首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synaptically released glutamate binds to ionotropic or metabotropic glutamate receptors. Metabotropic glutamate receptors (mGluRs) are G‐protein‐coupled receptors and can be divided into three subclasses (Group I–III) depending on their pharmacology and coupling to signal transduction cascades. Group I mGluRs are coupled to phospholipase C and are implicated in several important physiological processes, including activity‐dependent synaptic plasticity, but their exact role in synaptic plasticity remains unclear. Synaptic plasticity can manifest itself as an increase or decrease of synaptic efficacy, referred to as long‐term potentiation (LTP) and long‐term depression (LTD). The likelihood, degree and direction of the change in synaptic efficacy depends on the history of the synapse and is referred to as ‘metaplasticity’. We provide direct experimental evidence for an involvement of group I mGluRs in metaplasticity in CA1 hippocampal synapses. Bath application of a low concentration of the specific group I agonist 3,5‐dihydroxyphenylglycine (DHPG), which does not affect basal synaptic transmission, resulted in a leftward shift of the frequency–response function for the induction of LTD and LTP in naïve synapses. DHPG resulted in the induction of LTP at frequencies which induced LTD in control slices. These alterations in the induction of LTD and LTP resemble the metaplastic changes observed in previously depressed synapses. In addition, in the presence of DHPG additional potentiation could be induced after LTP had apparently been saturated. These findings provide strong evidence for an involvement of group I mGluRs in the regulation of metaplasticity in the CA1 field of the hippocampus.  相似文献   

2.
We recently have found that an acute application of the neurosteroid pregnenolone sulfate (PREGS) at 50 μM to rat hippocampal slices induces a long‐lasting potentiation (LLPPREGS) via a sustained ERK2/CREB activation at perforant‐path/granule‐cell synapses in the dentate gyrus. This study is a follow up to investigate whether the expression of LLPPREGS influences subsequent frequency‐dependent synaptic plasticity. Conditioning electric stimuli (CS) at 0.1–200 Hz were given to the perforant‐path of rat hippocampal slices expressing LLPPREGS to induce long‐term potentiation (LTP) and long‐term depression (LTD). The largest LTP was induced at about 20 Hz‐CS, which is normally a subthreshold frequency, and the largest LTD at 0.5 Hz‐CS, resulting in a leftward‐shift of the LTP/LTD‐frequency curve. Furthermore, the level of LTP at 100 Hz‐CS was significantly attenuated to give band‐pass filter characteristics of LTP induction with a center frequency of about 20 Hz. The LTP induced by 20 Hz‐CS (termed 20 Hz‐LTP) was found to be postsynaptic origin and dependent on L‐type voltage‐gated calcium channel (L‐VGCC) but not on N‐methyl‐D ‐aspartate receptor (NMDAr). Moreover, the induction of 20 Hz‐LTP required a sustained activation of ERK2 that had been triggered by PREGS. In conclusion, the transient elevation of PREGS is suggested to induce a modulatory metaplasticity through a sustained activation of ERK2 in an L‐VGCC dependent manner. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
1 Introduction The ability to modify synaptic strength in an activity- dependent manner, either as long-term depression (LTD) or as long-term potentiation (LTP) is a fundamental feature of most central nervous system synapses. The properties of different forms of LTP in the rodent hippocampus have been exceedingly well studied. A less well studied but par- ticularly intriguing finding is that the capacity of many syn- apses for plastic changes itself is subject to modulation of subsequent …  相似文献   

4.
Objective The potential of all central nervous system synapses to exhibit long term potentiation (LTP) or long term depression (LTD) is subject to modulation by prior synaptic activity, a higher-order form of plasticity that has been termed metaplasticity. This study is designed to examine the plasticity and metaplasticity in the lateral perforant path of rat. Methods Field potential was measured with different priming and conditioning stimulation protocols. Results Ten-hertz priming, which does not affect basal synaptic transmission, caused a dramatic reduction in subsequent LTP at lateral perforant path synapses in vitro, and the reduced LTP lasted for at least 2 h. The LTD was unaffected. The reduction of LTP in the lateral perforant path was also readily induced by applying priming antidromically at the mossy fibers. Conclusion Priming with 10 Hz, which is within a frequency range observed during physiological activity, can cause potent, long-lasting inhibition of LTP, but not LTD. This form of metaplasticity adds a layer of complexity to the activity-dependent modification of synapses within the dentate gyrus.  相似文献   

5.
Synaptic plasticity is regarded as the major candidate mechanism for synaptic information storage and memory formation in the hippocampus. Mitogen‐activated protein kinases have recently emerged as an important regulatory factor in many forms of synaptic plasticity and memory. As one of the subfamilies of mitogen‐activated protein kinases, extracellular‐regulated kinase is involved in the in vitro induction of long‐term potentiation (LTP), whereas p38 mediates metabotropic glutamate receptor‐dependent long‐term depression (LTD) in vitro. Although c‐Jun N‐terminal kinase (JNK) has also been implicated in synaptic plasticity, the in vivo relevance of JNK activity to different forms of synaptic plasticity remains to be further explored. We investigated the effect of inhibition of JNK on different forms of synaptic plasticity in the dentate gyrus of freely behaving adult rats. Intracereboventricular application of c‐Jun N‐terminal protein kinase‐inhibiting peptide (D‐JNKI) (96 ng), a highly selective JNK inhibitor peptide, did not affect basal synaptic transmission but reduced neuronal excitability with a higher dose (192 ng). Application of D‐JNKI, at a concentration that did not affect basal synaptic transmission, resulted in reduced specific phosphorylation of the JNK substrates postsynaptic density 95kD protein (PSD 95) and c‐Jun, a significant enhancement of LTD and a facilitation of short‐term depression into LTD. Both LTP and short‐term potentiation were unaffected. An inhibition of depotentiation (recovery of LTP) occurred. These data suggest that suppression of JNK‐dependent signalling may serve to enhance synaptic depression, and indirectly promote LTP through impairment of depotentiation.  相似文献   

6.
Metaplasticity: new insights through electrophysiological investigations   总被引:1,自引:0,他引:1  
The term synaptic plasticity describes the ability of excitatory synapses to undergo activity-driven long-lasting changes in the efficacy of basal synaptic transmission. This change may be expressed as a long-term potentiation (LTP) or as a long-term depression (LTD). Metaplasticity is a higher-order form of synaptic plasticity that regulates the expression of both LTP and LTD through processes that are initiated by cellular activity that precedes a later bout of plasticity-inducing synaptic activity. Activation by prior synaptic activity and later expression as a facilitation or inhibition of activity-dependent synaptic plasticity are fundamental properties of metaplasticity. The intracellular mechanisms which support metaplasticity appear to be closely linked to those of synaptic plasticity, hence there are significant technical challenges to overcome in order to elucidate those mechanisms specific to metaplasticity. This review will examine the progress in the characterization of metaplasticity over the last decade or so with a focus on findings gained using electrophysiological techniques. It will look at the techniques applied, the brain regions investigated and the knowledge gained from the application of a wide range of protocols designed to examine the influence of varied forms of prior synaptic activity on later, activity-induced, synaptic plasticity.  相似文献   

7.
The present study examined the effects of prenatal morphine exposure on NMDA-dependent seizure susceptibility in the entorhinal cortex (EC), and on activity-dependent synaptic plasticity at Schaffer collateral and perforant path synapses in the hippocampus. During perfusion with Mg(2+)-free ACSF, an enhancement of epileptiform discharges was found in the EC of slices from prenatally morphine-exposed male rats. A submaximal tetanic stimulation (2x50 Hz/1 s) in control slices elicited LTP at the Schaffer collateral-CA1 synapses, but neither LTP nor LTD was evoked at the perforant path-DG synapses. In slices from prenatally morphine-exposed adult male rats, long-term potentiation of synaptic transmission was not observed at Schaffer collateral-CA1 synapses, while the submaximal tetanus now elicited frank LTD of synaptic EPSPs at perforant path synapses. These data suggest that prenatal morphine exposure enhances the susceptibility of entorhinal cortex to the induction of epileptiform activity, but shifts long-term plasticity of hippocampal synapses in favor of LTD.  相似文献   

8.
Long‐term synaptic plasticity, represented by long‐term depression (LTD) and long‐term potentiation (LTP) comprise cellular processes that enable memory. Neuromodulators such as serotonin regulate hippocampal function, and the 5‐HT4‐receptor contributes to processes underlying cognition. It was previously shown that in the CA1‐region, 5‐HT4‐receptors regulate the frequency‐response relationship of synaptic plasticity: patterned afferent stimulation that has no effect on synaptic strength (i.e., a θm‐frequency), will result in LTP or LTD, when given in the presence of a 5‐HT4‐agonist, or antagonist, respectively. Here, we show that in the dentate gyrus (DG) and CA3 regions of freely behaving rats, pharmacological manipulations of 5‐HT4‐receptors do not influence responses generated at θm‐frequencies, but activation of 5‐HT4‐receptors prevents persistent LTD in mossy fiber (mf)‐CA3, or perforant path‐DG synapses. Furthermore, the regulation by 5‐HT4‐receptors of LTP is subfield‐specific: 5‐HT4‐receptor‐activation prevents mf‐CA3‐LTP, but does not strongly affect DG‐potentiation. These data suggest that 5‐HT4‐receptor activation prioritises information encoding by means of LTP in the DG and CA1 regions, and suppresses persistent information storage in mf‐CA3 synapses. Thus, 5‐HT4‐receptors serve to shape information storage across the hippocampal circuitry and specify the nature of experience‐dependent encoding. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

9.
The precise timing of pre‐postsynaptic activity is vital for the induction of long‐term potentiation (LTP) or depression (LTD) at many central synapses. We show in synapses of rat CA1 pyramidal neurons in vitro that spike timing dependent plasticity (STDP) protocols that induce LTP at glutamatergic synapses can evoke LTD of inhibitory postsynaptic currents or STDP‐iLTD. The STDP‐iLTD requires a postsynaptic Ca2+ increase, a release of endocannabinoids (eCBs), the activation of type‐1 endocananabinoid receptors and presynaptic muscarinic receptors that mediate a decreased probability of GABA release. In contrast, the STDP‐iLTD is independent of the activation of nicotinic receptors, GABABRs and G protein‐coupled postsynaptic receptors at pyramidal neurons. We determine that the downregulation of presynaptic Cyclic adenosine monophosphate/protein Kinase A pathways is essential for the induction of STDP‐iLTD. These results suggest a novel mechanism by which the activation of cholinergic neurons and retrograde signaling by eCBs can modulate the efficacy of GABAergic synaptic transmission in ways that may contribute to information processing and storage in the hippocampus. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Zhang J  Yang Y  Li H  Cao J  Xu L 《Brain research》2005,1050(1-2):110-117
Prior synaptic or cellular activity influences degree or threshold for subsequent induction of synaptic plasticity, a process known as metaplasticity. Thus, the continual synaptic activity, spontaneous miniature excitatory synaptic current (mEPSC) may correlate to the induction of long-term depression (LTD). Here, we recorded whole-cell EPSC and mEPSC alternately in the Schaffer-CA1 synapses in brain slice of young rats, and found that this recording configuration affected neither EPSC nor mEPSC. Low frequency stimulation (LFS) induced variable magnitudes of LTD. Remarkably, larger magnitudes of LTD were significantly correlated to smaller amplitude/lower frequency of the basal mEPSC. Furthermore, under the conditions reduced amplitude/frequency of the basal mEPSC by exposure to behavioral stress immediately before slice preparation or low concentration of calcium in bath solution, the magnitudes of LTD were still inversely correlated to mEPSC amplitude/frequency. These new findings suggest that spontaneous mEPSC may reflect functional and/or structural aspects of the synapses, the synaptic history ongoing metaplasticity.  相似文献   

11.
Group I metabotropic glutamate receptors, mGluR1 and mGluR5, modulate NMDA receptor-mediated synaptic transmission and plasticity and mediate mGluR-dependent plasticity. Here we report that the synaptic expression of mGluRs can be regulated by NMDA receptor-dependent synaptic plasticity, but that this is dependent on the subtype of mGluR. Silent synapses, but not active synapses, were found to lack Group I mGluRs showing that mGluRs must be inserted into synapses after they are unsilenced. The induction of LTP resulted in an increased synaptic expression of mGluR1 in an NMDA receptor-dependent manner. mGluR1 is internalized from synapses via NMDA receptor-dependent LTD. Interestingly we found no evidence for the regulation of mGluR5 by NMDA receptor-dependent plasticity. This regulation of Group I mGluRs will determine the ability of synapses to undergo mGluR-dependent modulation of synaptic transmission and plasticity, providing a mechanism for metaplasticity and state-dependent plasticity at hippocampal synapses.  相似文献   

12.
Cerebellar parallel fiber–Purkinje cell (PF–PC) long‐term synaptic plasticity is important for the formation and stability of cerebellar neuronal circuits, and provides substrates for motor learning and memory. We previously reported both presynaptic long‐term potentiation (LTP) and long‐term depression (LTD) in cerebellar PF–PC synapses in vitro. However, the expression and mechanisms of cerebellar PF–PC synaptic plasticity in the cerebellar cortex in vivo are poorly understood. In the present study, we studied the properties of 4 Hz stimulation‐induced PF–PC presynaptic long‐term plasticity using in vivo the whole‐cell patch‐clamp recording technique and pharmacological methods in urethane‐anesthetised mice. Our results demonstrated that 4 Hz PF stimulation induced presynaptic LTD of PF–PC synaptic transmission in the intact cerebellar cortex in living mice. The PF–PC presynaptic LTD was attenuated by either the N‐methyl‐D‐aspartate receptor antagonist, D‐aminophosphonovaleric acid, or the group 1 metabotropic glutamate receptor antagonist, JNJ16259685, and was abolished by combined D‐aminophosphonovaleric acid and JNJ16259685, but enhanced by inhibition of nitric oxide synthase. Blockade of cannabinoid type 1 receptor activity abolished the PF–PC LTD and revealed a presynaptic PF–PC LTP. These data indicate that both endocannabinoids and nitric oxide synthase are involved in the 4 Hz stimulation‐induced PF–PC presynaptic plasticity, but the endocannabinoid‐dependent PF–PC presynaptic LTD masked the nitric oxide‐mediated PF–PC presynaptic LTP in the cerebellar cortex in urethane‐anesthetised mice.  相似文献   

13.
Mechanisms of expression of long-term synaptic plasticity are believed to involve morphological changes of the activated synapses and remodelling of connectivity. Here, we investigated changes in synaptic and neuronal parameters in the dentate gyrus 24 h after induction of long-term potentiation (LTP) and long-term depression (LTD) in awake rats. In dentate granule cells, tetanization of the medial or lateral perforant paths induces LTP in specific synaptic bands along the dendrites in the middle and outer molecular layers, respectively, and tetanization of the lateral path induces robust LTD heterosynaptically in the middle molecular layer. This functional segregation allowed us to assess morphological changes associated with LTP and LTD in each pathway in the same population of neurons. Electron microscopy and unbiased counting methods were used to estimate neuronal density, axospinous, axodendritic and perforated synapse density, multiple synapse bouton density and postsynaptic density (PSD) area. Whereas there was no change in neuronal density, PSD area and multiple synapse boutons 24 h after either LTP or LTD, there was a noninput-specific increase in unperforated axospinous synapses after both LTP and LTD. However, we found that LTP of the medial, but not lateral, perforant path is associated with a specific increase in perforated axospinous synapses in the potentiated area. We also show that heterosynaptic LTD is associated with an input-specific increase in axodendritic synapse density. These results suggest that each perforant pathway may differ with respect to the nature of LTP-induced long-term changes and show that morphologically LTD is not simply the converse of LTP.  相似文献   

14.
Dumas TC 《Hippocampus》2012,22(2):188-199
Activity-dependent synaptic plasticity refines neural networks during development and subserves information processing in adulthood. Previous research has revealed postnatal alterations in synaptic plasticity at nearly all forebrain synapses, suggesting different forms of synaptic plasticity may contribute to network development and information processing. To assess possible relationships between modifications in synaptic plasticity and maturation of cognitive ability, we examined excitatory synaptic function in area CA1 of the mouse hippocampus ~3 weeks of age, when hippocampal-dependent learning and memory abilities first emerge. Long-term potentiation (LTP) and depression (LTD) of synaptic efficacy were observed in slices from juvenile animals younger than 3 weeks of age. Both pre- and postsynaptic mechanisms supported LTP and LTD in juveniles. After the third postnatal week, the magnitude of LTP was reduced and the threshold for postsynaptic induction was reduced, but the threshold for presynaptic induction was increased. The reduced threshold for postsynaptic LTP appeared to be due, partly, to an increase in baseline excitatory synaptic strength, which likely permitted greater postsynaptic depolarization during induction. Low frequency stimulation did not induce LTD at this more mature stage, but it blocked subsequent induction of LTP, suggesting metaplastic differences across age groups. Late postnatal modifications in activity-dependent synaptic plasticity might reflect attenuation of mechanisms more closely tied to network formation (presynaptic potentiation and pre- and postsynaptic depression) and unmasking of mechanisms underlying information processing and storage (associative postsynaptic potentiation), which likely impact the integrative capacity of the network and regulate the emergence of adult-like cognitive abilities.  相似文献   

15.
Heterosynaptic long‐term depression (hLTD) at untetanized synapses accompanying the induction of long‐term potentiation (LTP) spatially sharpens the activity‐induced synaptic potentiation; however, the underlying mechanism remains unclear. We found that hLTD in the hippocampal CA1 region is caused by stimulation‐induced ATP release from astrocytes that suppresses transmitter release from untetanized synaptic terminals via activation of P2Y receptors. Selective stimulation of astrocytes expressing channelrhodopsin‐2, a light‐gated cation channel permeable to Ca2+, resulted in LTD of synapses on neighboring neurons. This synaptic modification required Ca2+ elevation in astrocytes and activation of P2Y receptors, but not N‐methyl‐D ‐aspartate receptors. Furthermore, blocking P2Y receptors or buffering astrocyte intracellular Ca2+ at a low level prevented hLTD without affecting LTP induced by SC stimulation. Thus, astrocyte activation is both necessary and sufficient for mediating hLTD accompanying LTP induction, strongly supporting the notion that astrocytes actively participate in activity‐dependent synaptic plasticity of neural circuits. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
BACKGROUND: A growing body of evidence suggests a disturbance of brain plasticity in major depression. In contrast to hippocampal neurogenesis, much less is known about the role of synaptic plasticity. Long-term potentiation (LTP) and long-term depression (LTD) regulate the strength of synaptic transmission and the formation of new synapses in many neural networks. Therefore, we examined the modulation of synaptic plasticity in the chronic mild stress animal model of depression. METHODS: Adult rats were exposed to mild and unpredictable stressors for 3 weeks. Thereafter, long-term synaptic plasticity was examined in the hippocampal CA1 region by whole-cell patch clamp measurements in brain slices. Neurogenesis was assessed by doublecortin immunostaining. RESULTS: Exposure to chronic mild stress facilitated LTD and had no effect on LTP. Chronic application of the antidepressant fluvoxamine during the stress protocol prevented the facilitation of LTD and increased the extent of LTP induction. Neurogenesis in the dentate gyrus was impaired after chronic stress. CONCLUSIONS: In addition to neurogenesis, long-term synaptic plasticity is an important and ubiquitous form of brain plasticity that is disturbed in an animal model of depression. Facilitated depression of synaptic transmission might impair function and structure of brain circuits involved in the pathophysiology of major depression. Antidepressants might counteract these alterations.  相似文献   

17.
Brain‐derived neurotrophic factor (BDNF) supports neuronal survival, growth, and differentiation and has been implicated in forms of hippocampus‐dependent learning. In vitro, a specific role in hippocampal synaptic plasticity has been described, although not all experience‐dependent forms of synaptic plasticity critically depend on BDNF. Synaptic plasticity is likely to enable long‐term synaptic information storage and memory, and the induction of persistent (>24 h) forms, such as long‐term potentiation (LTP) and long‐term depression (LTD) is tightly associated with learning specific aspects of a spatial representation. Whether BDNF is required for persistent (>24 h) forms of LTP and LTD, and how it contributes to synaptic plasticity in the freely behaving rodent has never been explored. We examined LTP, LTD, and related forms of learning in the CA1 region of freely dependent mice that have a partial knockdown of BDNF (BDNF+/?). We show that whereas early‐LTD (<90min) requires BDNF, short‐term depression (<45 min) does not. Furthermore, BDNF is required for LTP that is induced by mild, but not strong short afferent stimulation protocols. Object‐place learning triggers LTD in the CA1 region of mice. We observed that object‐place memory was impaired and the object‐place exploration failed to induce LTD in BDNF+/? mice. Furthermore, spatial reference memory, that is believed to be enabled by LTP, was also impaired. Taken together, these data indicate that BDNF is required for specific, but not all, forms of hippocampal‐dependent information storage and memory. Thus, very robust forms of synaptic plasticity may circumvent the need for BDNF, rather it may play a specific role in the optimization of weaker forms of plasticity. The finding that both learning‐facilitated LTD and spatial reference memory are both impaired in BDNF+/? mice, suggests moreover, that it is critically required for the physiological encoding of hippocampus‐dependent memory. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

18.
This study focuses on analyzing long‐term potentiation (LTP) changes in the lateral nucleus of the amygdala (LA) and in the CA1 region of the hippocampus in slices derived from mice deficient in tryptophan hydroxylase 2 (TPH2?/?), the rate‐limiting enzyme for 5‐HT synthesis in the brain. We found a reduced LTP in both brain structures in TPH2?/? mice. However, we found no changes in the magnitude of LTP in TPH2?/? mice compared to wildtype mice when it was preceded by a paired pulse protocol. Whereas the magnitude of long‐term depression (LTD) did not differ between wildtype and TPH2?/? mice, priming synapses by LTD‐induction facilitated subsequent CA1‐LTP in wildtype mice to a greater extent than in TPH2?/? mice. In the LA we found no differences between the genotypes in this protocol of metaplasticity. These data show that, unlike exogenous 5‐HT application, lack of 5‐HT in the brain impairs cellular mechanisms responsible for induction of LTP. It is supposed that suppression of LTP observed in TPH2?/? mice might be compensated by mechanisms of metaplasticity induced by paired pulse stimulation or low frequency stimulation before the induction of LTP.  相似文献   

19.
Repetitive transcranial magnetic stimulation (rTMS) over primary motor cortex (M1) elicits changes in motor evoked potential (MEP) size thought to reflect short‐ and long‐term forms of synaptic plasticity, resembling short‐term potentiation (STP) and long‐term potentiation/depression (LTP/LTD) observed in animal experiments. We designed this study in healthy humans to investigate whether STP as elicited by 5‐Hz rTMS interferes with LTP/LTD‐like plasticity induced by intermittent and continuous theta‐burst stimulation (iTBS and cTBS). The effects induced by 5‐Hz rTMS and iTBS/cTBS were indexed as changes in MEP size. We separately evaluated changes induced by 5‐Hz rTMS, iTBS and cTBS applied alone and those induced by iTBS and cTBS delivered after priming 5‐Hz rTMS. Interactions between 5‐Hz rTMS and iTBS/cTBS were investigated under several experimental conditions by delivering 5‐Hz rTMS at suprathreshold and subthreshold intensity, allowing 1 and 5 min intervals to elapse between 5‐Hz rTMS and TBS, and delivering one and ten 5‐Hz rTMS trains. We also investigated whether 5‐Hz rTMS induces changes in intracortical excitability tested with paired‐pulse transcranial magnetic stimulation. When given alone, 5‐Hz rTMS induced short‐lasting and iTBS/cTBS induced long‐lasting changes in MEP amplitudes. When M1 was primed with 10 suprathreshold 5‐Hz rTMS trains at 1 min before iTBS or cTBS, the iTBS/cTBS‐induced after‐effects disappeared. The 5‐Hz rTMS left intracortical excitability unchanged. We suggest that STP elicited by suprathreshold 5‐Hz rTMS abolishes iTBS/cTBS‐induced LTP/LTD‐like plasticity through non‐homeostatic metaplasticity mechanisms. Our study provides new information on interactions between short‐term and long‐term rTMS‐induced plasticity in human M1.  相似文献   

20.
Metaplasticity refers to the activity-dependent modification of the ability of synapses to undergo subsequent synaptic plasticity. Here, we have addressed the question of whether metaplasticity contributes to the induction of long-term depression (LTD) by low-frequency stimulation (LFS). The experiments were conducted using standard extracellular recording techniques in stratum radiatum of area CA1 in hippocampal slices made from adult Sprague-Dawley rats. The degree of LTD induction was found to be a nonlinear function of the number of pulses during a 1-Hz LFS. Little LTD was observed following 600 or 900 pulses, but a significant LTD occurred following 1200 pulses of LFS, whether delivered in one episode, or in two bouts of 600 pulses given 10 min apart. A similar pattern was observed for 3 Hz LFS. The data support the suggestion that pulses occurring early in the LFS train prime synapses for LTD induction, as triggered by later occurring stimuli. The priming effect lasted at least 120 min, when tested by giving two bouts of 1 Hz LFS (600 pulses each) at different intervals. Neither heterosynaptic nor homosynaptic stimulation by itself was sufficient to prime LTD. However, a combination of the stimuli, induced by increased stimulus strength during the LFS, appeared necessary for inducing the effect. An N-methyl-d-aspartate (NMDA) receptor antagonist markedly reduced total LTD induction, regardless of whether it was administered during the first or second LFS in a protocol employing two bouts of 600 pulse LFS, 30 min apart. These findings strongly support the hypothesis that NMDA receptor-dependent metaplasticity processes contribute to the induction of LTD during standard LFS protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号