首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Shi H  Liu XF  Zhang X  Chen S  Sun L  Lu J 《Vaccine》2007,25(42):7379-7384
In the face of disease outbreaks in poultry and the potential pandemic threat to humans caused by the highly pathogenic avian influenza viruses (HPAIVs) of H5N1 subtype, improvement in biosecurity and the use of inactivated vaccines are two main options for the control of this disease. Vaccine candidates of influenza A viruses of H5N1 subtype have been generated in several laboratories by plasmid-based reverse genetics with hemagglutinin (HA) and neuraminidase (NA) genes from the epidemic strains of avian viruses in a background of internal genes from the vaccine donor strain of human strains, A/Puerto Rico/8/34 (PR8). These reassortant viruses containing genes from both avian and human viruses might impose biosafety concerns, also may be do if C4/F AIV would be a live attenuated vaccine or cold-adaptive strain vaccine. In order to generate better and safer vaccine candidate viruses, we genetically constructed attenuated reassortant H5N1 influenza A virus, designated as C4/F AIV, by plasmid-based reverse genetics with all eight genes from the avian strains. The C4/F AIV virus contained HA and NA genes from an epidemic strain A/Chicken/Huadong/04 (H5N1) (C4/H5N1) in a background of internal genes derived from a low pathogenic strain of A/Chicken/F/98(H9N2). The reassortant virus was attenuated by removal of the multibasic amino acid motif in the HA gene by mutation and deletion (from PQRERRRKKR (downward arrow) G to PQIETR (downward arrow) G). The intravenous pathogenicity index (IVPI) of C4/F AIV virus was 0, whereas that of the donor virus C4/H5N1 was 3.0. The virus HA titer of C4/H5N1 in the allantoic fluid from infected embryonated eggs was as high as 1:2048. The inactivated vaccine prepared from the reassortant virus C4/F AIV-induced high HI titer in vaccinated chickens and gave 100% protection when challenged with highly pathogenic avian influenza virus of H5N1 subtype.  相似文献   

2.
Chen H  Subbarao K  Swayne D  Chen Q  Lu X  Katz J  Cox N  Matsuoka Y 《Vaccine》2003,21(17-18):1974-1979
H9N2 subtype avian influenza viruses (AIVs) are widely distributed in avian species and were isolated from humans in Hong Kong and Guangdong province, China in 1999 raising concern of their potential for pandemic spread. We generated a high-growth reassortant virus (G9/PR8) that contains the hemagglutinin (HA) and neuraminidase (NA) genes from the H9N2 avian influenza virus A/chicken/Hong Kong/G9/97 (G9) and six internal genes from A/Puerto Rico/8/34 (PR8) by genetic reassortment, for evaluation as a potential vaccine candidate in humans. Pathogenicity studies showed that the G9/PR8 reassortant was not highly pathogenic for mice or chickens. Two doses of a formalin-inactivated G9/PR8 virus vaccine induced hemagglutination inhibiting antibodies and conferred complete protection against challenge with G9 and the antigenically distinct H9N2 A/Hong Kong/1073/99 (G1-like) virus in a mouse model. These results indicate that the high growth G9/PR8 reassortant has properties that are desirable in a vaccine seed virus and is suitable for evaluation in humans for use in the event of an H9 pandemic.  相似文献   

3.
Du N  Li W  Li Y  Liu S  Sui Y  Qu Z  Wang Y  Du Y  Xu B 《Vaccine》2008,26(23):2912-2918
Reassortant technology was used to obtain three interspecific reassortant influenza viruses using three influenza viruses of A/Puerto Rico/8/34(H1N1), A/swine/Hebei/1/2005(H3N2) and A/chicken/Guangdong/126/2002(H9N2). The high-growth reassortant strains were H9/PR8, H3/H9N2 and H1/H9N2 that contained hemagglutinin (HA) and neuraminidase (NA) genes from the inactivated parental viruses and the other 6 internal genes from the live parental viruses. The trivalent formalin-inactivated vaccine, containing H1, H3 and H9 subtype antigens from human, swine and avian influenza viruses respectively, was prepared using these reassortant viruses. Animal studies showed that the vaccine was safe and immunogenic. Two-dosing regimen of the influenza vaccine induced high titers of hemagglutination inhibiting (HI) antibodies and influenza-specific IgG antibodies without antigenic cross-interference. It protected 100% chickens from challenge of A/chicken/Guangdong/126/2002 virus and protected 100% mice against challenges with different combinations of the three infective parental viruses. These results indicated that the trivalent vaccine could offer multi-protection against multi-influenza viruses synchronously. This kind of multivalent inactivated reassortant influenza vaccine maybe enlightens the pandemic influenza preparedness as the emergency measure.  相似文献   

4.
《Vaccine》2016,34(2):218-224
BackgroundAvian influenza H5N1 viruses have been enzootic in Egyptian poultry since 2006. Avian influenza H9N2 viruses which have been circulating in Egyptian poultry since 2011 showed high replication rates in embryonated chicken eggs and mammalian cells.MethodsTo investigate which gene segment was responsible for increasing replication, we constructed reassortant influenza viruses using the low pathogenic H1N1 PR8 virus as backbone and included individual genes from A/chicken/Egypt/S4456B/2011(H9N2) virus. Then, we invested this finding to improve a PR8-derived H5N1 influenza vaccine strain by incorporation of the NA segment of H9N2 virus instead of the NA of H5N1. The growth properties of this virus and several other forms of reassortant H5 viruses were compared. Finally, we tested the efficacy of this reassortant vaccine strain in chickens.ResultsWe observed an increase in replication for a reassortant virus expressing the neuraminidase gene (N2) of H9N2 virus relative to that of either parental viruses or reassortant PR8 viruses expressing other genes. Then, we generated an H5N2 vaccine strain based on the H5 from an Egyptian H5N1 virus and the N2 from an Egyptian H9N2 virus on a PR8 backbone. This strain had better replication rates than an H5N2 reassortant strain on an H9N2 backbone and an H5N1 reassortant on a PR8 backbone. This virus was then used to develop a killed, oil-emulsion vaccine and tested for efficacy against H5N1 and H9N2 viruses in chickens. Results showed that this vaccine was immunogenic and reduced mortality and shedding.DiscussionOur findings suggest that an inactivated PR8-derived H5N2 influenza vaccine is efficacious in poultry against H5N1 and H9N2 viruses and the vaccine seed replicates at a high rate thus improving vaccine production.  相似文献   

5.
The pandemic threat posed by highly pathogenic H5N1 influenza A viruses has created an urgent need for vaccines to protect against H5 virus infection. Because pathogenic viruses grow poorly in chicken eggs and their virulence poses a biohazard to vaccine producers, avirulent viruses produced by reverse genetics have become the preferred basis for vaccine production. Here, we investigated two key characteristics of potential H5 vaccine candidates: the hemaggutinin (HA) cleavage site sequence and its modification to attenuate virulence and the choice of background virus to provide a high-growth rate. We produced recombinant (6:2 reassortant) viruses that possessed a series of modified avirulent-type HA and neuraminidase genes, both of which were derived from an H5N1 human isolate. The other genes of these recombinant viruses were derived from donor virus strains known to grow well in eggs: the human strain A/Puerto Rico/8/34 (PR8) or an avian strain. All of the recombinant viruses grew well in eggs, were avirulent in chicks, and protected animals against infection with a wild-type virus. However, one of the recombinant viruses with an avian virus background acquired a mutation in the HA cleavage site sequence that conferred virulence potential to this virus. Moreover, vaccine candidates with the avian virus background were more virulent than those with the human virus background. We conclude that 6:2 recombinant viruses with a PR8 background are more suitable than those with an avian virus background for vaccine development and that the HA cleavage site sequence must be modified to minimize the potential for a vaccine virus to convert to a virulent form.  相似文献   

6.
Abt M  de Jonge J  Laue M  Wolff T 《Vaccine》2011,29(32):5153-5162
The H5N1-clade 1 influenza vaccine strain NIBRG-14 produces exceptionally low amounts of antigen, a problem recently encountered also for initial pandemic H1N1-2009 vaccine seeds. Here, we report on a strategy that may contribute to overcome this obstacle. Influenza vaccine viruses usually consist of two segments coding for the antigenic HA and NA proteins of a wild-type strain and the six residual internal gene segments of the vaccine donor strain A/PR/8/34 (PR8). To enhance the antigen yield from H5N1 vaccine virus we generated by reverse genetics a set of PR8-based reassortant viruses expressing the HA and NA segments of the prototypic strain A/Vietnam/1203/2004 and additional replacements of the internal M or PB1 genes of PR8. The reassortants were compared to the parental PR8 and H5N1 viruses in terms of growth in embryonated chicken eggs and the amount of incorporated antigenic HA protein. Compared to NIBRG-14, three out of six viruses displayed an increased replication in embryonated chicken eggs and higher HA content that was also maintained after ether/detergent extraction of virions. Electron microscopic analysis showed that the reassortment hardly affected particle shape and size. Two selected H5N1 reassortant viruses were investigated concerning their pathogenicity in ferrets and found to behave as low pathogenic as the PR8 donor strain. In conclusion, this study shows that replication and antigen content of PR8-derived H5N1 influenza vaccine viruses can be improved by incorporation of heterologous internal gene segments without compromising their attenuated character.  相似文献   

7.
《Vaccine》2015,33(2):374-381
A cell culture-based vaccine production system is preferred for the large-scale production of influenza vaccines and has advantages for generating vaccines against highly pathogenic influenza A viruses. Vero cells have been widely used in human vaccine manufacturing, and the safety of these cells has been well demonstrated. However, the most commonly used influenza-vaccine donor virus, A/Puerto Rico/8/1934 (PR8) virus, does not grow efficiently in Vero cells. Therefore, we adapted the PR8 virus to Vero cells by continuous passaging, and a high-growth strain was obtained after 20 passages. Sequence analysis and virological assays of the adapted strain revealed that mutations in four viral internal genes (NP, PB1, PA and NS1) were sufficient for adaptation. The recombinant virus harboring these mutations (PR8-4mut) displayed accelerated viral transport into the nucleus and increased RNP activity. Importantly, the PR8-4mut could serve as a backbone donor virus to support the growth of the H7N1, H9N2 and H5N1 avian viruses and the H1N1 and H3N2 human viruses in Vero cells without changing its pathogenicity in either chicken embryos or mice. Thus, our work describes the generation of a Vero-adapted, high-yield PR8-4mut virus that may serve as a promising candidate for an influenza-vaccine donor virus.  相似文献   

8.
Lee CW  Senne DA  Suarez DL 《Vaccine》2004,22(23-24):3175-3181
Vaccination of poultry with inactivated influenza vaccine can be an effective tool in the control of avian influenza (AI). One major concern of using inactivated vaccine is vaccine-induced antibody interference with serologic surveillance and epidemiology. In the United States, low pathogenicity H5 and H7 subtype AI viruses have caused serious economic losses in the poultry industry. Most of these viruses also have the accompanying N2 subtype and no H5N1 or H7N8 subtype AI viruses have been identified in poultry in the US. In order to allow the Differentiation of Infected from Vaccinated Animals (DIVA) while maintaining maximum efficacy of the vaccine, we generated reassortant viruses by reverse genetics that contained the same H5 and H7 hemagglutinin (HA) gene as the challenge virus, but a heterologous N1 or N8 neuraminidase (NA) gene. In vaccination-challenge experiments in 2-week-old specific pathogen free chickens, reassortant influenza vaccines (rH5N1 and rH7N8) demonstrated similar antibody profiles and comparable protection rates as vaccines prepared with parent H5N2 and H7N2 viruses. Further, we were able to differentiate the sera from infected and vaccinated birds by neuraminidase inhibition test and indirect immunofluorescent antibody assay on the basis of different antibodies elicited by their NA proteins. These results demonstrate the usefulness of a reverse genetics system for the rapid generation of reassortant AI virus that allows utilization of the DIVA strategy for the control of AI infections in poultry.  相似文献   

9.
An outbreak of highly pathogenic avian influenza, caused by a novel reassortant influenza A (H5N8) virus, occurred among poultry and wild birds in South Korea in 2014. The aim of this study was to evaluate the pathogenesis in and mode of transmission of this virus among domestic and wild ducks. Three of the viruses had similar pathogenicity among infected domestic ducks: the H5N8 viruses were moderately pathogenic (0%–20% mortality rate); in wild mallard ducks, the H5N8 and H5N1 viruses did not cause severe illness or death; viral replication and shedding were greater in H5N8-infected mallards than in H5N1-infected mallards. Identification of H5N8 viruses in birds exposed to infected domestic ducks and mallards indicated that the viruses could spread by contact. We propose active surveillance to support prevention of the spread of this virus among wild birds and poultry, especially domestic ducks.  相似文献   

10.
A unique requirement for live attenuated reassortant influenza vaccines is the need to generate new reassortant vaccine viruses with the appearance of each new antigenic variant. Thus, the attenuation phenotype conferred by the attenuated donor influenza virus must remain genetically stable during the generation of each new reassortant vaccine virus. In this study we used nucleotide sequence analysis to evaluate the genetic stability of the attenuating M and NP genes of the avian influenza A/Mallard/NY/6750/78 attenuated donor virus during the in vitro generation and subsequent in vivo replication of avian-human (AH) influenza A reassortant vaccine viruses in monkeys and humans. Nucleotide sequence changes in the M and NP genes occurred at a rate of approximately 0.61 substitutions/1000 nt/reassortant during in vitro generation of four AH reassortant viruses. Only two nucleotide sequence changes occurred in the M and NP gene segments of four isolates of H1N1 or H3N2 AH vaccine viruses following 6-8 days of replication in seronegative children, and neither change affected amino acids previously identified as playing a potential role in attenuation. In addition, there were no changes in the nucleotide sequence of the M and NP genes of single gene AH reassortant viruses following five serial passages in squirrel monkeys. Finally, there was no change in the level or duration of replication of the single gene reassortant viruses in the upper or lower respiratory tract of monkeys following serial passage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Bragstad K  Jørgensen PH  Handberg KJ  Fomsgaard A 《Vaccine》2006,24(44-46):6736-6741
We full genome characterised the newly discovered avian influenza virus H5N7 subtype combination isolated from a stock of Danish game ducks to investigate the composition of the genome and possible features of high pathogenicity. It was found that the haemagglutinin and the acidic polymerase genes were closely related to a low pathogenic H5 strain (A/Duck/Denmark/65047/04 H5N2). The neuraminidase and the non-structural genes were closely related to the highly pathogenic H7N7 strains from The Netherlands 2003. The basic polymerase genes 1 and 2 were shared between the Danish H5N7 and H5N2 and the H7N7 from The Netherlands. The nucleoprotein and the matrix genes were closely related to H6 strains. Thus, the new H5N7 subtype share genes with H5, H7 and H6 subtypes and possesses internal genes originating from highly pathogenic strains. The findings emphasize the need for surveillance presumed low pathogenic avian influenza A viruses.  相似文献   

12.
Eight-plasmid system for rapid generation of influenza virus vaccines   总被引:29,自引:0,他引:29  
Hoffmann E  Krauss S  Perez D  Webby R  Webster RG 《Vaccine》2002,20(25-26):3165-3170
The antigenic variation of influenza A virus hemagglutinin (HA) and neuraminidase (NA) glycoproteins requires frequent changes in vaccine formulation. The classical method of creating influenza virus seed strains for vaccine production is to generate 6 + 2 reassortants that contain six genes from a high-yield virus, such as A/PR/8/34 (H1N1) and the HA and NA genes of the circulating strains. The techniques currently used are time-consuming because of the selection process required to isolate the reassortant virus. We generated the high-yield virus A/PR/8/34 (H1N1) entirely from eight plasmids. Its growth phenotype in embryonated chicken eggs was equivalent to that of the wild-type virus. By using this DNA-based cotransfection technique, we generated 6 + 2 reassortants that had the antigenic determinants of the influenza virus strains A/New Caledonia/20/99 (H1N1), A/Panama/2007/99 (H3N2), A/teal/HK/W312 (H6N1), and A/quail/HK/G1/97 (H9N2). Our findings demonstrate that the eight-plasmid system allows the rapid and reproducible generation of reassortant influenza A viruses for use in the manufacture of vaccines.  相似文献   

13.
Chen H  Matsuoka Y  Swayne D  Chen Q  Cox NJ  Murphy BR  Subbarao K 《Vaccine》2003,21(27-30):4430-4436
H9N2 subtype influenza A viruses have been identified in avian species worldwide and were isolated from humans in 1999, raising concerns about their pandemic potential and prompting the development of candidate vaccines to protect humans against this subtype of influenza A virus. Reassortant H1N1 and H3N2 human influenza A viruses with the internal genes of the influenza A/Ann Arbor/6/60 (H2N2) (AA) cold-adapted (ca) virus have proven to be attenuated and safe as live virus vaccines in humans. Using classical genetic reassortment, we generated a reassortant virus (G9/AA ca) that contains the hemagglutinin and neuraminidase genes from influenza A/chicken/Hong Kong/G9/97 (H9N2) (G9) and six internal gene segments from the AA ca virus. When administered intranasally, the reassortant virus was immunogenic and protected mice from subsequent challenge with wild-type H9N2 viruses, although it was restricted in replication in the respiratory tract of mice. The G9/AA ca virus bears properties that are desirable in a vaccine for humans and is available for clinical evaluation and use, should the need arise.  相似文献   

14.
It is desirable for influenza vaccine virus strains to have phenotypes that include good growth and hemagglutinin (HA) protein yield. The quality of these characteristics varies among the vaccine viruses and is usually due to multigenic effects. Many influenza A virus vaccine viruses are made as reassortants of the high yield virus A/Puerto Rico/8/34 (PR/8) and a circulating seasonal virus. Co-infection of eggs with the two viruses, and selection of reassortants with the HA and neuraminidase (NA) segments from the seasonal virus, can result in viruses that contain a mixture of internal genes derived from both the high yield virus and the circulating virus. Segment 2 (PB1), which encodes the RNA-dependent RNA polymerase, frequently cosegregates with the seasonal HA and NA segments. We asked whether mutations based on the seasonal PB1 genes could improve vaccine virus strains. Here we report that mutations to the PR/8 PB1 gene, based on differences observed between seasonal and PR/8 PB1 genes, accelerate egg and cell culture based replication for a reassortant virus containing HA and NA segments from the low yield A/Wyoming/03/2003 (H3N2) vaccine virus.  相似文献   

15.
Recent outbreaks of a novel H7N9 avian influenza virus in humans in China raise pandemic concerns and underscore an urgent need to develop effective vaccines. Theoretically, live influenza vaccines are of multiple advantages over traditional inactivated influenza vaccines to be used in a pandemic, because they can be produced rapidly, safely, and inexpensively. However, studies on live vaccines against the novel H7N9 virus are limited. In this study, we evaluated a potential live influenza vaccine candidate using an H7N3 avian influenza virus isolated from ducks with controls of two recombinant viruses generated through reverse genetics. The potential candidate could be produced efficiently using chicken embryonated eggs, and is homogenous to the novel H7N9 virus in their viral hemagglutinin genes. The potential candidate is likely low pathogenic to birds and mammals, and likely sensitive to oseltamivir and amantadine, as suggested by its genomic sequences. Its low pathogenicity was further supported through inoculation in mice, chicken embryonated eggs and chickens. Specific antibodies elicited in mice were detectable at least during the period between day 14 and day 56 after intranasal administration of the candidate for one time. Titers of the specific antibodies increased significantly with a boost intranasal administration or a higher inoculation dose. The induced specific antibodies were of substantial cross-reactivity with the novel H7N9 virus. These primary but promising evaluation data suggest that the duck influenza virus could be used as a potential live vaccine candidate, favorably through a prime-boost route, to mitigate the severity of the possible pandemic caused by the newly emerging H7N9 virus, and is valuable to be further evaluated.  相似文献   

16.
A reassortant virus possessing RNA segment 7, which codes for the M1 and M2 proteins, of the avian influenza A/Mallard/New York/6750/78 (H2N2) virus and the other seven RNA segments of the human influenza A/Udorn/307/72 (H3N2) virus had been shown previously to be markedly restricted in replication in the respiratory tract of squirrel monkeys. In contrast, a reassortant possessing segment 7 of another avian influenza virus, A/Pintail/Alberta/119/79 (H4N6), and the seven other RNA segments from the A/Udorn/72 virus was not restricted. The nucleotide and deduced amino acid sequence of the RNA segment 7 of each virus was determined to identify the structural basis for the attenuation phenotype specified by RNA segment 7 of the A/Mallard/78 virus. Analysis of the deduced amino acid sequences revealed only two amino acid differences in the M1 protein and one difference in the M2 protein, suggesting that the attenuation phenotype of a reassortant virus possessing segment 7 of the A/Mallard/78 virus may be specified by one to three amino acids. Reassortant viruses possessing RNA segment 6, which codes for the nucleoprotein, of either avian influenza virus and the other seven RNA segments of a human influenza virus were also restricted in replication in squirrel monkeys. A comparison of the deduced amino acid sequences of the two avian nucleopeoteins demonstrated only three amino acid differences indicating that these two avian viruses possess NP genes that are highly related. The high degree of relatedness of both the NP and M proteins of these two avian viruses contrasts with their divergent surface antigens. The structural basis for the attenuation phenotype of the NP gene of the A/Mallard/78 virus is being investigated.  相似文献   

17.
Two variants of highly pathogenic avian influenza A(H5N8) virus were detected in dead poultry in Western Siberia, Russia, during August and September 2020. One variant was represented by viruses of clade 2.3.4.4b and the other by a novel reassortant between clade 2.3.4.4b and Eurasian low pathogenicity avian influenza viruses circulating in wild birds.  相似文献   

18.
《Vaccine》2016,34(3):328-333
In April 2013, the first three fatal cases of human infection with an avian influenza A virus (H7N9) were reported in China. Because of a pandemic threat by this virus, we have commenced to develop candidate vaccine viruses (CVVs). Three 6:2 genetic reassortant viruses with different hemagglutinin (HA) sequences, NIIDRG-10, -10.1 and -10.2, were generated by a reverse genetics technique between the high egg-growth master virus, A/Puerto Rico/8/34 (H1N1) and A/Anhui/1/2013 (H7N9), kindly provided by the Chinese Center for Disease Control and Prevention. The different HA gene sequences of the three CVVs were derived from the original virus stock. NIIDRG-10 possesses HA, whose sequence is identical to that of the original A/Anhui/1/2013 (H7N9) in the Global Initiative on Sharing Avian Influenza Data (EPI439507), while NIIDRG-10.1 and -10.2 possess amino acid differences, A125T and N123D/N149D, respectively, compared with NIIDRG-10. NIIDRG-10 replicated in embryonated chicken eggs with low hemagglutination titer 128, whereas NIIDRG-10.1 and -10.2 grew well with hemagglutination titer 1024. These viruses reacted well with a ferret antiserum raised against the original A/Anhui/1/2013 virus. Ferret antiserum against NIIDRG-10.1 reacted well with A/Anhui/1/2013 similar to the homologous virus NIIDRG-10.1. These results indicated that NIIDRG-10.1 passed the two-way test of antigenic identity. In contrast, the ferret antiserum against NIIDRG-10.2 reacted with A/Anhui/1/2013 at an 8-fold lower hemagglutination inhibition titer than with the homologous virus NIIDRG-10.2, indicating an antigenic change. The total and HA protein yields of NIIDRG-10.1 were 14.7 and 6.9 μg/ml, respectively, similar to those levels of high-yield seed viruses of seasonal influenza vaccines. NIIDRG-10.1 was approved as one of the CVVs for H7N9 viruses by the WHO in 2013. The candidate vaccine derived from NIIDRG-10.1 is currently being evaluated in a phase II clinical study in Japan.  相似文献   

19.
Domestic ducks are natural reservoirs of avian influenza viruses and serve as reassortant hosts for new virus subtypes. We isolated 2 novel influenza A(H5N8) viruses from domestic ducks in eastern China, sequenced their genomes, and tested their pathogenicity in chickens and mice. Circulation of these viruses may pose health risks for humans.  相似文献   

20.
From December 2013 to March 2014, a major wave of highly pathogenic avian influenza outbreak occurred in poultry in Yunnan Province, China. We isolated and characterized eight highly pathogenic avian influenza A (H5N1) viruses from poultry. Full genome influenza sequences and analyses have been performed.Sequence analyses revealed that they belonged to clade 2.3.4 but did not fit within the three defined subclades. The isolated viruses were provisional subclade 2.3.4.4e. The provisional subclade 2.3.4.4e viruses with six internal genes from avian influenza A (H5N2) viruses in 2013 were the novel reassortant influenza A (H5N1) viruses which were associated with the outbreak of H5N1 occurred in egg chicken farms in Yunnan Province. The HA genes were similar to subtype H5 viruses isolated from January to March of 2014 in Asia including H5N6 and H5N8. The NA genes were most closely related to A/chicken/Vietnam/NCVD-KA423/2013 (H5N1) from the subclade 2.3.2. The HI assay demonstrated a lack of antigenic relatedness between clades 2.3.4.4e and 2.3.4.1 (RE-5 vaccine strain) or 2.3.2.2 (RE-6 vaccine strain).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号