首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of nitraquazone analogs with a pyrimidindione core was synthesized and tested for inhibitory activity on PDE4, selectivity versus PDE3 and PDE5 and for affinity towards the rolipram high‐affinity binding site (HARBS). The 5‐anilino derivatives 13–18 showed the best profile combining appreciable PDE4 inhibitory activity (IC50 = 5–14 µM) with a good selectivity toward PDE3 and PDE5. The same compounds demonstrate low affinity for the HARBS site with IC50 values of 12–69 µM (IC50 for Rolipram = 3.6 nM). Drug Dev Res 72: 274–288, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Liu Y  Zhang S  Li Y  Wang J  Song Y  Gong P 《Archiv der Pharmazie》2012,345(4):287-293
A new series of 1,4‐disubstituted phthalazinylpiperazine derivatives 7a–f , 12a–f and 20a–f were designed and synthesized in order to develop potent and selective antitumor agents. The target compounds were screened for their cytotoxic activities against A549, HT‐29 and MDA‐MB‐231 cancer cell lines in vitro. Among them, compounds 7a–f exhibited excellent selectivity for MDA‐MB‐231 with IC50 values ranging from 0.013 µM to 0.079 µM. The most promising compound, 7e (IC50 = 2.19 µM, 2.19 µM, 0.013 µM), was 9.3, 10, and 4.9 × 103 times more active than vatalanib (IC50 = 20.27 µM, 21.96 µM, 63.90 µM), respectively.  相似文献   

3.
Xie L  Zhao Y  Zhai X  Li P  Liu C  Li Y  Gong P 《Archiv der Pharmazie》2011,344(10):631-638
Three series of novel artemisinin–guanidine hybrids 4a–4f , 8a–8h and 9a–9h have been facilely synthesized via four‐component reaction (aza‐Wittig reaction) and evaluated for their anti‐tumor activities against A549, HT‐29 and MDA‐MB‐231 cell lines in vitro. All of the tested compounds showed enhanced anti‐tumor activities with IC50 values ranging from 0.02 µM to 12.0 µM as compared to DHA (dihydroartemisinin). Among them, artemisinin derived dimers, compounds 9b (IC50 = 0.05 µM), 9d (IC50 = 0.06 µM) and 9f (IC50 = 0.02 µM) were found to be most active against HT29 cells.  相似文献   

4.
A series of nitrogen mustard‐linked chalcones were synthesized and evaluated for their antitumor activity in vitro against the K562 and HepG2 cell lines. The aldol condensation of [N,N‐bis(chloroethyl)‐3‐amino]‐acetophenone ( 2 ) with aromatic aldehydes afforded the nitrogen mustard‐linked chalcones. Among the analogs tested, compounds 5e and 5k exhibited significant anti‐proliferation activities against K562 cells with IC50 values of 2.55 and 0.61 µM, respectively, which revealed higher cell toxicity than the standard drugs cisplatin (IC50 > 200 µM) and adriamycin (IC50 = 14.88 µM). The methoxyl and N,N‐dimethyl groups on the B‐ring of the chalcone frame enhanced the inhibitory activities against both the K562 and HepG2 cell lines. The structure–activity relationship study indicated that the inhibitory activities significantly varied with the position(s) and species of the substituted group(s).  相似文献   

5.
A new series of 1,2‐diaryl‐4‐substituted‐benzylidene‐5(4H)‐imidazolone derivatives 4a–l was synthesized. Their structures were confirmed by different spectroscopic techniques (IR, 1H NMR, DEPT‐Q NMR, and mass spectroscopy) and elemental analyses. Their cytotoxic activities in vitro were evaluated against breast, ovarian, and liver cancer cell lines and also normal human skin fibroblasts. Cyclooxygenase (COX)‐1, COX‐2 and lipoxygenase (LOX) inhibitory activities were measured. The synthesized compounds showed selectivity toward COX‐2 rather than COX‐1, and the IC50 values (0.25–1.7 µM) were lower than that of indomethacin (IC50 = 9.47 µM) and somewhat higher than that of celecoxib (IC50 = 0.071 µM). The selectivity index for COX‐2 of the oxazole derivative 4e (SI = 3.67) was nearly equal to that of celecoxib (SI = 3.66). For the LOX inhibitory activity, the new compounds showed IC50 values of 0.02–74.03 µM, while the IC50 of the reference zileuton was 0.83 µM. The most active compound 4c (4‐chlorobenzoxazole derivative) was found to have dual COX‐2/LOX activity. All the synthesized compounds were docked inside the active site of the COX‐2 and LOX enzymes. They linked to COX‐2 through the N atom of the azole scaffold, while C?O of the oxazolone moiety was responsible for the binding to amino acids inside the LOX active site.
  相似文献   

6.
New 4‐arylazo‐3,5‐diamino‐1H‐pyrazole derivatives substituted in the 4‐aryl ring with the acetyl moiety were designed and synthesized. The antiproliferative activity of the novel arylazopyrazoles was examined against the MCF‐7 cell line. Among all target compounds, 8b (IC50 3.0 µM) and 8f (IC50 4.0 µM) displayed higher cytotoxicity as compared with the reference standard imatinib (IC50 7.0 µM). Further studies to explore the mechanism of action were performed on the most active hit of our library, 8b , via anti‐CDK2 kinase activity. It demonstrated good inhibitory effects for CDK2 (IC50 0.24 µM) with 62.5% inhibition, compared with imatinib. The cell cycle analysis in the MCF‐7 cell line revealed apoptosis induction by 8b and cell cycle arrest at the S phase. Docking in the CDK2 active site and pharmacophore modeling confirmed the affinity of 8b to the CDK2 active site. Absorption, distribution, metabolism, and excretion studies revealed that our target compounds are orally bioavailable, with no permeation through the blood–brain barrier.  相似文献   

7.
Novel series of benzoxazole s 4 a‐f ‐16 were designed, synthesized, and evaluated for anticancer activity against HepG2, HCT‐116, and MCF‐7 cells. HCT‐116 was the most sensitive cell line to the influence of the new derivatives. In particular, compound 5 e was found to be the most potent against HepG2, HCT‐116, and MCF‐7 with IC50 = 4.13 ± 0.2, 6.93 ± 0.3, and 8.67 ± 0.5 µM, respectively. Compounds 5 c , 5 f , 6 b , 5 d , and 6 c showed the highest anticancer activities against HepG2 cells with IC50 of 5.93 ± 0.2, 6.58 ± 0.4, 8.10 ± 0.7, 8.75 ± 0.7, and 9.95 ± 0.9 µM, respectively; HCT‐116 cells with IC50 of 7.14 ± 0.4, 9.10 ± 0.8, 7.91 ± 0.6, 9.52 ± 0.5, and 12.48 ± 1.1 µM, respectively; and MCF‐7 cells with IC50 of 8.93 ± 0.6, 10.11 ± 0.9, 12.31 ± 1.0, 9.95 ± 0.8, and 15.70 ± 1.4 µM, respectively, compared with sorafenib as a reference drug with IC50 of 9.18 ± 0.6, 5.47 ± 0.3, and 7.26 ± 0.3 µM, respectively. The most active compounds 5 c‐f and 6 b,c were further evaluated for their vascular endothelial growth factor receptor‐2 (VEGFR‐2) inhibition. Compounds 5 e and 5 c potently inhibited VEGFR‐2 at lower IC50 values of 0.07 ± 0.01 and 0.08 ± 0.01 µM, respectively, compared with sorafenib (IC50 = 0.1 ± 0.02 µM). Compound 5 f potently inhibited VEGFR‐2 at low IC50 value (0.10 ± 0.02 µM) equipotent to sorafenib. Our design was based on the essential pharmacophoric features of the VEGFR‐2 inhibitor sorafenib. Molecular docking was performed for all compounds to assess their binding pattern and affinity toward the VEGFR‐2 active site.  相似文献   

8.
A novel series of benzoxazole/benzothiazole derivatives 4a–c – 11a–e were designed, synthesized, and evaluated for anticancer activity against HepG2, HCT‐116, and MCF‐7 cells. HCT‐116 was the most sensitive cell line to the influence of the new derivatives. In particular, compound 4c was found to be the most potent derivative against HepG2, HCT‐116, and MCF‐7 cells, with IC50 values = 9.45 ± 0.8, 5.76 ± 0.4, and 7.36 ± 0.5 µM, respectively. Compounds 4b, 9f , and 9c showed the highest anticancer activities against HepG2 cells with IC50 values of 9.97 ± 0.8, 9.99 ± 0.8, and 11.02 ± 1.0 µM, respectively, HCT‐116 cells with IC50 values of 6.99 ± 0.5, 7.44 ± 0.4, and 8.15 ± 0.8 µM, respectively, and MCF‐7 cells with IC50 values of 7.89 ± 0.7, 8.24 ± 0.7, and 9.32 ± 0.7 µM, respectively, in comparison with sorafenib as reference drug with IC50 values of 9.18 ± 0.6, 5.47 ± 0.3, and 7.26 ± 0.3 µM, respectively. The most active compounds 4a–c, 9b,c,e,f,h , and 11c,e were further evaluated for their VEGFR‐2 inhibition. Compounds 4c and 4b potently inhibited VEGFR‐2 at IC50 values of 0.12 ± 0.01 and 0.13 ± 0.02 µM, respectively, which are nearly equipotent to the sorafenib IC50 value (0.10 ± 0.02 µM). Furthermore, molecular docking studies were performed for all synthesized compounds to assess their binding pattern and affinity toward the VEGFR‐2 active site.  相似文献   

9.
In continuation of our previous work on the design and synthesis of topoisomerase II (Topo II) inhibitors and DNA intercalators, a new series of quinoxaline derivatives were designed and synthesized. The synthesized compounds were evaluated for their cytotoxic activities against a panel of three cancer cell lines (Hep G‐2, Hep‐2, and Caco‐2). Compounds 18b, 19b, 23, 25b , and 26 showed strong potencies against all tested cell lines with IC50 values ranging from 0.26 ± 0.1 to 2.91 ± 0.1 µM, comparable with those of doxorubicin (IC50 values ranging from 0.65 ± 0.1 to 0.81 ± 0.1 µM). The most active compounds were further evaluated for their Topo II inhibitory activities and DNA intercalating affinities. Compounds 19b and 19c exhibited high activities against Topo II (IC50 = 0.97 ± 0.1 and 1.10 ± 0.1 µM, respectively) and bound the DNA at concentrations of 43.51 ± 2.0 and 49.11 ± 1.8 µM, respectively, whereas compound 28b exhibited a significant affinity to bind the DNA with an IC50 value of 37.06 ± 1.8 µM. Moreover, apoptosis and cell‐cycle tests of the most promising compound 19b were carried out. It was found that 19b can significantly induce apoptosis in Hep G‐2 cells. It has revealed cell‐cycle arrest at the G2/M phase. Moreover, compound 19b downregulated the Bcl‐2 levels, indicating its potential to enhance apoptosis. Furthermore, molecular docking studies were carried out against the DNA–Topo II complex to examine the binding patterns of the synthesized compounds.  相似文献   

10.
A series of compounds bearing quinoline‐imidazole ( 8a–e , 9a–e , 10a–e , 11a–e , and 12a–e ) not reported previously were designed and synthesized. The target compounds were evaluated for antitumor activity against A549, PC‐3, HepG2, and MCF‐7 cells by the MTT method, with NVP‐BEZ235 being the positive control. Most compounds showed moderate activity and compound 12a showed the best activity against HepG2, A549, and PC‐3 cells, with half‐maximal inhibitory concentration (IC50) values of 2.42 ± 1.02 µM, 6.29 ± 0.99 µM, and 5.11 ± 1.00 µM, respectively, which was equal to NVP‐BEZ235 (0.54 ± 0.13 µM, 0.36 ± 0.06 µM, 0.20 ± 0.01 µM). Besides, the IC50 value of 12a against the cell line WI‐38 (human fetal lung fibroblasts) was 32.8 ± 1.23 µM, indicating that the target compounds were selective for cancer cells. So, 11a and 12a were evaluated against PI3Kα and mTOR to find out if the compounds acted through the PI3K‐Akt‐mTOR signal transduction pathway. The inhibition ratios to PI3Kα and mTOR were slightly lower than that of NVP‐BEZ235, suggesting there may be some other mechanisms of action. The structure–activity relationships and docking study of 11a and 12a revealed that the latter was superior. Moreover, the target compounds showed better in vitro anticancer activity when the C‐6 of the quinoline ring was replaced by a bromine atom.
  相似文献   

11.
Objectives For patients with advanced melanoma, no treatment options are available at present that provide either sufficient response rates or a significant prolongation of overall survival. The present study examines the effects of two inorganic and six organic arsenic compounds on cell proliferation and cell invasion of melanoma cells in vitro. Methods The effects of arsenic compounds on proliferation of human melanoma A375 cells and murine melanoma B16F10 cells were examined by MTT assay and 5‐bromo‐2′‐deoxyuridine (BrdU) incorporation assay, and the effects of the compounds on cell invasion were examined by the Boyden chamber invasion assay. The amounts of active matrix metalloproteinase (MMP)‐2 and pro‐MMP‐2 in the culture supernatant of A375 cells were determined by an MMP‐2 activity assay system. Key findings Arsenate and arsenic trioxide (As2O3) inhibited the proliferation of A375 and B16F10 cells significantly at concentration ranges of 0.1–20 µg/ml (P < 0.001), while the organic compounds arsenobetaine, arsenocholine, dimethylarsinic acid, methylarsonic acid, tetramethylarsonium and trimethylarsine oxide did not show any inhibitory effects even at 20 µg/ml. Cell invasion of A375 and B16F10 cells through a layer of collagen IV was significantly inhibited by 0.1–20 µg/ml of arsenate or As2O3 (P < 0.05), while the organic compounds did not inhibit cell invasion. Arsenate or As2O3 at 0.2–10 µg/ml significantly inhibited the amount of active MMP‐2 and pro‐MMP‐2 secreted into the A375 cell culture supernatant (P < 0.05). Conclusions Our findings show that the inorganic arsenic compounds arsenate and As2O3 inhibit cell proliferation and prevent the invasive properties of melanoma cells, possibly by decreasing MMP‐2 production from the cells.  相似文献   

12.
The synthesis of several new pyrazole and indazole derivatives from acetophenone and tetralone substrates is reported. The bioactivities of the new compounds were evaluated through in vitro assays for endothelial cell proliferation and tube formation. Results herein indicate that the easily prepared compounds containing the indazole structural framework exhibit potent cytostatic properties against all cell lines tested, with compounds 13 and 14 being the most active displaying IC50 values of 1.5 ± 0.4 µM and 5.6 ± 2.5 µM, respectively, against MCF‐7 cells. In addition, the indazole derivative 16 was assessed as a competent inhibitor of endothelial tube formation at 30 µM.  相似文献   

13.
A novel series of 5-(4-methoxybenzylidene)thiazolidine-2,4-dione derivatives, 5a–g and 7a–f , was designed, synthesized, and evaluated for their anticancer activity against HepG2, HCT116, and MCF-7 cells. HepG2 and HCT116 were the most sensitive cell lines to the influence of the new derivatives. In particular, compounds 7f , 7e , 7d , and 7c were found to be the most potent derivatives of all the tested compounds against the HepG2, HCT116, and MCF-7 cancer cell lines. Compound 7f (IC50 = 6.19 ± 0.5, 5.47 ± 0.3, and 7.26 ± 0.3 µM, respectively) exhibited a higher activity than sorafenib (IC50 = 9.18 ± 0.6, 8.37 ± 0.7, and 5.10 ± 0.4 µM, respectively) against HepG2 and MCF-7, cells but a lower activity against HCT116 cancer cells, respectively. Also, this compound displayed a higher activity than doxorubicin (IC50 = 7.94 ± 0.6, 8.07 ± 0.8, and 6.75 ± 0.4 µM, respectively) against HepG2 and MCF-7 cells, but nearly the same activity against HCT116 cells, respectively. All derivatives, 5a–g and 7a–f , were evaluated for their inhibitory activities against vascular endothelial growth factor receptor-2 (VEGFR-2). Among them, compound 7f was found to be the most potent derivative that inhibited VEGFR-2 at an IC50 value of 0.12 ± 0.02 µM, which is nearly the same as that of sorafenib (IC50 = 0.10 ± 0.02 µM). Compounds 7e , 7d , 7c , and 7b exhibited the highest activity, with IC50 values of 0.13 ± 0.02, 0.14 ± 0.02, 0.14 ± 0.02, and 0.18 ± 0.03 µM, respectively, which are more than the half of that of sorafenib. Furthermore, molecular docking was performed to investigate their binding mode and affinities toward the VEGFR-2 receptor. The data obtained from the docking studies highly correlated with those obtained from the biological screening.  相似文献   

14.
A series of 6‐hydrazinyl‐2,4‐bismorpholino pyrimidine and 1,3,5‐triazine derivatives ( 5a – 5l and 8a – 8o ) were synthesized and their chemical structures as well as the relative stereochemistry were confirmed. All the synthesized compounds were evaluated for antiproliferative activity against three cancer cell lines (H460, HT‐29, and MDA‐MB‐231). Several potent compounds were further evaluated against two other cell lines (U87MG, H1975). Most of the prepared compounds, particularly compounds 5c and 5j with IC50 values (0.07 and 0.05 µM, respectively) in the nM range, exhibited moderate to excellent antiproliferative activity and high selectivity against the H460 cancer cell line as compared with compound 1 . The most promising compound 5j , possessing a cyano group at the 3‐position of the benzene ring, showed strong antiproliferative activity against H460, HT‐29, and MDA‐MB‐231 cell lines with IC50 values of 0.05, 6.31, and 6.50 µM, which were 4.6‐ to 190.4‐fold more active than compound 1 (9.52, 29.24, and 36.21 µM), respectively.  相似文献   

15.
In an attempt to identify potent antitumor agents for the fight against non-small cell lung cancer, new thiazolyl hydrazones ( 2a–n ) were synthesized and examined for their in vitro cytotoxic effects on A549 human lung adenocarcinoma and L929 mouse embryonic fibroblast cells by means of the MTT assay. Furthermore, the effects of the most potent anticancer agents on apoptosis and Akt inhibition were investigated. 2-[2-((Isoquinolin-5-yl)methylene)hydrazinyl]−4-(4-methylsulfonylphenyl)thiazole ( 2k ) (IC50 = 1.43 ± 0.12 µM) and 2-[2-((isoquinolin-5-yl)methylene)hydrazinyl]−4-(1,3-benzodioxol-5-yl)thiazole ( 2l ) (IC50 = 1.75 ± 0.07 µM) displayed more pronounced anticancer activity than cisplatin (IC50 = 3.90 ± 0.10 µM) on A549 cell lines; 2-[2-((isoquinolin-5-yl)methylene)hydrazinyl]−4-(4-methoxyphenyl)thiazole ( 2j ) (IC50 = 3.93 ± 0.06 µM) showed anticancer activity close to cisplatin. These compounds were found to induce apoptosis in A549 cells. Compound 2j (IC50 = 3.55 ± 0.64 µM) showed stronger Akt inhibitory activity than GSK690693 (IC50 = 4.93 ± 0.06 µM), while compounds 2k and 2l did not cause Akt inhibition at IC50 concentrations (1.43 and 1.75 µM, respectively). To comprehensively elucidate the binding pose of compound 2j and to provide a detailed understanding on the ligand' binding mechanism, induced-fit docking calculations were also conducted. Both in vitro and in silico studies suggest that compound 2j shows its cytotoxic and apoptotic effects on A549 cell lines via Akt inhibition. However, it is understood that compounds 2k and 2l exert their strong anticancer effects on A549 cells through different pathways.  相似文献   

16.
This study evaluated the potential cytotoxicity of the natural diterpenoids kauren‐19‐oic acid (KA), 14‐hydroxy‐kaurane (1) and xylopic acid (2), and semi‐synthetic derivatives of KA (3–5) towards human cancer cell lines (K562, HL60, MDA‐MB435 and SF295) and lymphocytes. Mouse erythrocytes were used to verify a possible hemolytic activity Cytotoxicity mechanisms were investigated in HL60 cells. KA showed a moderate antiproliferative effect in MTT assay towards all cancer cells (IC50, 9.1–14.3 µg ml?1). However, KA appeared not selective to cancer cells, since it also inhibited the lymphocytes proliferation (IC50, 12.6 µg ml?1). Unlike KA, compounds 1–5 displayed no cytotoxicity and were also free from antiproliferative and hemolytic effects, suggesting that the exocyclic double bond (C16) unit may be the active pharmacophore of KA cytotoxicity. KA‐treated HL60 cells displayed decreased proliferation (5‐bromo‐2';‐deoxyuridine incorporation assay) and topoisomerase I activity (DNA relaxation assay). These assays revealed that KA primarily intercalates with DNA and not with topoisomerase I. Fluorescence microscopy using AO/EB (acridine orange/ethidium bromide) staining indicated that KA can induce both apoptosis and necrosis in HL‐60 cell cultures, which corroborate the findings with MTT. From these findings, we conclude that KA, although demonstrating cytotoxic potential, may have a limited or poor therapeutic potential due to lack of selectivity to tumor cells. Further studies on the structure modification of KA and the mechanism of the new derivatives are currently in progress. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The cytotoxic activities of five new benzopyranone derivatives containing basic amino side chain are described. Their cytotoxicities against ER(+) MCF‐7 and ER(–) MDA‐MB‐231 human breast cancer cell lines, and Ishikawa human endometrial cell line were determined after 72 h drug exposure employing CellTiter‐Glo assay at concentrations ranging from 0.01–1.0 × 105 nM. The antiproliferative activities of these compounds were compared to tamoxifen (TAM), 4‐hydroxytamoxifen (4‐OHT, active metabolite of tamoxifen), and raloxifene (RAL). In‐vitro results indicated that compounds 9 , 10 , 12 , and 13 were more potent than TAM against the human breast cancer cell lines with IC50 < 20 µM. The in‐silico structure–activity relationships of these compounds and their binding mode within the estrogen receptor (ER) binding site using AutoDock vina are discussed.  相似文献   

18.
Xie L  Zhai X  Liu C  Li P  Li Y  Guo G  Gong P 《Archiv der Pharmazie》2011,344(10):639-647
In an attempt to develop potent and selective anti‐tumor agents, three new series of artemisinin–chalcone hybrids 10a – 10g , 11a – 11g and 12a–12h were designed, synthesized and screened for their anti‐tumor activity against five cell lines (HT‐29, A549, MDA‐MB‐231, HeLa and H460) in vitro. Among compounds 10a–g and 11a–11g , most of them displayed enhanced activity and good selectivity toward HT‐29 and HeLa cell lines with IC50 values ranging from 0.12 to 0.85 µM as compared with DHA (dihydroartemisinin). Compounds 10a and 11a are most active toward HeLa cells with IC50 values of 0.12 and 0.19 µM. The results revealed that the presence of chalcone moiety is beneficial to their activity and selectivity. In addition, compounds 12a ‐ 12h containing a ‘reversed chalcone’ moiety showed only slight improvement in activity than those of DHA.  相似文献   

19.
In continuation of our previous work on cancer and inflammation, 15 novel pyrazole–pyrazoline hybrids ( WSPP1 – 15 ) were synthesized and fully characterized. The formation of the pyrazoline ring was confirmed by the appearance of three doublets of doublets in 1H nuclear magnetic resonance spectra exhibiting an AMX pattern for three protons (HA, HM, and HX) of the pyrazoline ring. All the synthesized compounds were screened for their in vitro anticancer activity against five cell lines, that is, MCF‐7, A549, SiHa, COLO205, and HepG2 cells, using the MTT growth inhibition assay. 5‐Fluorouracil was taken as the positive control in the study. It was observed that, among them, WSPP11 was found to be active against A549, SiHa, COLO205, and HepG2 cells, with IC50 values of 4.94, 4.54, 4.86, and 2.09 µM. All the derivatives were also evaluated for their cytotoxicity against HaCaT cells. WSPP11 was also found to be nontoxic against normal cells (cell line HaCaT), with an IC50 value of more than 50 µM. The derivatives were also evaluated for their in vitro anti‐inflammatory activity by the protein (egg albumin) denaturation assay and the red blood cell membrane stabilizing assay, using diclofenac sodium and celecoxib as standard. Compounds that showed significant anticancer and anti‐inflammatory activities were further studied for COX‐2 inhibition. The manifestation of a higher COX‐2 selectivity index of WSPP11 as compared with other derivatives and an in vitro anticancer activity against four cell lines further established that compounds that were more selective toward COX‐2 also exhibited a better spectrum of activity against various cancer cell lines.  相似文献   

20.
A novel series of imidazo[4,5‐c]pyridine‐based CDK2 inhibitors were designed from the structure of CYC202 via scaffold hopping strategy. These compounds were synthesized and biologically evaluated for their CDK2 inhibitory and in vitro anti‐proliferation potential against cancer cell lines. Several compounds exhibited potent CDK2 inhibition with IC50 values of less than 1 µM. The most potent compound 5b showed excellent CDK2 inhibitory (IC50 = 21 nM) and in vitro anti‐proliferation activity against three different cell lines (HL60, A549, and HCT116). The molecular docking and dynamic studies portrayed the potential binding mechanism between 5b and CDK2, and several key interactions between them were observed, which would be the reason for its potent CDK2 inhibitory and anti‐proliferation activities. Therefore, the pyridin‐3‐ylmethyl moiety would serve as an excellent pharmacophore for the development of novel CDK2 inhibitors for targeted anti‐cancer therapy.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号