首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
It has been suggested that high affinity/avidity interactions are required for the thymic selection of Treg. Here, we investigated the role of CD5, a negative regulator of TCR signaling, in the selection and function of “naturally occurring” CD4+CD25+ Treg (nTreg). Analysis of CD5?/? mice showed a significant increase in the percentage and absolute numbers of CD4+ CD25+Foxp3+ thymocytes and peripheral T lymphocytes, compared with BALB/c mice. Thymi from CD5?/? mice showed reduced cellularity due to increased apoptosis, which preferentially affected naïve T cells. To characterize nTreg selection at the molecular level we investigated the phosphorylation of Erk, c‐Cbl, PI3K and Akt. CD5?/? nTreg showed increased basal levels of p‐Erk compared with wild‐type nTreg. Interestingly, in response to CD3 plus CD28 costimulation, CD5?/? naïve T cells but not CD5?/? nTreg showed lower levels of p‐Akt. Finally, CD5?/? nTreg were thymus‐derived and fully functional. We conclude that the enrichment of nTreg observed in the absence of CD5 signaling is due to de novo generation of nTreg and selective reduction of CD4+CD25? naïve thymocytes. Furthermore, we provide new evidence supporting a potential role of CD5 in thymocyte survival, through a mechanism that may involve the phosphorylation of Akt.  相似文献   

2.
Regulatory T (Treg) cells are critically important for the maintenance of immunological tolerance. Both centrally arising natural nTreg cells and those emerging in the periphery in response to TGF‐β, iTreg cells, play a role in the control of unwanted immune responses. Treg cells adopt multiple mechanisms to inhibit effector T cells, yet it is unclear whether these mechanisms are shared by nTreg cells and iTreg cells alike. Here, we show that iTreg cells, like nTreg cells, are able to out‐compete naïve T cells in clustering around dendritic cells (DCs). However, using both a tamoxifen‐responsive inducible Foxp3 retroviral construct and TGF‐β‐induced iTreg cells from hCD2‐Foxp3 knock in reporter mice, we show that it is prior antigen‐induced activation rather than Foxp3 expression per se that determines the ability of iTreg cells to competitively cluster around DCs. We found no difference in the capacity of iTreg cells to displace naïve T cells around DCs to that of Tr1, Th1, Th2, or Th9 cells. An important difference was, however, that clustering of iTreg cells around DCs, just as for naïve T cells, did not effectively activate DCs.  相似文献   

3.
Foxp3+ regulatory T (Treg) cells, which play a central role for the maintenance of immune homeostasis and self‐tolerance, are known to be both generated in the thymus (thymus‐derived, tTreg cells) and in the periphery, where they are converted from conventional CD4+ T cells (induced Treg (iTreg) cells). Recent data suggest a division of labor between these two Treg‐cell subsets since their combined action was shown to be essential for protection in inflammatory disease models. Here, using the transfer colitis model, we examined whether tTreg cells and iTreg cells fill different niches within the CD4+ T‐cell compartment. When naive T cells were co‐transferred with either pure tTreg cells or with a mixture of tTreg cells and iTreg cells, induction of Foxp3+ Treg cells from naive T cells was not hampered by preoccupation of the Treg‐cell niche. Using neuropilin‐1 (Nrp1) as a surface marker to separate tTreg cells and iTreg cells, we demonstrate that tTreg cells and iTreg cells alone can completely fill the Treg‐cell niche and display comparable TCR repertoires. However, when transferred together Nrp1+ tTreg cells outcompeted Nrp1? iTreg cells and dominated the Treg‐cell compartment. Taken together, our data suggest that tTreg cells and iTreg cells share a common peripheral niche.  相似文献   

4.
Inducible Treg (iTreg) cells generated from Ag‐stimulated naïve CD4+ T cells in the periphery play an important role in regulating immune responses. TGF‐β is a key cytokine that promotes this conversion process; however, how this process is regulated in vivo remains unclear. Here, we report that γδ T cells play a crucial role in controlling iTreg generation and suppressor function. Ag‐induced iTreg generation was significantly enhanced in C57BL/6 mice in the absence of γδ T cells. Inhibition of iTreg conversion was mediated by IFN‐γ produced by activated γδ T cells but not by activated CD4+ T cells. BM chimera experiments further confirmed γδ‐derived IFN‐γ‐dependent mechanism in regulating iTreg generation in vivo. Lastly, human peripheral blood γδ T cells also interfere with iTreg conversion via IFN‐γ. Our results suggest a novel function of γδ T cells in limiting the generation of iTreg cells, potentially balancing immunity and tolerance.  相似文献   

5.
Although allergen‐specific CD4+ T cells are detectable in the peripheral blood of both individuals with or without allergy, their frequencies and phenotypes within the memory as well as naïve repertoires are incompletely known. Here, we analyzed the DRB1*0401‐restricted responses of peripheral blood‐derived memory (CD4+CD45RO+) and naïve (CD4+CD45RA+) T cells from subjects with or without allergy against the immunodominant epitope of the major cow dander allergen Bos d 2 by HLA class II tetramers in vitro. The frequency of Bos d 2127–142‐specific memory T cells in the peripheral blood‐derived cultures appeared to be higher in subjects with allergy than those without, whereas naïve Bos d 2127–142‐specific T cells were detectable in the cultures of both groups at nearly the same frequency. Surprisingly, the TCR avidity of Bos d 2127–142‐specific T cells of naïve origin, as assessed by the intensity of HLA class II tetramer staining, was found to be higher in individuals with allergy. Upon restimulation, long‐term Bos d 2127–142‐specific T‐cell lines generated from both memory and naïve T‐cell pools from individuals with allergy proliferated more strongly, produced more IL‐4 and IL‐10, and expressed higher levels of CD25 but lower levels of CXCR3 than the T‐cell lines from individuals without allergy, demonstrating differences also at the functional level. Collectively, our current results suggest that not only the memory but also the naïve allergen‐specific T‐cell repertoires differ between individuals with or without allergy.  相似文献   

6.
Tolerogenic DC and suppressive Foxp3+ Treg play important roles in preventing autoimmunity and allograft rejection. We report that (adenovirus mediated) ectopic expression of Foxp3 in human DC (i.e. DC.Foxp3) yields an APC that severely limits T‐cell proliferation and type‐1 immune responses from the naïve, but not memory, pool of responder T cells in vitro. In marked contrast, the frequencies of type‐2 and Treg responses were dramatically increased after stimulation of naïve T cells with DC.Foxp3 versus control DC. DC.Foxp3‐induced CD4+CD25+ Treg cells potently suppressed the proliferation of, and IFN‐γ production from, CD4+ and CD8+ responder T cells. Notably, the immunosuppressive biology of DC.Foxp3 was effectively normalized by addition of 1‐methyl‐tryptophan or neutralizing anti‐TGF‐β1 Ab during the period of T‐cell priming. These data suggest the potential utility of regulatory DC.Foxp3 and/or DC.Foxp3‐induced CD4+CD25+ Treg as translational agents for the amelioration or prevention of pathology in the setting of allograft transplantation and/or autoimmunity.  相似文献   

7.
Analyses of the regulatory T (Treg) cell TCR repertoire should help elucidate the nature and diversity of their cognate antigens and thus how Treg cells protect us from autoimmune diseases. We earlier identified CD44hiCD62Llow activated/memory (am) Treg cells as a Treg‐cell subset with a high turnover and possible self‐specificity. We now report that amTreg cells are predominantly distributed in lymph nodes (LNs) draining deep tissues. Multivariate analyses of CDR3 spectratyping first revealed that amTreg TCR repertoire is different from that of naïve Treg cells (nTreg cells) and effector T (Teff) cells. Furthermore, in deep‐ versus superficial LNs, TCR‐β deep sequencing further revealed diversified nTreg‐cell and amTreg‐cell repertoires, although twofold less diverse than that of Teff cells, and with repertoire richness significantly lower in deep‐LN versus superficial‐LN Treg cells. Importantly, expanded clonotypes were mostly detected in deep‐LN amTreg cells, some accounting for 20% of the repertoire. Strikingly, these clonotypes were absent from nTreg cells, but found at low frequency in Teff cells. Our results, obtained in nonmanipulated mice, indicate different antigenic targets for naïve and amTreg cells and that amTreg cells are self‐specific. The data we present are consistent with an instructive component in Treg‐cell differentiation.  相似文献   

8.
9.
Regulatory CD4+ T cells are important for the homeostasis of immune cells, and their absence correlates with autoimmune disorders. However, how the immune system regulates Treg homeostasis remains unclear. We found that IFN‐γ‐deficient‐mice had more forkhead box P3 (FOXP3+) cells than WT mice in all secondary lymphoid organs except the thymus. However, T‐bet‐ or IL‐4Rα‐deficient mice did not show a similar increase. In vitro differentiation studies showed that conversion of naïve T cells into FOXP3+ cells (neo‐generated inducible Treg (iTreg)) by TGF‐β was significantly inhibited by IFN‐γ in a STAT‐1‐dependent manner. Moreover, an in vivo adoptive transfer study showed that inhibition of FOXP3+ iTreg generation by IFN‐γ was a T‐cell autocrine effect. This inhibitory effect of IFN‐γ on iTreg generation was significantly abrogated after N‐acetyl‐L ‐cysteine treatment both in vitro and in vivo, indicating that IFN‐γ regulation of iTreg generation is dependent on ROS‐mediated apoptosis. Therefore, our results suggest that autocrine IFN‐γ can negatively regulate the neo‐generation of FOXP3+ iTreg through ROS‐mediated apoptosis in the periphery.  相似文献   

10.
Neuraminidase family enzymes that hydrolyze the terminal sialic acid linkage in biomolecules are involved in various immune responses. We previously showed that Th1 and Th2 cells differentially express several neuraminidases. Herein, the expression of neuraminidases in induced regulatory T (iTreg) cells was investigated in comparison with that in other T‐cell subsets. Contrary to the tendency toward higher neuraminidase 1 mRNA expression in in vitro‐differentiated Th2 cells, compared to Th1, Th17 and iTreg cells, we observed significantly higher expression of neuraminidase 3 (Neu3) in iTreg cells. Furthermore, the expression of Neu3 in FoxP3+CD62L? spleen cells was higher than that in FoxP3+CD62L+ and FoxP3? cells. Lentiviral expression of Neu3 in naïve CD4+ T cells during the stimulation culture led to upregulation of FoxP3 expression. On the basis of these findings, we conclude that Neu3 contributes to the differentiation of iTreg cells by upregulation of FoxP3.  相似文献   

11.
Accumulating evidence suggests that alloreactive memory T cells (Tm) may form a barrier to tolerance induction in large animals and humans due in part to a resistance to suppression by Treg. However, why Tm are resistant to regulation and how the Tm response to an allograft differs from that of naïve T cells, which are amenable to suppression by Treg, remains unknown. Here, we show that accelerated graft rejection mediated by CD8+ Tm was due to the enhanced recruitment of PMN to allografts in a mouse skin allograft model. Importantly, depletion of PMN slowed the kinetics of (but did not prevent) rejection mediated by Tm and created a window of opportunity that allowed subsequent suppression of rejection by Treg. Taken together, we conclude that CD8+ Tm are not intrinsically resistant to suppression by Treg but may rapidly inflict substantial graft damage before the establishment of regulatory mechanisms. These data suggest that if Tm responses can be attenuated transiently following transplantation, Treg may be able to maintain tolerance through the suppression of both memory and naïve alloreactive T‐cell responses in the long term.  相似文献   

12.
13.
Phenotypic and functional heterogeneity is the hallmark of effector and memory T cells. Upon antigenic stimulation, naïve CD4+ T cells make choices to become effector Th1, Th2 or Th17 cells, or even Treg. In addition to differences in cytokine repertoire, effector CD4+ T cells exhibit diversity in homing, such as migration to lymph node follicles to help B cells versus migration to inflamed tissues. Upon clearance of the antigen, two major types of memory T cells remain: central memory cells, which patrol lymphoid organs, and effector memory cells that act as sentinels in peripheral tissues such as the skin and the gut. Here, we review our current understanding of CD4+ T‐cell lineage heterogeneity and flexibility, with emphasis on the human system, and propose an organization of effector and memory T cells based on distinct functional modules.  相似文献   

14.
Autoimmune disease can be prevented with immunosuppressive agents; however, the effectiveness of these treatments in advanced stage of disease and the fate of pathogenic T cells following such treatments are not clear. In this study we demonstrate that a single dose of in vitro‐induced Treg cells (iTreg cells) resulted in the functional repair and restitution of stomach tissue that had been severely damaged in advanced autoimmune gastritis. iTreg cells caused depletion or inactivation of autoreactive naïve T cells that were antigen inexperienced, however, autoreactive effector/memory T cells persisted in treated mice, resulting in residual cellular infiltrates within the repaired stomach tissue. The persisting autoreactive T cells were able to rapidly cause autoimmune disease if iTreg cells were removed. Similar data were obtained from mice treated continuously with corticosteroid, in that there was substantial restitution of the gastric mucosa; however, effector T cells persisted and rapidly caused pathology following drug removal. Therefore, iTreg cells or corticosteroid can suppress pathogenic autoreactive cells in advanced autoimmune disease, reversing tissue damage and improving tissue function. However, the persistence of pathogenic T cells represents a disease risk.  相似文献   

15.
Lymphodeleption prior to adoptive transfer of tumor‐specific T cells greatly improves the clinical efficacy of adoptive T‐cell therapy for patients with advanced melanoma, and increases the therapeutic efficacy of cancer vaccines in animal models. Lymphodepletion reduces competition between lymphocytes, and thus creates “space” for enhanced expansion and survival of tumor‐specific T cells. Within the lymphodepleted host, Ag‐specific T cells still need to compete with other lymphocytes that undergo lymphopenia‐driven proliferation. Herein, we describe the relative capacity of naïve T cells, Treg, and NK cells to undergo lymphopenia‐driven proliferation. We found that the major population that underwent lymphopenia‐driven proliferation was the CD122+ memory‐like T‐cell population (CD122+CD8+ Treg), and these cells competed with Ag‐driven proliferation of melanoma‐specific T cells. Removal of CD122+CD8+ Treg resulted in a greater expansion of tumor‐specific T cells and tumor infiltration of functional effector/memory T cells. Our results demonstrate the lymphopenia‐driven proliferation of CD122+CD8+ Treg in reconstituted lymphodepleted mice limited the antitumor efficacy of DC vaccination in conjunction with adoptive transfer of tumor‐specific T cells.  相似文献   

16.
Mechanisms that regulate naïve B cell proliferation and function are incompletely defined. In this study, we test the hypothesis that naïve B cell expansion, survival and ability to present antigen to T lymphocytes can be directly modulated by Toll‐like receptor (TLR) agonists. In the absence of B cell receptor stimulation, CpG oligonucleotide, a TLR9 agonist, was particularly efficient in inducing naïve B cell proliferation and survival. Although the expanded naïve B cells did not mature into CD27+ or IgG+ memory B cells, these cells did differentiate into IgM‐secreting cells with increased surface expression of HLA‐DR, CD40 and CD80. This was associated with an increased potential for these B cells to activate allogeneic T cells. We propose that the activation and expansion of naïve B cells induced by TLR9 agonists could enhance the potential of these cells to interact with cognate antigens and facilitate cell‐mediated immune responses.  相似文献   

17.
18.
The gut is home to a large number of Treg, with both CD4+ CD25+ Treg and bacterial antigen‐specific Tr1 cells present in normal mouse intestinal lamina propria. It has been shown recently that intestinal mucosal DC are able to induce Foxp3+ Treg through production of TGF‐β plus retinoic acid (RA). However, the factors instructing DC toward this mucosal phenotype are currently unknown. Curcumin has been shown to possess a number of biologic activities including the inhibition of NF‐κB signaling. We asked whether curcumin could modulate DC to be tolerogenic whose function could mimic mucosal DC. We report here that curcumin modulated BM‐derived DC to express ALDH1a and IL‐10. These curcumin‐treated DC induced differentiation of naïve CD4+ T cells into Treg resembling Treg in the intestine, including both CD4+CD25+ Foxp3+ Treg and IL‐10‐producing Tr1 cells. Such Treg induction required IL‐10, TGF‐β and retinoic acid produced by curcumin‐modulated DC. Cell contact as well as IL‐10 and TGF‐β production were involved in the function of such induced Treg. More importantly, these Treg inhibited antigen‐specific T‐cell activation in vitro and inhibited colitis due to antigen‐specific pathogenic T cells in vivo.  相似文献   

19.
CD1 molecules present lipid antigens to T cells. An intriguing subset of human T cells recognize CD1‐expressing cells without deliberately added lipids. Frequency, subset distribution, clonal composition, naïve‐to‐memory dynamic transition of these CD1 self‐reactive T cells remain largely unknown. By screening libraries of T‐cell clones, generated from CD4+ or CD4?CD8? double negative (DN) T cells sorted from the same donors, and by limiting dilution analysis, we find that the frequency of CD1 self‐reactive T cells is unexpectedly high in both T‐cell subsets, in the range of 1/10–1/300 circulating T cells. These T cells predominantly recognize CD1a and CD1c and express diverse TCRs. Frequency comparisons of T‐cell clones from sorted naïve and memory compartments of umbilical cord and adult blood show that CD1 self‐reactive T cells are naïve at birth and undergo an age‐dependent increase in the memory compartment, suggesting a naïve/memory adaptive‐like population dynamics. CD1 self‐reactive clones exhibit mostly Th1 and Th0 functional activities, depending on the subset and on the CD1 isotype restriction. These findings unveil the unanticipated relevance of self‐lipid T‐cell response in humans and clarify the basic parameters of the lipid‐specific T‐cell physiology.  相似文献   

20.
Interest in manipulating the immunosuppressive powers of Foxp3‐expressing T regulatory cells as an immunotherapy has been tempered by their reported ability to produce proinflammatory cytokines when manipulated in vitro, or in vivo. Understanding processes that can limit this potentially deleterious effect of Treg cells in a therapeutic setting is therefore important. Here, we have studied this using induced (i) Treg cells in which de novo Foxp3 expression is driven by TCR‐stimulation in vitro in the presence of TGF‐β. We show that iTreg cells can produce significant amounts of three proinflammatory cytokines (IFN‐γ, GM‐CSF and TNF‐α) upon secondary TCR stimulation. GM‐CSF is a critical T‐cell derived cytokine for the induction of EAE in mice. Despite their apparent capacity to produce GM‐CSF, myelin autoantigen‐responsive iTreg cells were unable to provoke EAE. Instead, they maintained strong suppressive function in vivo, preventing EAE induction by their CD4+Foxp3? counterparts. We identified that although iTreg cells maintained the ability to produce IFN‐γ and TNF‐α in vivo, their ability to produce GM‐CSF was selectively degraded upon antigen stimulation under inflammatory conditions. Furthermore, we show that IL‐6 and IL‐27 individually, or IL‐2 and TGF‐β in combination, can mediate the selective loss of GM‐CSF production by iTreg cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号