首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibration-induced changes in EMG during human locomotion   总被引:6,自引:0,他引:6  
The present study was set up to examine the contribution of Ia afferent input in the generation of electromyographic (EMG) activity. Subjects walked blindfolded along a walkway while tendon vibration was applied continuously to a leg muscle. The effects of vibration were measured on mean EMG activity in stance and swing phase. The results show that vibration of the quadriceps femoris (Q) at the knee and of biceps femoris (BF) at the knee enhanced the EMG activity of these muscles and this occurred mainly in the stance phase of walking. These results suggest involvement of Ia afferent input of Q and BF in EMG activation during stance. In contrast, vibration of muscles at the ankle and hip had no significant effect on burst amplitude. Additionally, the onset time of tibialis anterior was measured to look at timing of phase transitions. Only vibration of quadriceps femoris resulted in an earlier onset of tibialis anterior within the gait cycle, suggesting involvement of these Ia afferents in the triggering of phase transitions. In conclusion, the results of the present study suggest involvement of Ia afferent input in the control of muscle activity during locomotion in humans. A limited role in timing of phase transitions is proposed as well.  相似文献   

2.
Motor patterns in human walking and running   总被引:1,自引:0,他引:1  
Despite distinct differences between walking and running, the two types of human locomotion are likely to be controlled by shared pattern-generating networks. However, the differences between their kinematics and kinetics imply that corresponding muscle activations may also be quite different. We examined the differences between walking and running by recording kinematics and electromyographic (EMG) activity in 32 ipsilateral limb and trunk muscles during human locomotion, and compared the effects of speed (3-12 km/h) and gait. We found that the timing of muscle activation was accounted for by five basic temporal activation components during running as we previously found for walking. Each component was loaded on similar sets of leg muscles in both gaits but generally on different sets of upper trunk and shoulder muscles. The major difference between walking and running was that one temporal component, occurring during stance, was shifted to an earlier phase in the step cycle during running. These muscle activation differences between gaits did not simply depend on locomotion speed as shown by recordings during each gait over the same range of speeds (5-9 km/h). The results are consistent with an organization of locomotion motor programs having two parts, one that organizes muscle activation during swing and another during stance and the transition to swing. The timing shift between walking and running reflects therefore the difference in the relative duration of the stance phase in the two gaits.  相似文献   

3.
Modulation of the biceps femoris tendon jerk reflex during human locomotion   总被引:2,自引:0,他引:2  
 During gait it is generally accepted that there is a reduction in amplitude of H-reflexes as compared to standing. For short-latency stretch reflexes, however, it is less clear whether a similar reduction in reflex gain is present during locomotion. Stretches of constant amplitude are hard to produce under these circumstances and for this reason some previous studies on the biceps femoris (BF) have used ”reduced gait” in which the stimulated leg is stepping on the spot while the contralateral leg is walking on a treadmill. With this method it was possible to show that BF tendon jerk reflexes are larger at end swing and therefore are likely to contribute to the EMG burst normally occurring in that part of the step cycle when the BF is rapidly stretched. In the present study two questions were addressed: first, whether the reflex is different in size during gait compared to standing and, second, whether it is modulated in size during the gait cycle not only during reduced but also during normal gait. It was found that during both types of gait there was a general reflex depression with regard to the respective control values obtained during standing at similar EMG activity levels. In previous studies on soleus and quadriceps, discrepancies between EMG activity and reflex amplitude have been ascribed to changes in presynaptic inhibition of Ia terminals mediating the afferent volley of the reflex. Based on the data presented, this may also be true for the BF. In both normal and reduced gait the reflex was similarly modulated in size, showing a maximum at the end of swing. This similarity implies that reduced gait may be useful as an acceptable alternative for normal gait in studies on phase-dependent reflex modulation during locomotion. Received: 9 March 1998 / Accepted: 14 August 1998  相似文献   

4.
The main objective of this study was to characterize the stretch reflex response of the human thigh muscles to an unexpected knee flexion at the transition from stance to swing during walking. Eleven healthy subjects walked on a treadmill at their preferred speed. Reliable and constant knee flexions (6–12° amplitude, 230–350°/s velocity, 220 ms duration) were applied during the late swing and early stance phase of human walking by rotating the knee joint with a specifically designed portable stretch apparatus affixed to the left knee. Responses from rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), biceps femoris (BF), medial hamstrings (MH) and medial gastrocnemius (GM) were recorded via bipolar surface electromyograms (EMG). The onset of the response in the RF, VL and VM, remained stable and independent of the time in the step cycle when the stretch was applied. Across all subjects the response onset (mean ± SD) occurred at 23±1, 24±1 and 23±1 ms for RF, VL and VM, respectively. The duration of the initial response was 90–110 ms, at which time the EMG signal returned towards baseline levels. Three reflex response windows, labelled the short latency reflex (SLR), the medium latency reflex (MLR) and the late latency reflex response (LLR), were analysed. The medium and late reflex responses of all knee extensors increased significantly (p=0.008) as the gait cycle progressed from swing to stance. This was not related to the background EMG activity. In contrast, during standing at extensor EMG levels similar to those attained during walking the reflex responses were dependent on background EMG. During walking, LLR amplitudes expressed as a function of the background activity were on average two to three times greater than SLR and MLR reflex amplitudes. Distinct differences in SLR and LLR amplitude were observed for RF, VL and VM but not in the MLR amplitude. This may be related to the different pathways mediating the SLR, MLR and LLR components of the stretch response. As for the knee extensor antagonists, they exhibited a response to the stretch of the quadriceps at latencies short enough to be monosynaptic. This is in agreement with the suggestion by Eccles and Lundberg (1958) that there may be functional excitatory connections between the knee extensors and flexors in mammals.  相似文献   

5.
 Transcranial magnetic stimulation (TMS) of the motor cortex was applied during locomotion to investigate the significance of corticospinal input upon the gait pattern. Evoked motor responses (EMR) were studied in the electromyogram (EMG) of tibialis anterior (TA), gastrocnemius (GM) and, for reference, abductor digiti minimi (AD) muscles by applying below-threshold magnetic stimuli during treadmill walking in healthy adults. Averages of 15 stimuli introduced randomly at each of 16 phases of the stride cycle were analysed. Phase-dependent amplitude modulation of EMR was present in TA and GM which did not always parallel the gait-associated modulation of the EMG activity. No variation of onset latency of the EMR was observed. The net modulatory response was calculated by comparing EMR amplitudes during gait with EMR amplitudes obtained (at corresponding background EMG activities) during tonic voluntary muscle contraction. Large net responses in both muscles occurred prior to or during phasic changes of EMG activity in the locomotor pattern. This facilitation of EMR was significantly higher in leg flexor than extensor muscles, with maxima in TA prior to and during late swing phase. A comparison of this facilitation of TA EMR prior to swing phase and prior to a phasic voluntary foot dorsiflexion revealed a similar onset but an increased amount of early facilitation in the gait condition. The modulated facilitation of EMR during locomotion could in part be explained by spinal effects which are different under dynamic and static motor conditions. However, we suggest that changes in corticospinal excitability during gait are also reflected in this facilitation. This suggestion is based on: (1) the similar onset yet dissimilar size of facilitatory effects in TA EMR prior to the swing phase of the stride cycle and during a voluntary dynamic activation, (2) the inverse variation of EMR and EMG amplitudes during this phase, and (3) the occurrence of this inversion at stimulation strengths below motor threshold (motor threshold was determined during weak tonic contraction and EMR were facilitated during gait). It is hypothesized that the facilitation is phase linked to ensure postural stability and is most effective during the phases prior to and during rhythmical activation of the leg muscles resulting in anticipatory adjustment of the locomotor pattern. Received: 17 May 1996 / Accepted: 29 November 1996  相似文献   

6.
Locomotion is presumably guided by feed-forward shifts in the referent body location in the desired direction in the environment. We propose that the difference between the actual and the referent body locations is transmitted to neurons that virtually diminish this difference by appropriately changing the referent body configuration, i.e. the body posture at which muscles reach their recruitment thresholds. Muscles are activated depending on the gap between the actual and the referent body configurations resulting in a step being made to minimize this gap. This hypothesis implies that the actual and the referent leg configurations can match each other at certain phases of the gait cycle, resulting in minimization of leg muscle activity. We found several leg configurations at which EMG minima occurred, both during forward and backward gait. It was also found that the set of limb configurations associated with EMG minima can be changed by modifying the pattern of forward and backward gait. Our hypothesis predicts that, in response to perturbations of gait, the rate of shifts in the referent body location can temporarily be changed to avoid falling. The rate influences the phase of rhythmic limb movements during gait. Therefore, following the change in the rate of the referent body location, the whole gait pattern, for all four limbs, will irreversibly be shifted in time (long-lasting and global phase resetting) with only transient changes in the gait speed, swing and stance timing and cycle duration. Aside from transient changes in the duration of the swing and/or stance phase in response to perturbation, few previous studies have documented long-lasting and global phase resetting of human gait in response to perturbation. Such resetting was a robust finding in our study. By confirming the notion that feed-forward changes in the referent body location and configuration underlie human locomotion, this study solves the classical problem in the relationship between stability of posture and gait and advances the understanding of how human locomotion involves the whole body and is accomplished in a spatial frame of reference associated with the environment.  相似文献   

7.
The purpose of this study was to determine whether the muscle vibration applied to the quadriceps has potential for augmenting muscle activity during gait in spinal cord injured (SCI) individuals. The effects of muscle vibration on muscle activity during robotic-assisted walking were measured in 11 subjects with spinal cord injury (SCI) that could tolerate weight-supported walking, along with five neurologically intact individuals. Electromyographic (EMG) recordings were made from the tibialis anterior (TA), medial gastrocnemius (MG), rectus femoris (RF), vastus lateralis (VL), and medial hamstrings (MH) during gait. Vibration was applied to the anterior mid-thigh using a custom vibrator oscillating at 80 Hz. Five vibratory conditions were tested per session including vibration applied during: (1) swing phase, (2) stance phase, (3) stance-swing transitions, (4) swing-stance transitions, and (5) throughout the entire gait cycle. During all vibration conditions, a significant increase in EMG activity was observed across both SCI and control groups in the RF, VL, and MH of the ipsilateral leg. In the SCI subjects, the VL demonstrated a shift toward more appropriate muscle timing when vibration was applied during stance phase and transition to stance of the gait cycle. These observations suggest that the sensory feedback from quadriceps vibration caused increased muscle excitation that resulted in phase-dependent changes in the timing of muscle activation during gait.  相似文献   

8.
In 16 human subjects, stimulation of the common peroneal nerve (CPN) was applied during walking and standing. The effect of the stimulation was evaluated from the rectified and averaged biceps femoris (BF) electromyographic (EMG) activity. In the swing phase of walking, the CPN stimulation evoked a suppression in the BF EMG in 12 of the subjects. In the early stance phase, the suppression was replaced by facilitation at a similar latency in 9 of the subjects. Of the other 3 subjects, in whom a suppression was observed during swing, a decrease in the suppression was observed in the stance phase in two of them. During a voluntary co-contraction of BF and tibialis anterior while standing, a suppression similar to that observed in the swing phase was observed. The thresholds of the suppression and facilitation were identical, suggesting that afferents of similar diameter were responsible. Cutaneous stimuli, which mimicked the sensation evoked by the CPN stimulation, but without activation of muscle afferents, did not produce similar effects in the BF EMG activity. It is suggested that the observed response and reflex reversal may reflect opening of an excitatory group I pathway in the early stance phase of walking with a concomitant shut-down of heteronymous group I inhibition.  相似文献   

9.
During human gait, transmission of cutaneous reflexes from the foot is controlled specifically according to the phase of the step cycle. These reflex responses can be evoked by nonnociceptive stimuli, and therefore it is thought that the large-myelinated and low-threshold Abeta afferent fibers mediate these reflexes. At present, this hypothesis is not yet verified. To test whether Abeta fibers are involved the reflex responses were studied in patients with a sensory polyneuropathy who suffer from a predominant loss of large-myelinated Abeta fibers. The sural nerve of both patients and healthy control subjects was stimulated electrically at a nonnociceptive intensity during the early and late swing phases while they walked on a treadmill. The responses were studied by recording electromyographic (EMG) activity of the biceps femoris (BF) and tibialis anterior (TA) of the stimulated leg. In both phases, large facilitatory responses were observed in the BF of the healthy subjects. These facilitations were reduced significantly in the BF of the patients, indicating that Abeta fibers mediate these reflexes. In TA similar results were obtained. The absolute response magnitude across the two phases was significantly smaller for the patients than for the healthy subjects. The TA responses for the healthy subjects were on average facilitatory during early swing and suppressive during end swing. Both facilitations and suppressions were considerably smaller for the patients, indicating that both types of responses are mediated by Abeta fibers. It is concluded that low-threshold Abeta sensory fibers mediate these reflexes during human gait. The low threshold and the precise phase-dependent control of these responses suggest that these responses are important in the regulation of gait. The loss of such reflex activity may be related to the gait impairments of these patients.  相似文献   

10.
The relationship of the climbing fiber afferent discharge to the unperturbed and perturbed step cycle was evaluated in the cat. Following a precollicular-premamillary decerebration, cats walked spontaneously on a motorized treadmill. Purkinje cells were recorded extracellularly and simple and complex spikes were discriminated. Right forelimb displacement, biceps and triceps EMG activity, as well as treadmill velocity, were also monitored. In some animals pressure measurements of the contact of the footpad with the treadmill were obtained. Cells were studied during both "normal" and perturbed locomotion. The perturbation consisted of a braking of the treadmill at different phases in the step cycle. Histograms of the simple and complex spike activity, and averages of the right forelimb displacement, biceps, and triceps EMG activity and treadmill velocity were constructed. The complex spike activity of 163 Purkinje cells was averaged through a minimum of 50 sweeps in either normal and/or perturbed locomotion. Statistical analysis revealed that the probability of the climbing fiber afferent discharge in 54% of the cells (36/67) studied during normal locomotion was significantly modulated with the step cycle. For most Purkinje cells the onset of the increase in climbing fiber afferent discharge was coupled to triceps activity and the onset of stance phase. A group of cells exhibited complex spike discharge in association with biceps onset and swing. These observations suggest that complex spike discharge occurs preferentially at the phase transition periods in the step cycle when the trajectory of the forelimb changes from swing to stance or stance to swing. During treadmill braking 51% of the cells exhibited complex spike modulation (70/137). A number of different patterns of climbing fiber afferent modulation occurred. The most common pattern was an increase in complex spike discharge with the resumption of the treadmill movement and locomotion. Analysis of the time of these periods of increased climbing fiber activity suggests that, although in some cells the response is coupled to the treadmill onset, in other cells the modulation occurs at longer latencies. Subsequent analysis aligning the EMG, displacement, and treadmill velocity signals with the times of the climbing fiber afferent discharge suggested some responses were coupled to the reinitiation of the locomotor cycle. The second most common pattern was an increase in climbing fiber afferent discharge at the onset of the perturbation. Also, in some cells, complex spike discharge decreased during the period in which the step cycle was arrested.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
BACKGROUND: In recent years, the technical parameters about hurdle athletes are mainly obtained through video analysis and DLT algorithm. However, the gait and surface electromyography (sEMG) characteristics during normal walking are little reported. OBJECTIVE: To explore the changes of the gait and lower limb sEMG signals relative to gait period in hurdle athletes. METHODS: Eight male professional hurdlers were selected to perform gait and lower limb sEMG tests on the trail, and the differences in gait and sEMG signals were analyzed by mathematical statistics. RESULTS AND CONCLUSION: The gait parameters of hurdlers showed no significant differences (except step length). In the total gait cycle, along with the gait changing, the right and left side muscles of the same name moved alternately. The median frequency and average power frequency of the tapping leg in the lower limb muscles were greater than those of the swinging leg (except biceps femoris, tibialis anterior and lateral gastrocnemius), but the mean EMG and EMG integral values of the tapping leg were smaller than those of the swinging leg. At the stand phase, the median frequency and average power frequency of the tapping leg in the lower limb muscles were greater than those of the swinging leg (except tibialis anterior), but the mean EMG and EMG integral values of the tapping leg were smaller than those of the swinging leg (except soleus). At the swing phase, the median frequency and average power frequency of the tapping leg in the lower limb muscles were greater than those of the swinging leg (except tibialis anterior and lateral gastrocnemius), but the mean EMG and EMG integral values of the tapping leg were smaller than those of the swinging leg (except soleus). To conclude, there are different degrees of differences in the frequency domain and time domain of the lower limb muscles between tapping and swinging legs. Additionally, the muscle strength of the tapping leg is less than that of the swinging leg. © 2017, Journal of Clinical Rehabilitative Tissue Engineering Research. All rights reserved.  相似文献   

12.
Direct evidence supporting the contribution of upper limb motion on the generation of locomotive motor output in humans is still limited. Here, we aimed to examine the effect of upper limb motion on locomotor-like muscle activities in the lower limb in persons with spinal cord injury (SCI). By imposing passive locomotion-like leg movements, all cervical incomplete (n = 7) and thoracic complete SCI subjects (n = 5) exhibited locomotor-like muscle activity in their paralyzed soleus muscles. Upper limb movements in thoracic complete SCI subjects did not affect the electromyographic (EMG) pattern of the muscle activities. This is quite natural since neural connections in the spinal cord between regions controlling upper and lower limbs were completely lost in these subjects. On the other hand, in cervical incomplete SCI subjects, in whom such neural connections were at least partially preserved, the locomotor-like muscle activity was significantly affected by passively imposed upper limb movements. Specifically, the upper limb movements generally increased the soleus EMG activity during the backward swing phase, which corresponds to the stance phase in normal gait. Although some subjects showed a reduction of the EMG magnitude when arm motion was imposed, this was still consistent with locomotor-like motor output because the reduction of the EMG occurred during the forward swing phase corresponding to the swing phase. The present results indicate that the neural signal induced by the upper limb movements contributes not merely to enhance but also to shape the lower limb locomotive motor output, possibly through interlimb neural pathways. Such neural interaction between upper and lower limb motions could be an underlying neural mechanism of human bipedal locomotion.  相似文献   

13.
It has been hypothesized that the ability of the neuromuscular system to co-contract muscles for joint stabilization may be impaired during the development of fatigue. The purpose of this study was to examine muscle activation of the quadriceps and hamstring muscles during a prolonged closed kinetic chain exercise, the forward lunge. Eight males and two females [mean (SD) age 26.0 (2.3) years, height 177.2 (13.6) cm, body mass 82.8 (17.1) kg] with no prior knee pathology volunteered for this study. Subjects performed repeated forward lunges onto their dominant leg at the cadence of one full lunge cycle every 2 s, until the point of volitional failure. Digital switches were positioned to record foot-strike and knee-strike of the lunge leg at the midpoint of the lunge, as well as heel-strike upon return to stance. During the lunge performance, surface electromyographic (EMG) signals of the vastus lateralis (VL), vastus medialis (VM), biceps femoris (BF), and semitendinosus (ST) muscles of the supporting leg were measured. Heart rate was also monitored every 30 s during the performance. All EMG data were full-wave rectified, partitioned into up and down phases, and integrated over the entire exercise period. The results demonstrated a significant increase in activation of the VL, VM, and BF during performance of the forward lunge to volitional failure (P < 0.05). No significant increase was shown for the ST. Heart rate increased significantly over the course of the lunge. These findings suggest that activation of the VL, VM, and BF muscles occurs as a unit during performance of the forward lunge during both concentric and eccentric lunge phases. Accepted: 25 October 1999  相似文献   

14.
The aim of this study was to produce a dynamic model of the spatiotemporal activation of ensembles of alpha motoneurons (MNs) in the cat lumbosacral spinal cord during the locomotor step cycle. The coordinates of MNs of 27 hindlimb muscles of the cat were digitized from transverse sections of spinal cord spanning the entire lumbosacral enlargement from the caudal part of L(4) to the rostral part of S(1) segments. Outlines of the spinal cord gray matter were also digitized. Models of the spinal cord were generated from these digitized data and displayed on a computer screen as three-dimensional (3-D) images. We compiled a chart of electromyographic (EMG) profiles of the same 27 muscles during the cat step cycle from previous studies and used these to modulate the number of active MNs in the 3-D images. The step cycle was divided into 100 equal intervals corresponding to about 7 ms each for gait of moderate speed. For each of these 100 intervals, the level of EMG of each muscle was used to scale the number of dots displayed randomly within the volume of the corresponding MN pool in the digital model. One hundred images of the spinal cord were thereby generated, and these could be played in sequence as a continuous-loop movie representing rhythmical stepping. A rostrocaudal oscillation of activity in hindlimb MN pools emerged. This was confirmed by computing the locus of the center of activation of the MNs in the 100 consecutive frames of the movie. The caudal third of the lumbosacral enlargement showed intense MN activity during the stance phase of locomotion. During the swing phase, the focus of activation shifted abruptly to the rostral part of the enlargement. At the stance-swing transition, a transient focus of activity formed in the most caudal part of the lumbosacral enlargement. This was associated with activation of gracilis, posterior biceps, posterior semimembranosus, and semitendinosus muscles. These muscles move the foot back and up to clear the ground during locomotion, a role that could be described as retraction. The spatiotemporal distribution of neuronal activity in the spinal cord during normal locomotion with descending control and sensory inputs intact has not been visualized before. The model can be used in the future to characterize spatiotemporal activity of spinal MNs in the absence of descending and sensory inputs and to compare these to spatiotemporal patterns in spinal MNs in normal locomotion.  相似文献   

15.
1. To compare the basic hindlimb synergies for backward (BWD) and forward (FWD) walking, electromyograms (EMG) were recorded from selected flexor and extensor muscles of the hip, knee, and ankle joints from four cats trained to perform both forms of walking at a moderate walking speed (0.6 m/s). For each muscle, EMG measurements included burst duration, burst latencies referenced to the time of paw contact or paw off, and integrated burst amplitudes. To relate patterns of muscle activity to various phases of the step cycle, EMG records were synchronized with kinematic data obtained by digitizing high-speed ciné film. 2. Hindlimb EMG data indicate that BWD walking in the cat was characterized by reciprocal flexor and extensor synergies similar to those for FWD walking, with flexors active during swing and extensors active during stance. Although the underlying synergies were similar, temporal parameters (burst latencies and durations) and amplitude levels for specific muscles were different for BWD and FWD walking. 3. For both directions, iliopsoas (IP) and semitendinosus (ST) were active as the hip and knee joints flexed at the onset of swing. For BWD walking, IP activity decreased early, and ST activity continued as the hip extended and the knee flexed. For FWD walking, in contrast, ST activity ceased early, and IP activity continued as the hip flexed and the knee extended. For both directions, tibialis anterior (TA) was active throughout swing as the ankle flexed and then extended. A second ST burst occurred at the end of swing for FWD walking as hip flexion and knee extension slowed for paw contact. 4. For both directions, knee extensor (vastus lateralis, VL) activity began at paw contact. Ankle extensor (lateral gastrocnemius, LG) activity began during midswing for BWD walking but just before paw contact for FWD walking. At the ankle joint, flexion during the E2 phase (yield) of stance was minimal or absent for BWD walking, and ankle extension during BWD stance was accompanied by a ramp increase in LG-EMG activity. At the knee joint, the yield was also small (or absent) for BWD walking, and increased VL-EMG amplitudes were associated with the increased range of knee extension for BWD stance. 5. Although the uniarticular hip extensor (anterior biceps femoris, ABF) was active during stance for both directions, the hip flexed during BWD stance and extended during FWD stance.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Group I afferents in nerves innervating the lateral gastrocnemius-soleus (LG-Sol), plantaris (P1), and vastus lateralis/intermedius (VL/VI) muscles were stimulated during walking in decerebrate cats. The stimulus trains were triggered at a fixed delay following the onset of bursts in the medial gastrocnemius muscle. Stimulation of all three nerves with long stimulus trains (>600 ms) prolonged the extensor bursts and delayed the onset of flexor burst activity. LG-Sol nerve stimulation had the strongest effect; often delaying the onset of flexor burst activity until the stimulus train was ended. By contrast, flexor bursts were usually initiated before the end of the stimulus train to the P1 and VL/VI nerves. The minimum stimulus strength required to increase the cycle period was between 1.3×threshold and 1.6×threshold for all three nerves. Simultaneous stimulation of the P1 and VL/VI nerves produced a larger effect on the cycle period than stimulation of either nerve alone. The spatial summation of inputs from knee and ankle muscles suggests that the excitatory action of the group I afferents during the stance phase is distributed to all leg extensor muscles. Stimulation of the group I afferents in extensor nerves generally produced an increase in the amplitude of the heteronymous extensor EMG towards the end of the stance phase. This increase in amplitude occurred even though there were only weak monosynaptic connections between the stimulated afferents and the motoneurones that innervated these heteronymous muscles. This suggests that the excitation was produced via oligosynaptic projections onto the extensor motoneuronal pool. Stimulation with 300 ms trains during the early part of flexion resulted in abrupt termination of the swing phase and reinitiation of the stance phase of the step cycle. The swing phase resumed coincidently with the stimulus offset. Usually, stimulation of two extensor nerves at group I strengths was required to elicit this effect. We were unable to establish the relative contributions of input from the group 1a and group 1b afferents to prolonging the stance phase. However, we consider it likely that group Ib afferents contribute significantly, since their activation has been shown to prolong extensor burst activity in reduced spinal preparations. Thus, our results add support to the hypothesis that unloading of the hindlimb during late stance is a necessary condition for the initiation of the swing phase in walking animals.  相似文献   

17.
Previously the modulation of the quadriceps H-reflex has only been investigated in the initial part of the gait cycle, and it was suggested that the quadriceps H-reflex modulates with relative high reflex gain at heel contact and decreases during the subsequent part of stance (Dietz et al. 1990b). The objectives of the present study was to elaborate on the previous results by increasing the measurement resolution around heel contact and include additional measures in order to relate the H-reflex modulation to the mechanical function of the knee extensors throughout the gait cycle. EMG profiles were measured in quadriceps and the antagonistic hamstring muscles simultaneously with the knee joint kinematics in ten subjects during treadmill walking at preferred speed. H-reflex excitability was measured in vastus lateralis (VL) and rectus femoris (RF) at 11 selected positions during the gait cycle. The resulting excitability curves showed a significant modulation of the quadriceps H-reflex during the gait cycle. The H-reflex amplitude increases shortly after heel contact and reflex inhibition is present in the remaining part of stance and most of the swing phase. The modulation of the quadriceps H-reflex during walking does not follow the classical pattern of reciprocal inhibition between antagonistic muscles. It is suggested that at least during the stance phase the modulation of the quadriceps H-reflex is controlled by presynaptic inhibition. The present results confirm the idea that the excitability of the quadriceps H-reflex is controlled to comply with the different mechanical demands on the muscle during the gait cycle in humans.  相似文献   

18.
An electromyographic (EMG) activity pattern for individual muscles in the gait cycle exhibits a great deal of intersubject, intermuscle and context-dependent variability. Here we examined the issue of common underlying patterns by applying factor analysis to the set of EMG records obtained at different walking speeds and gravitational loads. To this end healthy subjects were asked to walk on a treadmill at speeds of 1, 2, 3 and 5kmh−1 as well as when 35–95% of the body weight was supported using a harness. We recorded from 12–16 ipsilateral leg and trunk muscles using both surface and intramuscular recording and determined the average, normalized EMG of each record for 10–15 consecutive step cycles. We identified five basic underlying factors or component waveforms that can account for about 90% of the total waveform variance across different muscles during normal gait. Furthermore, while activation patterns of individual muscles could vary dramatically with speed and gravitational load, both the limb kinematics and the basic EMG components displayed only limited changes. Thus, we found a systematic phase shift of all five factors with speed in the same direction as the shift in the onset of the swing phase. This tendency for the factors to be timed according to the lift-off event supports the idea that the origin of the gait cycle generation is the propulsion rather than heel strike event. The basic invariance of the factors with walking speed and with body weight unloading implies that a few oscillating circuits drive the active muscles to produce the locomotion kinematics. A flexible and dynamic distribution of these basic components to the muscles may result from various descending and proprioceptive signals that depend on the kinematic and kinetic demands of the movements.  相似文献   

19.
The aim of this study was to investigate the modulation and topography of the nociceptive withdrawal reflex elicited by painful electrical stimulation of the foot sole during gait. Fifteen healthy volunteers participated in this study. Cutaneous electrical stimulation was delivered on five locations of the foot sole after heel-contact, during foot-flat, after heel-off, and during the mid-swing phase of the gait cycle during treadmill walking. Reflexes were recorded from muscles of the ipsilateral and contralateral legs. Furthermore, the kinematic responses in the sagittal plane of the ipsilateral ankle, knee, and hip joints were recorded. Reflexes in the distal muscles showed a site-dependent modulation. The largest responses in tibialis anterior were evoked at the arch of the foot and the smallest at the heel (P < 0.05). The largest soleus responses were also elicited at the arch of the foot (P < 0.04). The EMG responses in flexors and extensors of the knee and extensors of the contralateral leg were generally not dependent on the stimulation site. The response at the three joints showed site dependency, especially during the swing phase where maximal flexion was obtained by stimulation at the arch of the foot (P < 0.05). The withdrawal reflex was modulated during the gait cycle and presented distinctive characteristics for the different muscles studied. Minimal kinematic responses were observed during stance in contrast to swing phase. Modulation of the reflex probably ensures an appropriate withdrawal but primarily secures balance and continuity of movement.  相似文献   

20.
While many studies have shown that there is a phase-dependent modulation of proprioceptive and exteroceptive reflexes during gait, little is known about such modulation for auditory reflexes. To examine how startle reactions are incorporated in an ongoing gait pattern, unexpected auditory stimuli were presented to eight healthy subjects in six phases of the step cycle during walking on a treadmill at 4 km/h. For both legs, electromyographic activity (EMG) was recorded in the biceps femoris (BF), the rectus femoris (RF), the tibialis anterior (TA), and the soleus (SO). In addition, stance and swing phases of both legs, along with knee angles of both legs and the left ankle angle, were measured. All subjects showed various response peaks. Responses with latencies of approximately 60 ms (F1), approximately 85 ms (F2), and approximately 145 ms (F3) were found. The amplitude of the reflex responses was dependent on the timing of the startle stimulus in the step cycle. Although the startle response habituated rapidly, the phase-dependent modulation pattern generally remained the same. The phase-dependent amplitude modulations were not strictly correlated with the modulation of the background activity. The TA even showed a transition from facilitatory F2 responses during stance to suppressive responses during midswing. Responses were observed in both flexors and extensors, often in coactivation, especially during stance. Furthermore the gait characteristics showed a shortening of the subsequent step cycle and a small decrease in the range of motion of ankle and knees. These results suggest that the responses are adapted to achieve extra stability dependent on the phase of the step cycle. However, even in the first trials, the changes in kinematics were small allowing a smooth progression of gait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号