependent on Toll-like receptor (TLR)4. Here, we demonstrate that the responses of B cells to LPS are also regulated by another TLR protein, RP105, which is predominantly expressed on mature B cells in mice and humans. The analysis of mice homozygous for the null mutation in the RP105 gene revealed impaired proliferative and humoral immune responses of RP105-deficient B cells to LPS. Using originally LPS-unresponsive Ba/F3 cells expressing exogenous TLR4 and RP105, we demonstrate the functional cooperation between TLR4 and RP105 in LPS-induced nuclear factor kappaB activation. These data suggest the existence of the TLR4-RP105 signaling module in the LPS-induced B cell activation.  相似文献   

16.
Sepsis remains a serious clinical problem despite intense efforts to improve survival. Experimental animal models of sepsis have responded dramatically to immunotherapy blocking the activity of cytokines. Despite these preclinical successes, human clinical trials have not demonstrated any improvement in survival. We directly compared the mortality, morbidity, and immunopathology in two models of sepsis, one due to lipopolysaccharide (LPS) and the other to cecal ligation and puncture (CLP). BALB/c mice were injected intraperitoneally with 250 microg of LPS or subjected to CLP with an 18-gauge needle. Both models yielded similar mortality (> 85%) and morbidity. Additionally, neutropenia and lymphopenia developed in both groups. Plasma and peritoneal levels of cytokines (TNF, IL-1, IL-6, and the chemokines KC and MIP-2) were measured at 1.5, 4, and 8 h after challenge. LPS induced substantially higher levels of cytokines in both compartments with peak levels between 1.5 and 4 h that began to decline at 8 h. In contrast, cytokine levels in the CLP model were continuing to increase at the 8 h-time point and often exceeded the LPS-induced values at this time. Our data demonstrate that the LPS and CLP models have similar mortality but significant differences in the kinetics and magnitude of cytokine production. Immunotherapy for sepsis based on cytokine production after LPS challenge is misdirected because the LPS model does not accurately reproduce the cytokine profile of sepsis.  相似文献   

17.
18.
19.
Human rhinoviruses (HRVs) are the predominant cause of the common cold. Although this disease is per se rather harmless, HRV infection is considered to set the stage for more dangerous pathogens in vivo. Here we demonstrate that HRV-14, a member of the major group HRV family, can efficiently inhibit antigen-induced T-cell proliferation and T-cell responses to allogeneic monocytes. HRV-14 triggered a significant downregulation of MHC class II molecules on monocytes. Moreover, supernatants from monocytes cultured in the presence of HRV-14 strongly reduced the allogeneic T-cell stimulatory property of untreated monocytes and monocyte-derived dendritic cells (md-DCs), whereas Epstein Barr virus-transformed B-lymphoblastoid cells were not sensitive. Analysis of the supernatant revealed that HRV-14 induced the production of significant amounts of the immunosuppressive cytokine IL-10. The important T-cell stimulatory cytokine IL-12 or the proinflammatory cytokines IL-1beta or TNF-alpha were not detected or were only minimally detected. Finally, monocytes pretreated with HRV-14 were greatly inhibited in their production of IL-12 upon stimulation with IFN-gamma/LPS. These observations suggest that altered cytokine production in mononuclear phagocytes upon interaction with HRV downmodulates appropriate immune responses during the viral infection.  相似文献   

20.
High-density lipoprotein (HDL) has been found to neutralize LPS activity in vitro and in animals in vivo. We sought to determine the effects of reconstituted HDL (rHDL) on LPS responsiveness in humans in a double-blind, randomized, placebo-controlled, cross-over study. rHDL, given as a 4-h infusion at 40 mg/kg starting 3.5 h before endotoxin challenge (4 ng/kg), reduced flu-like symptoms during endotoxemia, but did not influence the febrile response. rHDL potently reduced the endotoxin-induced release of TNF, IL-6, and IL-8, while only modestly attenuating the secretion of proinflammatory cytokine inhibitors IL- 1ra, soluble TNF receptors and IL-10. In addition, rHDL attenuated LPS- induced changes in leukocyte counts and the enhanced expression of CD11b/CD18 on granulocytes. Importantly, rHDL infusion per se, before LPS administration, was associated with a downregulation of CD14, the main LPS receptor, on monocytes. This effect was biologically relevant, since monocytes isolated from rHDL-treated whole blood showed reduced expression of CD14 and diminished TNF production upon stimulation with LPS. These results suggest that rHDL may inhibit LPS effects in humans in vivo not only by binding and neutralizing LPS but also by reducing CD14 expression on monocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号