首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Summary Stereotaxic injection of horseradish peroxidase into the superior colliculus produced retrograde labelling of layer V pyramides in the Clare Bishop area and the lateral bank of the suprasylvian sulcus, in area 17,18 and 19. Single labelled cells were also found scattered in the splenial, the suprasplenial, the lateral and the suprasylvian gyri. In the cruciate sulcus no labelled cells were observed. Autoradiographically, the lateral bank of the suprasylvian sulcus was also shown to give rise to fibres to the superior colliculus.  相似文献   

2.
Summary We have previously described a visual area situated in the cortex surrounding the deep infolding of the anterior ectosylvian sulcus of the cat (Mucke et al. 1982). Using orthograde and retrograde transport methods we now report anatomical evidence that this anterior ectosylvian visual area (AEV) is connected with a substantial number of both cortical and subcortical regions. The connections between AEV and other cortical areas are reciprocal and, at least in part, topographically organized: the rostral AEV is connected with the bottom region of the presylvian sulcus, the lower bank of the cruciate sulcus, the rostral part of the ventral bank of the splenial sulcus, the rostral portion of the lateral suprasylvian visual area (LS) and the lateral bank of the posterior rhinal sulcus; the caudal AEV is connected with the bottom region of the presylvian sulcus, the caudal part of LS, the ventral part of area 20 and the lateral bank of the posterior rhinal sulcus. Subcortically, AEV has reciprocal connections with the ventral medial thalamic nucleus (VM), with the medial part of the lateralis posterior nucleus (LPm), as well as with the lateralis medialis-suprageniculate nuclear (LM-Sg) complex. These connections are also topographically organized with more rostral parts of AEV being related to more ventral portions of the LPm and LM-Sg complex. AEV also projects to the caudate nucleus, the putamen, the lateral amygdaloid nucleus, the superior colliculus, and the pontine nuclei. It is concluded that AEV is a visual association area which functionally relates the visual with both the motor and the limbic system and that it might play a role in the animal's orienting and alerting behavior.Abbreviations Ac aqueductus cerebri - AEs anterior ectosylvian sulcus - ALLS anterolateral lateral suprasylvian area - AMLS anteromedial lateral suprasylvian area - ASs anterior suprasylvian sulcus - Cd caudate nucleus - CL central lateral nucleus - Cl claustrum - Cos coronal sulcus - Crs cruciate sulcus - DLS dorsal lateral suprasylvian area - GI stratum griseum intermediale - GP stratum griseum profundum - IC inferior colliculus - LAm lateral amygdaloid nucleus - LGNd dorsal nucleus of lateral geniculate body - LGNv ventral nucleus of lateral geniculate body - Llc nucleus lateralis intermedius, pars caudalis - LM nucleus lateralis medialis - LPl nucleus lateralis posterior, pars lateralis - LPm nucleus lateralis posterior, pars medialis - Ls lateral sulcus - MD nucleus mediodorsalis - MG medial geniculate body - MSs middle suprasylvian sulcus - Ndl nucleus dorsolateralis pontis - Nl nucleus lateralis pontis - Np nucleus peduncularis pontis - Npm nucleus paramedianus pontis - Nrt nucleus reticularis tegmenti pontis - Nv nucleus ventralis pontis - Ped cerebral peduncle - PEs posterior ectosylvian sulcus - Pg periaqueductal gray - PLLS posterolateral lateral suprasylvian area - PMLS posteromedial lateral suprasylvian area - PSs presylvian sulcus - Pul pulvinar - Put putamen - R red nucleus - Sg suprageniculate nucleus - SN substantia nigra - Sps splenial sulcus - Syls sylvian sulcus - T trapezoid body - VA ventral anterior nucleus - VL ventral lateral nucleus - VLS ventral lateral suprasylvian area - VM ventral medial nucleus - VPL ventral posterolateral nucleus - VPM ventral posteromedial nucleus Sponsored by Max-Planck-Society during part of the studySponsored by Thyssen FoundationSponsored by Alexander von Humboldt-Foundation  相似文献   

3.
N Kato  J M Ferrer  D J Price 《Neuroscience》1991,43(2-3):291-306
The postnatal development of corticocortical neurons projecting from the medial bank of the lateral suprasylvian cortex to area 18 of the kitten's visual cortex was examined using retrograde fluorescent tracers. Area 18 was injected in young kittens aged nine days or less and in older kittens aged 30 days or more. Many of the injected kittens were perfused with fixative four to five days later, but some of the youngest were killed after longer survival periods of 35-50 days (long-survival animals). Labelled neurons in the medial bank of the lateral suprasylvian cortex were densely distributed in both superficial layers (II and III) and deep layers (V and VI) in the kittens injected less than nine days postnatal, irrespective of whether survival was short or long, but they were found almost exclusively in layers V and VI in the old, short-survival animals. Only in the group of old kittens did we find a clear topographical arrangement of projections in the rostrocaudal direction and a correlation between the rostrocaudal lengths of the injection sites and labelled areas. In the other two groups, for a similarly sized injection site, the labelled areas were much longer rostrocaudally than in the old, short-survival kittens, and occupied roughly the posterior two-thirds of the medial bank of the lateral suprasylvian cortex, irrespective of the positions of the injections. In the frontal plane, topography was unclear in all groups. These findings demonstrate that there is considerable postnatal refinement of the projection from the medial bank of the lateral suprasylvian cortex to area 18. This involves a loss of connections originating from superficial layers and a decrease of convergence with the appearance of topography. Our results from long-survival kittens suggest that most of the early exuberant population of corticocortical neurons projecting from the medial bank of the lateral suprasylvian cortex to area 18 survive beyond the first postnatal month but undergo axonal elimination during this period.  相似文献   

4.
Summary Push-pull cannulae were inserted into both medial and lateral banks of the suprasylvian sulcus and used for local perfusion with artificial extracellular fluid (aECF). Electrical stimulations of regions of cortex projecting to the lateral suprasylvian area (LSA) were accompanied by enhanced levels of release of excitatory amino acids. Electrical stimulation of the area 17/18 border evoked a greater release of aspartate relative to glutamate in the medial bank of the LSA (posteromedial lateral suprasylvian: PMLS), of glutamate over aspartate in the lateral bank (posterolateral lateral suprasylvian: PLLS) while in the fundus, both were released equally or glutamate levels were slightly elevated over those of aspartate. These data support and extend the earlier proposition (Hicks and Guedes 1983) that an excitatory amino acid mediates synaptic transmission within visual cortico-cortical pathways.  相似文献   

5.
On anatomical and physiological grounds a zone of cat cortex deep in the medial bank of the suprasylvian sulcus (the Clare-Bishop area) is known to receive strong visual projections both from the lateral geniculate body and area 17. We have mapped receptive fields of single cells in this area in eight cats.Active responses to visual stimuli were found over most of the medial bank of the suprasylvian sulcus extending to the depths and over to the lowest part of the lateral bank. The area is clearly topographically arranged. The first responsive cells, recorded over the lateral convexity and 2-3 mm down the medial bank, had receptive fields in the far periphery of the contralateral visual fields. The receptive fields tended to be large, but showed considerable variation in size and scatter in their positions. As the electrode advanced down the bank, fields of successively recorded cells gradually tended to move inwards, so that in the depths of the sulcus the inner borders of many of the fields reached the vertical mid line. Here the fields were smaller, though they still varied very much in size.Receptive fields were larger than in 17, 18, or 19, but otherwise were not obviously different from the complex and lower-order hypercomplex fields in those areas. No simple fields, or concentric fields of the retino-geniculate type, were seen. Cells with common receptive-field orientation were grouped together, but whether or not the grouping occurs in columns was not established.Most cells were driven independently by the two eyes. Fields in the two eyes seemed to be identical in organization. Cells dominated by the contralateral eye were much more common than ipsilaterally dominated ones, but when cells with parafoveal and peripheral fields were considered separately, the asymmetry was seen to apply mainly to cells with peripheral fields.  相似文献   

6.
Summary A suprasylvian lesion removing cortical areas 7 and 21 and portions of area 19 and of the lateral suprasylvian area was placed in one hemisphere of split-chiasm cats. By comparison with the normal side and with cortically intact split-chiasm and split-brain cats, form discrimination learning with the eye on the injured side was severely retarded. This deficit could not be attributed to an unintentional undercutting of areas 17 and 18, since in three cases the laminae of the lateral geniculate nucleus showed little retrograde atrophy; marked degeneration was found in the medial interlaminar nucleus and the pulvinar complex. In addition, interocular transfer of form discriminations to the eye on the injured side was absent or poor, while transfer in the opposite direction was normal. A cat with a suprasylvian lesion undercutting areas 17 and 18 was unable to learn pattern discriminations with the eye on the injured side, in spite of prolonged training with that eye and normal learning with the other eye. Another cat with a suprasylvian lesion selectively removing the anteromedial and posteromedial portions of the lateral suprasylvian area showed no learning deficit on the injured side, but poor transfer to that side. A learning deficit on the side of the lesion emerged in this cat after forebrain commissurotomy.The results support the hypothesis of a major involvement of cortical areas outside of 17 and 18 in the processes of abstraction and generalization of visual information necessary for learning and interhemispheric transfer of form discrimination in the cat.  相似文献   

7.
Summary In this paper a cortical area is described that covers approximately the posterior two-thirds of the ventral bank of the anterior ectosylvian sulcus of the cat and is called anterior ectosylvian visual area (AEV).In cats anesthetized with a combination of N2O and barbiturate we explored this area by recording extracellularly the responses of AEV neurons to visual and electric stimulation as well as by injecting HRP into physiologically verified points. AEV neurons were found to be highly sensitive to small light stimuli moving rapidly in a particular direction through their large receptive fields. The properties of 74 neurons were quantitatively analyzed. Increasing the length of the stimulus within the receptive field to more than 2 deg strongly inhibited the responses, whereas increasing the speed of the stimulus movement up to 72–120 deg/s enhanced the neuronal responsiveness. Although the majority of neurons responded to a wide range of possible directions, one clearly preferred direction could usually be found for each neuron. There was a predominance of preferred directions toward the contralateral hemifield. Anatomic and electrophysiologic connectivity studies showed that AEV receives its main afferent inputs from the lateral suprasylvian visual area (LS) and from the tecto-recipient zone of the nucleus lateralis posterior (LP)-pulvinar complex.Although these studies suggested some topographical organization within the projection from LS to AEV, the large receptive fields in AEV, the great majority of which included the central area, did not reveal a clear retinotopic order. It is concluded that AEV is a specific visual area and that functionally the extrageniculate inputs predominate.Abbreviations AEs anterior ectosylvian sulcus - ALLS anterolateral lateral suprasylvian area - AMLS anteromedial lateral suprasylvian area; - Cl Claustrum - DLS dorsal lateral suprasylvian area - LGNd dorsal nucleus of lateral geniculate body - LGNv ventral nucleus of lateral geniculate body - LM nucleus lateralis medialis - LP1a nucleus lateralis posterior, pars lateralis - LPm nucleus lateralis posterior, pars medialis - Ls lateral sulcus - MGmc magnocellular division of medial geniculate body - MGpc parvocellular division of medial geniculate body - MSs middle suprasylvian sulcus - NP nucleus posterior of Rioch - PLLS postero-lateral lateral suprasylvian area - PLs posterolateral sulcus - PMLS posteromedial lateral suprasylvian area - Pu putamen - Pul pulvinar - Sg suprageniculate nucleus - VLS ventral lateral suprasylvian area Sponsored by Max-Planck-Gesellschaft and IBRODept. of Anatomy, School of Medicine, Iwate Medical University, Morioka 020, JapanSponsored by Alexander von Humboldt-FoundationDept. of Physiology, University Medical School, Szeged, Hungary  相似文献   

8.
Pupillary constriction was evoked by systematic stimulation using a microelectrode in the upper medial bank of the middle suprasylvian sulcus in the parieto-occipital cortex of the cat. The pupillo-constrictor area corresponded to the rostral and middle parts of the posterior medial lateral suprasylvian (PMLS) area. This pupillo-constrictor area extended by 2-3 mm along the middle suprasylvian sulcus. It is suggested that this pupillo-constrictor area overlaps or lies in close proximity of a part of the region in PMLS area related to lens accommodation, in which unit activity temporally related to lens accommodation was recorded and from which lens accommodation was evoked by electric stimulation.  相似文献   

9.
Summary The cortical afferents to the cortex of the anterior ectosylvian sulcus (SEsA) were studied in the cat, using the retrograde axonal transport of horseradish peroxidase technique. Following injections of the enzyme in the cortex of both banks, fundus and both ends (postero-dorsal and anteroventral) of the anterior ectosylvian sulcus, retrograde labeling was found in: the primary, secondary, and tertiary somatosensory areas (SI, SII and SIII); the motor and premotor cortices; the primary, secondary, anterior and suprasylvian fringe auditory areas; the lateral suprasylvian (LS) area, area 20 and posterior suprasylvian visual area; the insular cortex and cortex of posterior half of the sulcus sylvius; in area 36 of the perirhinal cortex; and in the medial bank of the presylvian sulcus in the prefrontal cortex. Moreover, these connections are topographically organized. Considering the topographical distribution of the cortical afferents, three sectors may be distinguished in the cortex of the SEsA. 1) The cortex of the rostral two-thirds of the dorsal bank. This sector receives cortical projections from areas SI, SII and SIII, and from the motor cortex. It also receives projections from the anterolateral subdivision of LS, and area 36. 2) The cortex of the posterior third of the dorsal bank and of the posterodorsal end. It receives cortical afferents principally from the primary, secondary and anterior auditory areas, from SI, SII and fourth somatosensory area, from the anterolateral subdivision of LS, vestibular cortex and area 36. 3) The cortex of the ventral bank and fundus. This sulcal sector receives abundant connections from visual areas (LS, 20, posterior suprasylvian, 21 and 19), principally from the lateral posterior and dorsal subdivisions of LS. It also receives abundant connections from the granular insular cortex, caudal part of the cortex of the sylvian sulcus and suprasylvian fringe. Less abundant cortical afferents were found to arise in area 36, second auditory area and prefrontal cortex. The abundant sensory input of different modalities which appears to converge in the cortex of the anterior ectosylvian sulcus, and the consistent projection from this cortex to the deep layers of the superior colliculus, make this cortical region well suited to play a role in the control of the orientation movements of the eyes and head toward different sensory stimuli.Supported by FISSS grants 521/81 and 1250/84  相似文献   

10.
Slow disjunctive eye movement similar to ocular convergence was evoked by microstimulation in parts of the lateral suprasylvian area (LSA) in alert cats. A tungsten-in-glass microelectrode was used for stimulation, and eye movement was monitored using the magnetic search coil method. The velocity-versus-amplitude relationship of disjunctive eye movement evoked by microstimulation was comparable to that of ocular convergence evoked by presenting a visual target. It is suggested that the LSA plays a role in controlling convergence eye movement.  相似文献   

11.
Responses of saccade-depressed (SD) and saccade-excited (SE) cells in the striate cortex to eye movements of alert cats under presentation of a visual pattern were studied under reinforcement of the eye movements with rewards of water. These responses were compared to those on passive displacement of the visual pattern reproducing the movements of the retinal image occurring during eye movements while eye movements were suppressed by withdrawal of reinforcement. Passive displacement of the visual pattern produced in the SD cells depression closely resembled the depression occurring during eye movements under presentation of the visual pattern, in time course as well as in amplitude. Both the saccade depression and the depression due to passive movement of the visual pattern were nonselective to the direction of eye movements. Saccade excitation of the SE cells frequently contained two components occurring at 20 and 80 ms after the onsets of eye movements. Passive displacement of the visual pattern produced in the SE cells excitation comparable with the early component of the saccade excitation. These findings suggest that saccade depression in the SD cells and the early component of the saccade excitation in the SE cells are related to retinal reafference of eye movement. During presentation of visual patterns, saccade excitation in the SE cells was closely related to parameters of eye movements, such as direction, amplitude, duration, and velocity. The correlations were completely lost or strongly reduced in darkness. Lines of evidence were provided that the saccade excitation of the SE cells in darkness or the later component of the saccade excitation under presentation of a visual pattern represents efference copy signals of eye movement transferred to the striate cortex through the Clare-Bishop (CB) cortex. Excitation comparable with saccade excitation in darkness occurred in synchrony with activities of the oculomotor nuclei even after retrobulbar paralysis of eye movement, indicating that the excitation is related to efference copy signals rather than proprioceptive reafference of eye movement.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Callosal connections of suprasylvian visual areas in the cat   总被引:2,自引:0,他引:2  
After horseradish peroxidase injections in cat's lateral suprasylvian visual area and in areas 17 and 18, labeled callosal neurons are found within the various subdivisions of the lateral suprasylvian area, mostly in regions where the area centralis and vertical meridian are represented. The homotopic callosal projections from lateral suprasylvian area to lateral suprasylvian area originate almost exclusively from layer III. The heterotopic callosal projections from the lateral suprasylvian area to areas 17 and 18 originate mainly from layer VI but also from layer III. Callosal neurons in the lateral suprasylvian area are pyramidal cells (layers III and VI), fusiform and triangular cells (layer VI).The distribution of callosal neurons in the lateral suprasylvian area is similar to that previously found in areas 17 and 18 in the sense that in all these areas callosal neurons are preferentially located near the vertical meridian representation within two radially separated laminae. However, the preponderance of layer VI neurons in the projection from the lateral suprasylvian area to contralateral areas 17 and 18 is different from what was observed in other callosal connections. Since layer VI usually gives rise to corticothalamic projections it is possible that similar feed-back mechanisms may modulate the information sent to the lateral suprasylvian area from the thalamus and the primary visual areas.  相似文献   

13.
The association connexions of the peri-auditory (SF, Ea and INS) and auditory (AI, AII and Ep) areas of the cat cortex were studied in silver impregnated material of 32 experiments with cortical lesions. The cortex of the lateral bank of the rostral part of the middle suprasylvian sulcus (SF) sends many fibres to AI and to the insular cortex (INS), and has scanty projections upon AII and Ep. In addition, it sends fibres to the visual area 17 as well as to the ventral bank of the medial part of the cruciate sulcus. It receives fibres from the three auditory areas AI, AII and Ep, as well as from Ea and INS. The dorsal part of the anterior ectosylvian gyrus (Ea) projects upon SF, AI, and AII. Ea sends few fibres to Ep, and receives relatively dense projections from AI and AII. The anterior sylvian gyrus (INS) projects heavily upon AII as well as upon the superficial part of SF. It sends a few fibres also to Ep. INS receives heavy projections from AII and relatively lighter connections from SF, AI and Ep. The three auditory areas AI, AII and Ep are strongly mutually interconnected. AI and Ep have scanty projections upon the visual area 19, and AI also to the lateral suprasylvian visual area, as well as upon the ventral bank of the medial cruciate sulcus. Correlations of the association connexions with the functions of each area are discussed.  相似文献   

14.
Summary The interconnections of the auditory cortex with the parahippocampal and cingulate cortices were studied in the cat. Injections of the anterograde and retrograde tracer WGA-HRP were performed, in different cats (n = 9), in electrophysiologically identified auditory cortical fields. Injections in the posterior zone of the auditory cortex (PAF or at the PAF/AI border) labeled neurons and axonal terminal fields in the cingulate gyrus, mainly in the ventral bank of the splenial sulcus (a region that can be considered as an extension of the cytoarchitectonic area Cg), and posteriorly in the retrosplenial area. Labeling was also present in area 35 of the perirhinal cortex, but it was sparser than in the cingulate gyrus. Following WGA-HRP injection in All, no labeling was found in the cingulate gyrus, but a few neurons and terminals were labeled in area 35. In contrast, no or very sparse labeling was observed in the cingulate and perirhinal cortices after WGA-HRP injections in the anterior zone of the auditory cortex (AI or AAF). A WGA-HRP injection in the cingulate gyrus labeled neurons in the posterior zone of the auditory cortex, between the posterior ectosylvian and the posterior suprasylvian sulci, but none was found more anteriorly in regions corresponding to AI, AAF and AII. The present data indicate the existence of preferential interconnections between the posterior auditory cortex and the limbic system (cingulate and parahippocampal cortices). This specialization of posterior auditory cortical areas can be related to previous observations indicating that the anterior and posterior regions of the auditory cortex differ from each other by their response properties to sounds and their pattern of connectivity with the auditory thalamus and the claustrum.Abbreviations AAF anterior auditory cortical field - aes anterior ectosylvian sulcus - AI primary auditory cortical field - AII secondary auditory cortical field - ALLS anterior-lateral lateral suprasylvian visual area - BF best frequency - C cerebral cortex - CC corpus callosum - CIN cingulate cortex - CL claustrum - DLS dorsal lateral suprasylvian visual area - DP dorsoposterior auditory area - E entorhinal cortex - IC inferior colliculus - LGN lateral geniculate nucleus - LV pars lateralis of the ventral division of the MGB - LVe lateral ventricule - MGB medial geniculate body - OT optic tract - OV pars ovoidea of the ventral division of the MGB - PAF posterior auditory cortical field - pes posterior ectosylvian sulcus - PLLS posterior-lateral lateral suprasylvian visual area - PS posterior suprasylvian visual area - PU putamen - RE reticular complex of thalamus - rs rhinal sulcus - SC superior colliculus - SS suprasylvian sulcus - T temporal auditory cortical field - TMB tetramethylbenzidine - VBX ventrobasal complex of thalamus, external nucleus - VL pars ventrolateralis of the ventral division of the MGB - VLS ventrolateral suprasylvian visual area - VPAF ventroposterior auditory cortical field - WGA-HRP wheat germ agglutinin labeled with horseradish peroxidase - wm white matter  相似文献   

15.
We evaluated the effects of electrolytic lesions in the extrastriate cortical area on the amplitudes and velocities of vergence eye movements in six alert cats that were trained to track a target moving in depth. Bilateral or unilateral lesions in the lateral suprasylvian (LS) cortex reduced the amplitudes and velocities of vergence eye movements, but the positive correlation between them was maintained. Furthermore, unilateral lesions changed the symmetry of eye movements. Movements of the left eye were decreased by lesions in the right LS cortex, resulting in asymmetric vergence eye movement with right eye predominance, and vice versa. These results support the hypothesis that the LS cortex plays an essential role in controlling vergence eye movement.  相似文献   

16.
The anterograde and retrograde transport of wheat germ agglutinin congugated to horseradish peroxidase was used to examine the laminar organization of cortical connections with the two visual zones that comprise the cat's lateral posterior nucleus. Microelectrophoretic deposits of the tracer into the principal tecto-recipient zone in the medial division of the lateral posterior nucleus revealed reciprocal connections with the following cortical fields: areas 19 and 21a, the medial and lateral banks of the middle suprasylvian sulcus, and the dorsal and ventral banks of the lateral suprasylvian sulcus, which correspond to the dorsal lateral suprasylvian and ventral lateral suprasylvian visual areas of Palmer et al. [(1978) Brain Res. 177, 237-256] and an area in the fundus of the posterior suprasylvian sulcus. In each of these cortical areas two distinct populations of cells were labeled, small pyramidal neurons in layer VI and large pyramidal cells in layer V. Overlying these backfilled cells were two bands of anterograde label, a narrow strip in layer I and a wide band centered in layer IV. Deposits of wheat germ agglutinin conjugated to horseradish peroxidase confined to the striate-recipient zone in the lateral portion of the lateral posterior nucleus resulted in cortical label in areas 17, 18, 19, 20a and b, 21a, the medial and lateral banks of the middle suprasylvian sulcus, the posterior suprasylvian sulcus and in the fundus of the splenial sulcus. In all cortical areas other than 17 and 18, the laminar distribution of label was the same as that found after deposits of the tracer into the medial division of the lateral posterior nucleus. In contrast, areas 17 and 18 contained backfilled cells that were confined to layer V and anterograde label that was restricted to layer I. These findings indicate that the cortical areas that receive a direct projection from the A laminae of the dorsal lateral geniculate nucleus maintain a distinct laminar organization of reciprocal connections with the extrageniculate visual thalamus. Conversely, all other visual areas of the cortex share a common pattern of reciprocal connections with both the tecto- and striate-recipient zones of the lateral posterior nucleus.  相似文献   

17.
The posteromedial lateral suprasylvian area of the cat is known to be involved in the analysis of motion and motion in depth. However, it remains unclear whether binocular cells in the posteromedial lateral suprasylvian area rely upon phase or positional offsets between their receptive fields in order to code binocular disparity. The present study aims at clarifying more precisely the neural mechanisms underlying stereoperception with two objectives in mind. First, to determine whether cells in the posteromedial lateral suprasylvian area code phase disparities. Secondly, to examine whether the cells sensitive to phase disparity are the same as those which code for position disparities or whether each group represent a different sub-population of disparity-sensitive neurons. We investigated this by testing both types of disparities on single neurons in this area. The results show that the vast majority of cells (74%), in the posteromedial lateral suprasylvian area, are sensitive to relative interocular phase disparities. These cells showed mostly facilitation (95%) and a few (5%) summation interactions. Moreover, most cells (81%) were sensitive to both position and phase disparities.The results of this study show that most binocular cells in the posteromedial lateral suprasylvian area are sensitive to both positional and phase offsets which demonstrate the importance of this area in stereopsis.  相似文献   

18.
The projections of the pulvinar-lateral posterior complex of the cat were studied using the autoradiographic tracing method and related to 15 previously defined cortical areas. The results indicate that each of three separate zones within the pulvinar-lateral posterior complex has a different pattern of projection. The most lateral zone, the pulvinar, sends fibers to at least seven cortical areas, most of which are known to have input from other visual areas within the brain: the splenial visual area, the cingulate gyrus, and areas 5, 7, 19, 20a and 21a. A zone located just medial to the pulvinar, the lateral division of the lateral posterior complex, projects to at least eight visual areas in the cortex: areas 17, 18, 19, 20a, 21a, 21b, the posteromedial lateral suprasylvian area and the ventral lateral suprasylvian area. The most medial zone, the intermediate division of the lateral posterior complex, projects to at least four cortical areas: 20a, the posterior suprasylvian area, the posterolateral lateral suprasylvian area and the dorsal lateral suprasylvian area. Of the 15 cortical areas that receive fibers from the pulvinar-lateral posterior complex, only three (areas 19, 20a and 21a) receive projections from more than one of these thalamic zones, and only one of the cortical areas (20a) receives fibers from all three zones.Thus, the data support the division of the pulvinar lateral posterior complex into three zones on the basis of their unique and largely non-overlapping projections to the visual cortex.  相似文献   

19.
Extracellular recordings have been made from 118 electrophysiologically identified neurones lying in the posterior lateral suprasylvian area (PLLS and PLMS) of cats anaesthetized with Nembutal. Eighty-one cells were activated synaptically by the electrical stimulation of cortical and subcortical sites known to be the sources of monosynaptic projections to the lateral suprasylvian area; latencies to such activations have been measured. The locations and sizes of the receptive fields of 55 neurones were determined. The direction sensitivity and ocularity of these cells also were examined. The effects of various pharmacological agonists and antagonists have been observed on visual responsiveness and synaptic excitability. The excitatory effects of subcortical (dorsal lateral geniculate nucleus and pulvinar nuclear complex) electrical stimulation on the activity of suprasylvian neurones were reduced substantially by the iontophoretic administration of atropine. Antagonists of the receptors for the excitatory amino acids reduced the effectiveness, on the single cell evoked activity, of stimulation of the ipsilateral 17/18 border region and contralateral homotopic lateral suprasylvian area. Both classes of antagonist reduced the magnitude of neuronal responses to photic stimulation, and these response attenuations were additive when the antagonists were ejected concurrently. All of the pharmacological effects were reversible and reproducible. These data lend support to the proposition that acetylcholine and an excitatory amino acid are mediators of synaptic transmission of cortical visual processes in the lateral suprasylvian area.  相似文献   

20.
Neuronal spike discharges were recorded from the lateral suprasylvian (LS) area while ocular convergence was elicited in five alert cats. Ocular convergence was elicited by presenting a visual target moving in depth. Cats were rewarded for convergence eye movement. In 9 out of 426 cells sampled in the caudal postero-medial LS area, the number of spikes was positively correlated with the peak eye velocities during ocular convergence. Significant correlation was found mostly within 400 ms preceding the moment at which the maximum velocity of ocular convergence was obtained. The result favors the hypothesis that the LS area plays an important role in the integrative control of ocular convergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号