首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
γ-Aminobutyric acid (GABA)-containing elements have been studied by light and electron microscopy in the rat spinal cord, using immunocytochemistry with anti-GABA antibodies. Light microscopy showed immunoreactive somata localized principally in laminae I–III, and occasionally in the deeper laminae of the dorsal horn and in the ventral horn. Small somata were also observed around the central canal. Punctate GABA-immunoreactive profiles were particularly concentrated in laminae I–III, and moderately abundant in the deeper laminae and in the ventral horn where they were observed surrounding the unlabelled motoneurons.

At the ultrastructural level, the punctate profiles corresponded to GABA-containing axonal varicosities or small dendrites. GABA-immunoreactive varicosities were presynaptic to labelled or unlabelled dendrites and cell bodies. Some unlabelled terminals presynaptic to unlabelled dendrites received symmetrical synaptic contacts from GABA-immunoreactive terminals.

These results confirm data obtained withl-glutamate decar☐ylase immunocytochemistry, and support the role of GABA in pre- and postsynaptic inhibition in the spinal cord, respectively via axoaxonal and axosomatic or axodendritic synapses.  相似文献   


2.
We investigated whether direct, cortico-motoneuronal connections are present in the rat, using both light microscopic and electron microscopic techniques. Corticospinal fibres were labelled using the anterograde tracer, biotinylated dextran-amine (BDA), which was injected into forelimb sensorimotor cortex. Motoneurons were retrogradely labelled after injection of cholera toxin subunit B (CTB) into forelimb muscles, contralateral to the injected hemisphere. Terminals of peripheral afferent fibres, which were also labelled by CTB, were easily distinguishable from, and much larger than, BDA-labelled corticospinal terminals. At the light microscope level, corticospinal terminals were found in all laminae contralateral to the injection site, most extensively in laminae VI and VII of cervical segments C5–C8. Although labelling in the ventral horn (lamina IX) was present, it was extremely sparse. A total of 47 corticospinal synapses were studied at the electron microscope level; most of these were in lamina VII and the majority (35/47; 74%) made axo-dendritic contacts with asymmetrical synapses; one made an axo-somatic synapse, and in the remaining 11 cases no postsynaptic structure could be identified. All corticospinal terminals contained spherical boutons. Serial sectioning of eight BDA-labelled corticospinal boutons in lamina IX revealed that most (seven out of eight) did not make synaptic contacts with any neuronal structure, and none made any contact with adjacent dendrites of CTB-labelled motoneurons. Thus these results provide no positive ultrastructural evidence for direct cortico-motoneuronal synaptic connections within lamina IX between corticospinal axon boutons and the proximal dendrites of forelimb motoneurons. The results confirm other lines of evidence suggesting that such connections are not present in the rat. Electronic Publication  相似文献   

3.
The ultrastructural organization of presumed catecholamine-containing boutons, in the dorsal horn of the cat lumbosacral spinal cord, was examined in an immunocytochemical study using an antiserum against tyrosine hydroxylase. The study was restricted to the first four laminae of Rexed. Light microscopic inspection revealed numerous, varicose, tyrosine hydroxylase-immunoreactive axons throughout this region of the spinal cord. Within laminae I and II the fibres exhibited a prominent rostrocaudal orientation, while in laminae III and IV they were organized predominantly dorsoventrally. Correlated ultrastructural analysis confirmed that these varicosities were synaptic boutons. Forty-five of these structures were examined through serial sections and they were found to form symmetrical (Gray type II) synaptic junctions with dendrites (95%) and somata (5%). Immunoreactive boutons were not observed to be either presynaptic or postsynaptic to axon terminals. These findings suggest that catecholamines within the spinal dorsal horn act through a postsynaptic action upon dorsal horn neurons.  相似文献   

4.
A J Todd 《Neuroscience》1990,39(2):387-394
The ultrastructural distribution of glycine-like immunoreactivity in laminae I-III of rat spinal dorsal horn was examined by using pre-embedding immunocytochemistry. Immunoreactive axons, dendrites and cell bodies were observed in all three laminae, but were most common in lamina III. The axons were presynaptic at axodendritic and axosomatic synapses, but also at axo-axonic synapses in laminae II and III, where the postsynaptic boutons frequently resembled the terminals of myelinated primary afferents. Some vesicle-containing dendrites in lamina II also showed glycine-like immunoreactivity. Immunoreactive dendrites in laminae II and III were postsynaptic to the central axons of type II, but not type I glomeruli, which suggests that glycinergic neurons receive a major monosynaptic input from myelinated primary afferents. These results support the suggestion that GABA and glycine co-exist in some neurons in laminae I-III of rat dorsal horn, and confirm that glycine is involved in somatosensory processing involving low threshold myelinated cutaneous primary afferents.  相似文献   

5.
In three frog species Rana esculenta, Rana temporaria and Xenopus laevis, the contacts established by gamma-aminobutyric acid and glutamate decarboxylase immunoreactive (-ir) terminals upon primary afferent fibers were studied using confocal and electron microscopy. For confocal microscopy, the primary afferent fibers were labeled through the dorsal root with Dextran-Texas Red, whereas gamma-aminobutyric acid and glutamate decarboxylase immunoreactivity were revealed with fluorescein isothiocyanate. Appositions of gamma-aminobutyric acid and glutamate decarboxylase immunoreactive profiles onto primary afferent fibers were observed and were considered as putative axo-axonic contacts of GABAergic terminals upon primary afferents. The latter was confirmed by the ultrastructural finding of axo-axonic synapses from gamma-aminobutyric acid immunopositive boutons upon the HRP-labeled primary afferent fibers in postembedding immunoelectron microscopic study. Such synapses may represent the morphological basis of GABAergic presynaptic inhibition of primary afferent fibers.  相似文献   

6.
The connections between the host and 5-hydroxytryptamine-containing neurons grafted to the spinal cord have been analysed using electron microscopic immunohistochemistry. Adult rats with 5,7-dihydroxytryptamine lesions of the brain and spinal cord received implants of embryonic medullary raphé neurons at three sites in the spinal cord. Eight to 10 months after grafting, the transplanted 5-hydroxytryptamine-positive neurons had formed extensive and complex contacts with spines, dendrites, perikarya and vesicle-containing structures in both the dorsal and ventral horns. Reinnervation of laminae IV-VI was less rich. In the graft itself, connections were also made between non-immunoreactive varicosities and 5-hydroxytryptamine-containing dendrites, and somata, but the exact origin of the afferents was not determined. Outside the implant site, no obvious synaptic junctions onto grafted 5-hydroxytryptamine-immunoreactive boutons were obvious, although labelled and unlabelled varicosities were often in close apposition. Synaptic junctions in the dorsal horn were predominantly symmetric, with the presynaptic varicosity containing mostly small agranular vesicles. By contrast, in the ventral horn most junctions were asymmetric, while the presynaptic element contained both small agranular and large dense-core vesicles. The results demonstrate that the types of synaptic contacts formed between the grafted 5-hydroxytryptamine neurons and the host spinal cord are remarkably similar to those found in intact spinal cord. In addition, the division of morphological differences that exists between 5-hydroxytryptamine-containing boutons in the normal dorsal vs ventral horns is also apparent in the transplanted animals. Finally, there appear to be present several anatomical substrates for the regulation by the host of 5-hydroxytryptamine output from the grafted neurons.  相似文献   

7.
Summary The ultrastructure of the centromedian nucleus of the monkey thalamus was analysed qualitatively and quantitatively and projection neurons, local circuit neurons, and synaptic bouton populations identified. Projection neurons were mostly medium-sized, with oval-fusiform or polygonal perikarya, few primary dendrites, and frequent somatic spines; local circuit neurons were smaller. Four basic types of synaptic boutons were distinguished: (1) Small- to medium-sized boutons containing round vesicles (SR) and forming asymmetric contacts, identified as corticothalamic terminals. (2) Heterogeneous medium-sized boutons with asymmetric contacts and round vesicles, similar to the so-called large round (LR) boutons, which were in part of cortical origin. (3) Heterogeneous GAD-positive small- to medium-sized boutons, containing pleomorphic vesicles and forming symmetric contacts (F1 type), which included pallidothalamic terminals. (4) Presynaptic profiles represented by GAD-positive vesicle-containing dendrites of local circuit neurons. Complex synaptic arrangements, serial synapses and triads with LR and SR boutons engaging all parts of projection neuron dendrites and somata, were seen consistently, whereas classical glomeruli were infrequent. LR and SR boutons also established synapses on dendrites of local circuit neurons. F1 boutons established synapses on projection neuron somata, dendrites and initial axon segments. Compared to other previously studied motor-related thalamic nuclei, differences in synaptic coverage between proximal and distal projection neuron dendrites were less pronounced, and the density of synapses formed by local circuit dendrites on projection neuron dendrites was lower. Thus, compared to other thalamic nuclei, the overlap of different inputs was higher on monkey centromedian cells, and centromedian inhibitory circuits displayed a different organization.  相似文献   

8.
Using immunocytochemical techniques (light and electron microscopy), weakly stained metabotropic glutamate receptor (mGluR) 1alpha immunoreactivity was detected in lamina I of the rat spinal cord. Immunoreactivity for mGluR2/3 was almost undetectable in this lamina and outer lamina II. In lamina II, there was mGluR1alpha immunoreactivity. Strongly stained mGluR2/3 was seen in the inner layer of lamina II and the dorsal part of lamina III. In laminae III X, weakly to moderately stained mGluR1alpha immunoreactive product was demonstrated. Similar staining for mGluR2/3 was also seen in lamina III-VI and in lamina X, but mGluR2/3 immunoreactivities were few in lamina VII-IX. With electron microscopy, mGluR1alpha immunoreactivity was seen in neuronal cell body and dendrites in lamina II of the dorsal horn. In the lateral and ventral horns, only dendrites of neurons were mGluR1alpha immunopositive. Some mGluR2/3 immunopositive dendrites were demonstrated in lamina II of the dorsal horn, lateral and ventral horns. In the ventral horn, mGluR2/3 immunopositive axon and axon terminals were demonstrated. Some mGluR2/3 immunopositive astrocytes were also demonstrated in the three areas and their strongly stained processes wrapped around neuronal cell bodies and synapses.  相似文献   

9.
Antisera raised against the fixation products of L-glutamate and L-aspartate were used, singly or in combination, to study the ultrastructural localization of the amino acids in the rat dorsal horn, with post-embedding immunogold techniques. Immunostaining for each of the amino acids was also combined with immunolocalization of GABA, an important inhibitory neurotransmitter in the spinal cord, or synaptophysin, a synaptic vesicle glycoprotein. In addition, we examined the localization of glutamate immunoreactivity in relation to that of calcitonin-gene related peptide and substance P, two neuropeptides present in high concentrations in the dorsal horn. Glutamate- and aspartate-immunoreactive neuronal cell bodies, dendrites, axons and terminals were apparent in the first three laminae of the dorsal horn. In somatic and dendritic profiles, the immunolabel was present over the general cytoplasm and mitochondria; in the terminals, it was found over small, agranular vesicles, mitochondria and, at times, synaptic densities. Quantitative estimation indicated that the colloidal gold density in the glutamate-immunoreactive terminals was five-fold more than in any other neuronal profile. Both glutamate- and aspartate-immunopositive terminals made asymmetric synaptic contacts onto unlabelled dendrites; glutamate-positive terminals often formed the core of type I and II glomeruli. After double labelling of the same sections, glutamate and aspartate immunoreactivities consistently occurred in different axonal and terminal profiles. In these preparations, it was clearly seen that glutamate-immunoreactive terminals were far more numerous than (more than 10-fold) those immunoreactive for aspartate. Double labelling for glutamate or aspartate and GABA also revealed distinct staining of different terminals. Simultaneous immunolocalization of each of the amino acids and synaptophysin showed the amino acid and glycoprotein immunoreactivities co-localized in small, agranular vesicles in immunoreactive terminals. Finally, triple labelling of the same sections for glutamate, calcitonin gene-related peptide and substance P revealed that glutamate was often co-localized with either of the two neuropeptides in the same axonal boutons; terminals that showed simultaneous labelling for glutamate, calcitonin gene-related peptide and substance P were also noted. In all cases, the glutamate immunoreactivity was restricted to small, clear vesicles whereas the neuropeptide immunoreactivities were present in larger, dense-cored vesicles. Our observations demonstrate that there is an abundant glutamate immunoreactivity in the superficial layers of the rat dorsal horn, localized in neuronal profiles distinct from those containing aspartate or GABA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The subnuclear and synaptic distribution of substance P immunoreactivity was examined in the rat interpeduncular nucleus at the light and electron microscope level. The nucleus possessed a prominent substance P-immunoreactive axonal plexus in the lateral and dorsomedial subnuclei, and in the dorsal cap of the rostral subnucleus. The density of substance P-immunoreactive axons in the remaining subnuclear divisions was sparse to moderate. Terminals of immunoreactive axons contained spherical vesicles and formed asymmetric contacts on dendritic processes exclusively. Immunoreactive neurons, restricted to the rostral subnucleus, possessed long, sparsely branched dendrites. Unlabelled terminals containing either spherical or pleomorphic vesicles contacted substance P-immunoreactive dendritic profiles. Axodendritic and axosomatic synapses containing substance P immunoreactivity pre- and postsynaptically were not observed. Ultrastructural evidence for synaptic relationships between substance P-containing profiles and those containing either choline acetyltransferase or glutamate decarboxylase was obtained by means of double antigen immunohistochemistry. Terminals of fasciculus retroflexus axons stained for choline acetyltransferase immunoreactivity formed asymmetric synaptic contacts with substance P-immunoreactive dendritic profiles. Few substance P-positive dendrites in the rostral subnucleus received terminals possessing glutamate decarboxylase activity. Unlabelled terminals containing either spherical or pleomorphic vesicles contacted substance P- and glutamate decarboxylase-immunoreactive dendritic profiles simultaneously. Terminals possessing either substance P or glutamate decarboxylase immunoreactivity formed synaptic contacts with dendritic processes of neurons in the lateral subnucleus. Many of the neurons within this subnuclear division contained glutamate decarboxylase. This study provides direct evidence of synaptic relationships between choline acetyltransferase-immunoreactive axons and substance P-immunoreactive dendritic profiles, and between substance P-positive axons and glutamate decarboxylase-immunoreactive dendrites. These findings reveal that two types of transmitter-specific axons of the fasciculus retroflexus innervate neuronal populations of the interpeduncular nucleus stained immunohistochemically for either substance P or glutamate decarboxylase.  相似文献   

11.
In three frog species Rana esculenta, Rana temporaria and Xenopus laevis, the contacts established by γ-aminobutyric acid and glutamate decarboxylase immunoreactive (-ir) terminals upon primary afferent fibers were studied using confocal and electron microscopy. For confocal microscopy, the primary afferent fibers were labeled through the dorsal root with Dextran–Texas Red, whereas γ-aminobutyric acid and glutamate decarboxylase immunoreactivity were revealed with fluorescein isothiocyanate. Appositions of γ-aminobutyric acid and glutamate decarboxylase immunoreactive profiles onto primary afferent fibers were observed and were considered as putative axo–axonic contacts of GABAergic terminals upon primary afferents. The latter was confirmed by the ultrastructural finding of axo–axonic synapses from γ-aminobutyric acid immunopositive boutons upon the HRP-labeled primary afferent fibers in postembedding immunoelectron microscopic study. Such synapses may represent the morphological basis of GABAergic presynaptic inhibition of primary afferent fibers.  相似文献   

12.
Sections of the cat's visual cortex were stained by an antiserum to glutamate decarboxylase using the peroxidase-antiperoxidase method; they were then impregnated by the section Golgi procedure and finally the Golgi deposit was replaced by gold. Neurons containing glutamate decarboxylase immunoreactivity were found in all layers of the visual cortex, without any obvious pattern of distribution. Fifteen immunoreactive neurons were also Golgi-impregnated and gold-toned, which enabled us to study the morphology and synaptic input of identified GABAergic neurons. These neurons were found to be heterogeneous both with respect to the sizes and shapes of their perikarya and the branching patterns of their dendrites. All the immunoreactive, Golgi-impregnated neurons had smooth dendrites, with only occasional protrusions. The synaptic input of glutamate decarboxylase-immunoreactive neurons was studied in the electron microscope. Immunoreactive neurons received immunoreactive boutons forming symmetrical synapses on their cell bodies. The Golgi-impregnation made it possible to study the input along the dendrites of immunoreactive neurons. One of the large neurons in layer III whose soma was immunoreactive was also Golgi-impregnated: it received numerous non-immunoreactive asymmetrical synaptic contacts along its dendrites and occasional ones on its soma. The same neuron also received a few boutons forming symmetrical synaptic contacts along its Golgi-impregnated dendrites; most of these boutons were immunoreactive for glutamate decarboxylase. Glutamate decarboxylase-immunoreactive boutons were also found in symmetrical synaptic contact with non-immunoreactive neurons that were Golgi-impregnated. A small pyramidal cell in layer III was shown to receive several such boutons along its somatic membrane. It is concluded that the combination of immunoperoxidase staining and Golgi impregnation is technically feasible and that it can provide new information. The present study has shown that there are many morphologically distinct kinds of aspiny GABAergic neurons in the visual cortex; that the predominant type of synaptic input to the dendrites of such neurons is from boutons forming asymmetrical synapses, but that some of the GABAergic neurons also receive a dense symmetrical synaptic input on their cell bodies, and occasional synapses along their dendrites, from the boutons of other GABAergic neurons. These findings provide a morphological basis, firstly, for a presumed powerful excitatory input to GABAergic interneurons and, secondly, for the disinhibition which has been postulated from electrophysiological studies to occur in the cat's visual cortex.  相似文献   

13.
Light- and electron-microscopic localization of substance P in the monkey spinal cord was studied by the peroxidase anti-peroxidase technique with the particular aim of examining types of interactions made by substance P-positive boutons with other neuronal elements in the dorsal horn. By light-microscopy dense labeling for immunoreactive substance P was found in laminae I, II (outer zone) and V (lateral region), consistent with findings in other mammalian species. By electron-microscopy, substance P-positive staining was mostly in unmyelinated and in some thinly myelinated small diameter fibers. Substance P-positive terminals contained both large granular vesicles (80-120 nm diameter), which were filled with reaction product, and clear round vesicles (40-60 nm). Substance P-positive large granular vesicles were sometimes observed near presynaptic sites and in contact with dense projection there. Immunoreactive substance P boutons were small to large in size (1-4 micron), formed synapses with somata and large dendrites and were the central axons of synaptic glomeruli where they were in synaptic contact with numerous small dendrites and spines. Substance P-labeled axons frequently formed synapses with dorsal horn neurons which were also postsynaptic to other types of axons. Substance P-positive profiles participated in numerous puncta adhaerentia with unlabeled cell bodies, dendrites and axons. Only rarely, some suggestive evidence was obtained indicating that axons might synapse onto substance P-containing boutons. Biochemical analysis of monkey spinal cord tissue extracts, undertaken to characterize more precisely the immunoreactive substances, indicated that only substance P and its oxide derivative were detected with the antiserum used in the immunocytochemistry. These morphological findings show that substance P is contained within a class of axon terminals, many of which have been shown previously in the monkey to originate from the dorsal root. The results suggest that modulation of substance P primary afferents terminating in the outer dorsal laminae of the monkey spinal cord occurs in part via axonal inputs onto dorsal horn neurons postsynaptic to the primary afferent.  相似文献   

14.
Sakamoto H  Spike RC  Todd AJ 《Neuroscience》1999,94(3):903-908
We have previously demonstrated that neurons in laminae III and IV of the spinal dorsal horn which possess the neurokinin-1 receptor and have long dorsal dendrites receive a major synaptic input from substance P-containing primary afferents and a more limited input from myelinated afferents. In the present study we have carried out a quantitative analysis of the contacts which cells of this type receive from two other classes of unmyelinated primary afferent: those which contain somatostatin and those without neuropeptides. We found that although boutons belonging to both of these types of afferent do form contacts with neurons of this type, the contacts are far less numerous than those formed by substance P-containing afferents. In laminae I and II, the density of contacts which dendrites of these cells received from somatostatin-containing afferents was 1.2/100 microm and that from non-peptidergic C afferents was 2.0/100 microm, which is far lower than our previous estimate of 18.8/100 microm from substance P-containing fibres in these laminae. These results indicate that although the dendrites of large neurons in laminae III and IV which possess the neurokinin-1 receptor pass through regions of the dorsal horn in which many types of primary afferent terminate, their synaptic input from primary afferents is organized in a highly selective manner.  相似文献   

15.
Summary This paper deals with the distribution of thyrotropin-releasing hormone-like immunoreactivity in the spinal cord of the rat, and particularly in the sympathetic nuclei, at light and electron microscopic levels. In the dorsal horn, the inner part of laminae II and III displayed thin thyrotropin-releasing hormone immunoreactive profiles. Electron microscopy revealed small immunoreactive varicosities which made synaptic contact with small dendrites or dendritic spines. Dense thyrotropin-releasing hormone-like immunoreactivity was observed in all sympathetic nuclei (nucleus intermediolateralis pars fascicularis and principalis, nucleus intercalatus and dorsal commissural nucleus) except the nucleus intercalatus pars ependymalis. Electron microscopy showed many immunoreactive varicosities which were often in synaptic contact with dendrites (proximal or distal), rarely with perikarya and never with axons. Sometimes, the same immunoreactive varicosity made axodendritic contacts with two dendrites and, conversely one dendrite was sometimes synaptically contacted by two or more immunoreactive varicosities. The ventral horn displayed a diffuse thyrotropin-releasing hormone-like immunoreactivity except for the cremaster nucleus (at lumbar level) which was densely outlined by immunoreactive profiles. Occasionally a large cell body in lamina IX (a putative motoneuron) was outlined by immunoreactive profiles but ultrastructural studies revealed very few immunoreactive axosomatic synapses, while immunoreactive symmetrical or asymmetrical axodendritic synapses were observed. The present study clearly confirms the existence of thyrotropin-releasing hormone immunoreactive synapses, thus substantiating the physiological role of this hormone in the spinal cord.  相似文献   

16.
A light and electron microscopic study of GABA-immunoreactive neurons and profiles in the ventroanterior-ventrolateral and ventromedial nuclei of rat dorsal thalamus was conducted using antiserum raised against GABA. Less than 1% of the neurons in these motor-related nuclei exhibited GABA immunoreactivity, confirming previous reports that these nuclei are largely devoid of interneurons. Immunoreactive neurons in the ventral anterior-ventral lateral complex and ventromedial nucleus were bipolar or multipolar in shape, and tended to be smaller than non-immunoreactive neurons. GABA immunoreactivity in the neuropil consisted of labeled axon terminals and myelinated and unmyelinated axons, and was lower in the ventral anterior-ventral lateral complex and ventromedial nucleus than in neighboring thalamic nuclei. The density of neuropil immunolabeling was slightly higher in ventral anterior-ventral lateral complex than in ventromedial nucleus. GABA-immunoreactive axon terminals, collectively termed MP boutons for their medium size and pleomorphic vesicles (and corresponding to "F" profiles of some previous studies of thalamic ultrastructure), formed symmetric synapses and puncta adhaerentia contacts predominantly with large and medium-diameter (i.e. proximal) non-immunoreactive dendrites. Approximately 12 and 18% of boutons in the ventral anterior-ventral lateral complex and ventromedial nucleus, respectively, were GABA-immunopositive. Many of these immunoreactive profiles probably arose from GABAergic neurons in the thalamic reticular nucleus, substantia nigra pars reticulata and entopeduncular nucleus. Two types of non-immunoreactive axon terminals were distinguished based on differences in morphology and synaptic termination sites. Boutons with small ovoid profiles and round vesicles that formed prominent asymmetric synapses onto small-diameter dendrites were observed. Mitochondria were rarely observed within these boutons, which arose from thin unmyelinated axons. These boutons composed approximately 82 and 74% of boutons in the ventral anterior-ventral lateral complex and ventromedial nucleus, respectively, and were considered to arise predominantly from neurons in the cerebral cortex. In contrast, boutons with large terminals that contained round or plemorphic vesicles and formed multiple asymmetric synapses predominantly with large-diameter dendrites were also observed. Puncta adhaerentia contacts were also common. Mitochondria were numerous within large boutons with round vesicles, which arose from myelinated axons. Many of the large boutons were likely to have originated from neurons in the cerebellar nuclei. Approximately 6% of the boutons in the ventral anterior-ventral lateral complex and 8% in ventromedial nucleus were of the large type.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Locus coeruleus terminals in intraocularly transplanted spinal cords and catecholamine terminals in defined areas of normal spinal cords were investigated qualitatively and quantitatively by immunoelectron microscopy. Results showed that the morphological features of synapses formed in the grafts closely resembled those of normal spinal cords. The incidences of synapses per varicosities, as observed in single sections, were 30.1, 40.2 and 22.8% for the ventral horn, dorsal horn and grafted spinal cord, respectively. In all three groups, most of the postsynaptic targets were small dendrites, although high frequencies of large dendrites were found in the ventral horn. Spines and axons in the grafts were also postsynaptic targets. Several characteristics of relative immaturity were observed in the grafts. It is suggested that the inhibition of spinal neurons by locus coeruleus terminals may be mediated not only by volume transmission through nonsynaptic contacts, but also by direct contacts with catecholamine terminals, and that the excitation of facilitation observed at those terminals may be explained by the suppression of inhibitory neurons by axoaxonic contacts.  相似文献   

18.
Summary The cat dorsal lateral geniculate nucleus (LGN) was examined at the light- and electron-microscopic level after immunocytochemistry for GAD (the synthesizing enzyme of the inhibitory neurotransmitter GABA), to identify cells and processes with GAD-like immunoreactivity. GAD-positive perikarya were distributed throughout the A and C laminae, constituting a moderate proportion of cells in the LGN. Labeled cells were characterized by small size, scant cytoplasm, relatively large nuclei with common indentations, small mitochondria, few organelles and few strands of rough endoplasmic reticulum. Unlabeled cells were of large, medium and small size. GAD-positive terminals were identified as F1 and F2 types (Guillery's nomenclature) on the basis of their synaptic relations and ultrastructure. Labeled F2 terminals were postsynaptic to retinal (RLP) boutons and presynaptic to unlabeled dendrites in synaptic glomeruli. Labeled F1 terminals made synapses on unlabeled somata and dendrites, and on labeled dendrites and F2 terminals. Presumably, most labeled F1 terminals originate from GABAergic perigeniculate axons. Retinal (RLP) and cortico-geniculate (RSD) boutons remained unlabeled in the reative zone. These terminals made synapses with labeled and unlabeled dendrites and with labeled F2 boutons. In conjunction with previous studies on GAD-positive cells in the perigeniculate nucleus, these results provide immunocytochemical and morphological evidence suggesting that the GABAergic intrinsic and extrinsic (perigeniculate) interneurons mediate the different inhibitory phenomena which occur in relay cells of the cat LGN. The ultrastructural features and synaptic relations of GABAergic cells and processes in the cat LGN are similar to those of equivalent neural elements in the LGN of rat and monkey, suggesting general principles of organization and morphology for GABAergic neurons in the thalamus of different mammals.Supported in part by grants EY 02877 and HD 03352 from the National Institutes of Health  相似文献   

19.
The orexins (also known as hypocretins) are peptide neurotransmitters made by hypothalamic neurons that are thought to play an important role in regulating wake-sleep states. One terminal area for orexin neurons is the tuberomammillary nucleus, a histaminergic cell group that is wake-active, but the relationship of the orexinergic terminals to the tuberomammillary neurons has not been examined in detail. We studied the ultrastructure of orexin A-immunoreactive axons and terminals in the tuberomammillary nucleus using pre- and post-embedding electron microscopic protocols. We confirmed an abundant projection of orexin-immunoreactive boutons to both dorsal and ventral divisions of the tuberomammillary nucleus. These terminals made asymmetric synaptic contacts with proximal and intermediate dendrites of tuberomammillary neurons. They contained small, clear synaptic vesicles and up to 30-40 dense core vesicles were seen per terminal in a single section. Both pre- and post-embedding immunostaining revealed that orexin immunoreactivity was localized to the dense core vesicles, which were always at a distance from the synaptic specialization. We also found glutamate immunoreactivity in the small synaptic vesicles which were at the active zone of the synapses of many of the same terminals. Orexinergic afferents to the tuberomammillary neurons contain separate populations of orexinergic and glutamatergic vesicles, suggesting that the release of these neurotransmitters may be differentially regulated.  相似文献   

20.
An ultrastructural immunocytochemical study was undertaken to identify neuroactive substances contained in presynaptic boutons in the hypothalamic suprachiasmatic nucleus. Axonal boutons containing immunoreactive gamma-aminobutyrate, glutamate decarboxylase, neurophysin/vasopressin, gastrin releasing peptide/bombesin, somatostatin and serotonin were localized within the hypothalamic suprachiasmatic nucleus with pre-embedding peroxidase immunostaining. Synaptic contacts were found between boutons containing each of these substances and postsynaptic structures. While some variation in synaptic morphology existed, most of the immunoreactive contacts were of the symmetrical type. Previous work has indicated that neuroactive peptides may be found in highest concentrations in dense-core vesicles, to examine the subcellular localization of the amino acid inhibitory transmitter gamma-aminobutyrate, ultrastructural immunocytochemistry with pre-embedding peroxidase was compared with post-embedding immunocytochemistry with colloidal gold. Ultracryothin sections were also used for ultrastructural localization of gamma-aminobutyrate and glutamate decarboxylase immunoreactivity. Both gamma-aminobutyrate and glutamate decarboxylase immunoreactivity were found throughout the cytoplasm of immunoreactive boutons when pre-embedding peroxidase was used; with post-embedding colloidal gold immunostaining, label was found over areas containing small clear vesicles, and over mitochondria of immunoreactive axons. At the dilutions used in this study, strongly immunoreactive gamma-aminobutyrate dendrites, boutons forming asymmetrical synapses, and cell bodies were not found. Differences between pre-embedding and post-embedding immunostaining may be due to antigen and label diffusion caused by mild fixation and membrane damage necessary for antisera penetration during pre-embedding immunostaining. These results suggest that gamma-aminobutyrate, gastrin releasing peptide, somatostatin and vasopressin are contained in axons making contact with neurons of the suprachiasmatic nucleus, and may function as neurotransmitters here. Since all of these substances can also be localized in perikarya within the suprachiasmatic nucleus, there is a strong possibility that at least some of the axons containing immunoreactivity for each of these substances may be involved in local circuit interactions between neurons within the suprachiasmatic nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号