首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Visual deprivation during a developmental sensitive period markedly alters visual cortical response properties, but the changes in intracortical circuitry that underlie these effects are poorly understood. Here we use a slice preparation of rat primary visual cortex to show that 2 d of prior visual deprivation early in life increases the excitability of layer 4 circuitry. Slice recordings showed that spontaneous activity of layer 4 star pyramidal neurons increased 25-fold after 2 d of visual deprivation between postnatal days (P) 15 and P17. This effect was mediated by increased net excitatory and decreased net inhibitory synaptic drive. Paired recordings showed that excitatory connections between star pyramidal neurons doubled in amplitude, whereas inhibitory connections decreased or increased depending on the interneuron class. These effects reversed when vision was restored. This dynamic adjustment of the excitation-inhibition balance may allow the networks within layer 4 to maintain stable levels of activity in the face of variable sensory input.  相似文献   

2.
Corticothalamic fibres, which originate from layer VI pyramidal neurons in the cerebral cortex, provide excitatory synaptic inputs to both thalamic relay neurons and reticular neurons; reticular neurons in turn supply inhibitory inputs to thalamic relay neurons. Pyramidal cells in layer VI in the mouse somatosensory cortex highly express mRNA encoding kainate receptors, which facilitate or depress transmitter release at several synapses in the central nervous system. We report here that contrary modulation of transmitter release from corticothalamic fibres onto thalamic relay and reticular neurons is mediated by activation of kainate receptors in mouse thalamic ventrobasal complex and thalamic reticular nucleus. Exogenous kainate presynaptically depresses the synaptic transmission at corticothalamic synapses onto thalamic relay neurons, but facilitates it at corticothalamic synapses onto reticular neurons. Meanwhile, the lemniscal synaptic transmission, which sends primary somatosensory inputs to relay neurons, is not affected by kainate. In addition, GluR5-containing kainate receptors are involved in the depression of corticothalamic synaptic transmission onto relay neurons, but not onto reticular neurons. Furthermore, synaptically activated kainate receptors mimic these effects; high-frequency stimulation of corticothalamic fibres depresses synaptic transmission onto relay neurons, but facilitates it onto reticular neurons. Our results suggest that the opposite sensitivity of kainate receptors at the two corticothalamic synapses is governed by cortical activity and regulates the balance of excitatory and inhibitory inputs to thalamic relay neurons and therefore their excitability.  相似文献   

3.
Layer 6 is the main source of neocortical connections back to specific thalamic nuclei. Corticothalamic (CT) systems play an important role in shaping sensory input, but little is known about the functional circuitry that generates CT activity. We recorded from the two main types of neurons in layer 6, regular-spiking (RS; pyramidal neurons) and fast-spiking (FS; inhibitory interneurons) cells and compared the physiological properties of different excitatory inputs. Thalamic stimulation evoked two monosynaptic inputs with distinct properties: suspected thalamocortical (TC) synaptic events had short latencies, short-term synaptic depression, and paired-pulse responses that suggested subnormal axonal conduction. A second group of synaptic responses likely originated from intracortical collaterals of CT cells that were antidromically activated from the thalamus. These intracortical responses had longer latencies, short-term synaptic facilitation, and were transmitted by axons with supernormal conduction. Suspected TC inputs to FS cells had significantly larger amplitudes than those onto RS cells. Dual recordings from neighboring neurons in layer 6 revealed both facilitating and depressing synaptic connections; the depressing synapses were probably formed by layer 6 cells that do not project to the thalamus, and thus were not sampled by thalamic stimulation. We conclude that layer 6 neurons integrate a variety of inputs with distinct temporal dynamics that are determined by the presynaptic cell type.  相似文献   

4.
An unique synaptic feature of thalamic relay neurons is that, in addition to receiving primary sensory synapses, they receive massive feedback synapses originating from the cerebral cortex (corticothalamic synapses). These two synapses are both glutamatergic and coordinate the firing responses of thalamic neurons. It has been revealed in the past decade that various glutamate receptors are involved in synaptic responses in the thalamus. However, differences in the compositions of glutamate receptors between corticothalamic and primary sensory synapses have not been fully determined. This update article aims to provide an overview of the differences in the synaptic properties, including the compositions of glutamate receptors, between primary sensory and corticothalamic synapses in the ventrobasal nucleus of the somatosensory thalamus, and then elucidate how these differences in the two synapses influence the firing properties of thalamic neurons.  相似文献   

5.
《Neuroscience research》2008,60(4):377-382
An unique synaptic feature of thalamic relay neurons is that, in addition to receiving primary sensory synapses, they receive massive feedback synapses originating from the cerebral cortex (corticothalamic synapses). These two synapses are both glutamatergic and coordinate the firing responses of thalamic neurons. It has been revealed in the past decade that various glutamate receptors are involved in synaptic responses in the thalamus. However, differences in the compositions of glutamate receptors between corticothalamic and primary sensory synapses have not been fully determined. This update article aims to provide an overview of the differences in the synaptic properties, including the compositions of glutamate receptors, between primary sensory and corticothalamic synapses in the ventrobasal nucleus of the somatosensory thalamus, and then elucidate how these differences in the two synapses influence the firing properties of thalamic neurons.  相似文献   

6.
Because layer 6 of the cerebral cortex receives direct thalamic input and provides projections back to the thalamus, it is in a unique position to influence thalamocortical interactions. Different types of layer 6 pyramidal neurons provide output to different thalamic nuclei, and it is therefore of interest to understand the sources of functional input to these neurons. We studied the morphologies and local excitatory input to individual layer 6 neurons in rat visual cortex by combining intracellular labeling and recording with laser-scanning photostimulation. As in previous photostimulation studies, we found significant differences in the sources of local excitatory input to different cell types. Most notably, there were differences in local input to neurons that, based on analogy to barrel cortex, are likely to project only to the lateral geniculate nucleus of the thalamus versus those that are likely to also project to the lateral posterior nucleus. The more striking finding, however, was the paucity of superficial layer input to layer 6 neurons in the rat visual cortex, contrasting sharply with layer 6 neurons in the primate visual cortex. These observations provide insight into differences in function between cortical projections to first-order versus higher-order thalamic nuclei and also show that these circuits can be organized differently in different species.  相似文献   

7.
Temporal regulation of the expression locus of homeostatic plasticity   总被引:3,自引:0,他引:3  
Homeostatic plasticity of excitatory synapses plays an important role in stabilizing neuronal activity, but the mechanism of this form of plasticity is incompletely understood. In particular, whether the locus of expression is presynaptic or postsynaptic has been controversial. Here we show that the expression locus depends on the time neurons have spent in vitro. In visual cortical cultures < or =14 days in vitro (DIV), 2 days of TTX treatment induced an increase in miniature excitatory postsynaptic current (mEPSC) amplitude onto pyramidal neurons, without affecting mEPSC frequency. However, in cultures > or =18 DIV, the same TTX treatment induced a large increase in mEPSC frequency, whereas the amplitude effect was reduced. The increased mEPSC frequency was associated with an increased density of excitatory synapses and increased presynaptic vesicle release in response to electrical stimulation. This indicates a shift from a predominantly postsynaptic response to TTX in < or =14 DIV cultures, to a coordinated pre- and postsynaptic response in > or =18 DIV cultures. This shift was not specific for cortical cultures because a similar shift was observed in cultured hippocampal neurons. Culturing neurons from older animals showed that the timing of the switch depends on the time the neurons have spent in vitro, rather than their postnatal age. This temporal switch in expression locus can largely reconcile the contradictory literature on the expression locus of homeostatic excitatory synaptic plasticity in central neurons. Furthermore, our results raise the intriguing possibility that the expression mechanism of homeostatic plasticity can be tailored to the needs of the network during different stages of development or in response to different challenges to network function.  相似文献   

8.
Glutamatergic synapses of layer 6 corticothalamic (CT) neurons form a major excitatory input onto thalamic relay cells, allowing neocortex to continuously control sensory information processing in thalamic circuits. CT synapses display both short- and long-term forms of use-dependent synaptic enhancement, mediated at least in part by increases in the probability of transmitter release. At some synapses, such increases in release probability are accompanied by a higher degree of multivesicular release (MVR) and larger glutamate transients at individual release sites, resulting in the saturation of postsynaptic receptors. The extent to which MVR and postsynaptic saturation interact and control short-term plasticity at CT synapses is not known. Here we examined two distinct presynaptic forms of short-term enhancement, facilitation and augmentation, at CT synapses contacting relay neurons in the ventrobasal nucleus of the mouse thalamus. We found that, in the presence of the low-affinity antagonist γ-D-glutamylglycine, to relieve postsynaptic DL-α-amino-3-hydroxy-5-methylisox azole-propionic acid (AMPA) receptor saturation, the magnitude of facilitation and augmentation increased. Whereas receptor saturation was prominent for both AMPA and N-methyl-D-aspartate receptors, desensitization of AMPA receptors did not significantly alter short-term plasticity. Our results suggest that at CT synapses the activity-dependent increase in synaptic strength is controlled by postsynaptic receptor saturation.  相似文献   

9.
Tactile deprivation in rats produced by whisker-trimming early in life leads to abnormally robust responses of excitatory neurons in layer 4 of primary somatosensory cortex when the re-grown whiskers are stimulated. Present findings from fast-spike neurons indicate that presumed inhibitory cells fire less robustly under the same conditions. These contrasting effects may reflect altered patterns of thalamocortical input to excitatory versus inhibitory cells and/or changes in the strength of intracortical connections. Despite increased excitability of layer 4, neurons in layer 2/3 respond at control levels even after full whisker re-growth. Layer 4 synapses onto supragranular neurons may be permanently depressed as a result of neonatal sensory deprivation.  相似文献   

10.
The thalamus is an essential structure in the mammalian forebrain conveying information topographically from the sensory periphery to primary neocortical areas. Beyond this initial processing stage, "higher-order" thalamocortical connections have been presumed to serve only a modulatory role, or are otherwise functionally disregarded. Here we demonstrate that these "higher-order" thalamic nuclei share similar synaptic properties with the "first-order" thalamic nuclei. Using whole cell recordings from layer 4 neurons in thalamocortical slice preparations in the mouse somatosensory and auditory systems, we found that electrical stimulation in all thalamic nuclei elicited large, glutamatergic excitatory postsynaptic potentials (EPSPs) that depress in response to repetitive stimulation and that fail to activate a metabotropic glutamate response. In contrast, the intracortical inputs from layer 6 to layer 4 exhibit facilitating EPSPs. These data suggest that higher-order thalamocortical projections may serve a functional role similar to the first-order nuclei, whereas both are physiologically distinct from the intracortical layer 6 inputs. These results suggest an alternate route for information transfer between cortical areas via a corticothalamocortical pathway.  相似文献   

11.
In vitro differentiated embryonic stem (ES) cells have been proposed as potential donor cells for cell replacement therapies of neurodegenerative diseases. The functional synaptic integration of such cells appears conceivable because ES cell-derived neurons are well known to establish excitatory and inhibitory synapses. However, long-term synaptic plasticity, a prerequisite of memory formation, has not yet been demonstrated at these synapses. After in vitro differentiation and purification by immunoisolation, we co-cultured ES cell-derived neurons with neocortical explants, which strongly innervated the ES cell-derived target neurons. ES cell-derived neurons exhibited action potential firing similar to primary cultured neocortical neurons. The formation of glutamatergic synapses was indicated by AMPA receptor-mediated miniature excitatory postsynaptic currents (AMPA mEPSCs). In addition, a N-methyl-D-aspartate receptor-mediated, D-2-amino-5-phosphonopentanoic acid-sensitive mEPSC component was observed. We first studied activity-dependent homeostatic plasticity (synaptic scaling) of mEPSCs at glutamatergic synapses. Chronic blockade of action potential activity by TTX resulted in an increase in the amplitudes of AMPA mEPSCs. This indicates that ES cell-derived neurons are capable of a homeostatic regulation of postsynaptic AMPA receptors. In addition, we investigated neurotrophin-induced synaptic plasticity of mEPSCs at glutamatergic synapses. Chronic addition of brain-derived neurotrophic factor (BDNF; 100 ng/ml) to the culture medium resulted in an increase in both the frequency and the amplitudes of AMPA mEPSCs. These results suggest that BDNF induces the formation and/or the functional maturation of presynaptic release sites in parallel with an upregulation of postsynaptic AMPA receptors. Thus BDNF represents a potential co-factor that could improve functional synaptic integration of ES cell-derived neurons into neocortical networks.  相似文献   

12.
Cortical map plasticity is thought to involve long-term depression (LTD) of cortical synapses, but direct evidence for LTD during plasticity or learning in vivo is lacking. One putative role for LTD is in the reduction of cortical responsiveness to behaviorally irrelevant or unused sensory stimuli, a common feature of map plasticity. Here we show that whisker deprivation, a manipulation that drives map plasticity in rat somatosensory cortex (S1), induces detectable LTD-like depression at intracortical excitatory synapses between cortical layer 4 (L4) and L2/3 pyramidal neurons. This synaptic depression occluded further LTD, enhanced LTP, was column specific, and was driven in part by competition between active and inactive whiskers. The synaptic locus of LTD and these properties suggest that LTD underlies the reduction of cortical responses to deprived whiskers, a major component of S1 map plasticity.  相似文献   

13.
The prefrontal cortex is specially adapted to generate persistent activity that outlasts stimuli and is resistant to distractors, presumed to be the basis of working memory. The pyramidal network that supports this activity is unknown. Multineuron patch-clamp recordings in the ferret medial prefrontal cortex showed a heterogeneity of synapses interconnecting distinct subnetworks of different pyramidal cells. One subnetwork was similar to the pyramidal network commonly found in primary sensory areas, consisting of accommodating pyramidal cells interconnected with depressing synapses. The other subnetwork contained complex pyramidal cells with dual apical dendrites displaying nonaccommodating discharge patterns; these cells were hyper-reciprocally connected with facilitating synapses displaying pronounced synaptic augmentation and post-tetanic potentiation. These cellular, synaptic and network properties could amplify recurrent interactions between pyramidal neurons and support persistent activity in the prefrontal cortex.  相似文献   

14.
High-frequency activity produces transient depression at many synapses but also, as recently demonstrated, may accelerate the recovery from use-dependent depression. We have examined the possible consequences of this synaptic mechanism in neocortical excitatory synapses by recording simultaneously from presynaptic pyramidal neurons and their postsynaptic targets. Brief bursts of high-frequency spikes produced a strong depression of the amplitude of unitary excitatory postsynaptic currents (uEPSCs). However, when burst firing was combined with low-frequency ongoing activity, we found that the strong synaptic depression was followed by a transient rebound of synaptic strength. This rebound overshot the low-frequency baseline values and lasted 1-2 s. These results suggest that in the presence of ongoing activity, neocortical synapses may functionally facilitate following burst firing.  相似文献   

15.
The visual cortex of 20 day old rats and rabbits has been considered as mature on the basis of the observations that the dendritic arborization and the overall synaptic population have almost reached their adult stage in these animals. In the present study we have investigated the visual cortex of 20 day and 7 month old (adult) rabbits in order to determine whether this apparent adult appearance also holds for the synaptic organization of individual neurons. Neurons mainly located in layers III and IV of the primary visual cortex (area 17) were Golgi-impregnated, gold toned and deimpregnated and were then, after embedding in plastic, sectioned serially. The number and length of synaptic profiles, and the length of the neuronal boundaries were analysed in every tenth section. From these counts and measurements the size distribution of the synaptic discs, the number of synapses per 100 micron2 neuronal surface and the receptive surface expressed as the percentage of the total neuronal surface covered with synaptic contacts were estimated using stereological methods. At both ages studied, the density of synapses was significantly higher for the non-pyramidal neurons than for the pyramidal neurons. Differences in the amount of receptive surface were parallel to the differences observed for the number of synapses per 100 micron2. At day 20 the receptive surface of the non-pyramidal neurons was significantly larger than that of the pyramidal neurons. The receptive surface of the non-pyramidal neurons in the adult stage was not only larger than that of the pyramidal neurons in the adults, but also larger than that of the day 20 non-pyramidal neurons. From our results the following conclusions can be drawn: (1) The synaptic input received by the pyramidal neurons is mainly established at day 20 of postnatal life, i.e. prior to the establishment of adult visual behaviour. (2) The non-pyramidal neurons complete their maturation in a later stage than the pyramidal neurons. (3) Medium to large sized synaptic contacts are newly formed after day 20 and are mainly added to the synaptic population on dendrites of non-pyramidal neurons. (4) The specific increase in the number of synapses on non-pyramidal neurons is discussed in relation to intracortical inhibition which is thought to be important for the fine regulation of visual function during development.  相似文献   

16.
Short-term synaptic plasticity, in particular short-term depression and facilitation, strongly influences neuronal activity in cerebral cortical circuits. We investigated short-term plasticity at excitatory synapses onto layer V pyramidal cells in the rat medial prefrontal cortex, a region whose synaptic dynamic properties have not been systematically examined. Using intracellular and extracellular recordings of synaptic responses evoked by stimulation in layers II/III in vitro, we found that short-term depression and short-term facilitation are similar to those described previously in other regions of the cortex. In addition, synapses in the prefrontal cortex prominently express augmentation, a longer lasting form of short-term synaptic enhancement. This consists of a 40-60% enhancement of synaptic transmission which lasts seconds to minutes and which can be induced by stimulus trains of moderate duration and frequency. Synapses onto layer III neurons in the primary visual cortex express substantially less augmentation, indicating that this is a synapse-specific property. Intracellular recordings from connected pairs of layer V pyramidal cells in the prefrontal cortex suggest that augmentation is a property of individual synapses that does not require activation of multiple synaptic inputs or neuromodulatory fibers. We propose that synaptic augmentation could function to enhance the ability of a neuronal circuit to sustain persistent activity after a transient stimulus. This idea is explored using a computer simulation of a simplified recurrent cortical network.  相似文献   

17.
Distinct classes of GABAergic synapses target restricted subcellular domains, thereby differentially regulating the input, integration and output of principal neurons, but the underlying mechanism for such synapse segregation is unclear. Here we show that the distributions of two major classes of GABAergic synapses along the perisomatic and dendritic domains of pyramidal neurons were indistinguishable between primary visual cortex in vivo and cortical organotypic cultures. Therefore, subcellular synapse targeting is independent of thalamic input and probably involves molecular labels and experience-independent forms of activity.  相似文献   

18.
The sensory relay synapses in the thalamus undergo extensive refinement during early life. Disruptions of spontaneous activity, but not sensory deprivation, can induce large-scale re-organization of neuronal connections in the thalamus. Recent studies also reveal an extended period of synaptic refinement in the visual and somatosensory relay synapses, where sensory deprivation produces some unexpected effects on synaptic remodeling. This article aims to provide a brief overview of recent findings and current ideas about the refinement of relay synapses in the thalamus.  相似文献   

19.
Feig SL 《Neuroscience》2005,136(4):1147-1157
Corticothalamic axons from layer 5 of primary and secondary auditory and visual areas have large terminals that make multiple synaptic contacts on proximal dendrites of relay cells in higher order thalamic nuclei and have been termed "driver" inputs. The corticothalamic cells express mRNA for the presynaptic growth-associated protein-43, in the adult rat [Feig SL (2004) Corticothalamic cells in layers 5 and 6 of primary and secondary sensory cortex express GAP-43 mRNA in the adult rat. J Comp Neurol 468:96-111]. In contrast, ascending driver afferents to first order nuclei (e.g. retinal, inferior collicular, and lemniscal) lose growth-associated protein-43 as mature synaptic terminals are established. Levels of immunoreactivity for growth-associated protein-43 are compared for first and higher order visual (lateral geniculate and lateral posterior), auditory (ventral and dorsal divisions of the medial geniculate), and somatosensory (ventral posterior and posterior) thalamic nuclei. At one week postnatal, staining for growth-associated protein-43 is uniform throughout first and higher order thalamic nuclei. By three weeks and thereafter, staining is denser in the higher order than first order thalamic nuclei. Electron microscopy shows growth-associated protein-43 in profiles with characteristics of afferents from layer 5 in LP and medial geniculate nucleus and no such label in retinal afferents in lateral geniculate nucleus. In these nuclei, approximately 25% of the profiles with characteristics of cortical afferents from layer 6 have label for growth-associated protein-43. The superficial layers of the superior colliculus also show growth-associated protein-43 positive profiles with characteristics of terminals from cortical layer 5. Some growth-associated protein-43 positive terminals were also positive for GABA in the thalamic nuclei studied and in the superior colliculus. The data suggest that sensory afferents to first order thalamocortical relays become stabilized once mature synaptic patterns are established, but the higher stages of information processing involving higher order thalamic relays, via cells in cortical layer 5, retain plasticity related to growth-associated protein-43 in the adult.  相似文献   

20.
Van Horn SC  Sherman SM 《Neuroscience》2007,146(1):463-470
We used electron microscopy to determine the relative numbers of the three synaptic terminal types, RL (round vesicle, large terminal), RS (round vesicles, small terminal), and F (flattened vesicles), found in several representative thalamic nuclei in cats chosen as representative examples of first and higher order thalamic nuclei, where the first order nuclei relay subcortical information mainly to primary sensory cortex, and the higher order nuclei largely relay information from one cortical area to another. The nuclei sampled were the first order ventral posterior nucleus (somatosensory) and the ventral portion of the medial geniculate nucleus (auditory), and the higher order posterior nucleus (somatosensory) and the medial portion of the medial geniculate nucleus (auditory). We found that the relative percentage of synapses from RL terminals varied significantly among these nuclei, these values being higher for first order nuclei (12.6% for the ventral posterior nucleus and 8.2% for the ventral portion of the medial geniculate nucleus) than for the higher order nuclei (5.4% for the posterior nucleus, and 3.5% for the medial portion of the medial geniculate nucleus). This is consistent with a similar analysis of first and higher order nuclei for the visual system (the lateral geniculate nucleus and pulvinar, respectively). Since synapses from RL terminals represent the main information to be relayed, whereas synapses from F and RS terminals are modulatory in function, we conclude that there is relatively more modulation of the thalamic relay in the cortico-thalamo-cortical higher order pathway than in first order relays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号