首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Candidate gene association studies often utilize one single nucleotide polymorphism (SNP) for analysis, with an initial report typically not being replicated by subsequent studies. The failure to replicate may result from incomplete or poor identification of disease-related variants or haplotypes, possibly due to naive SNP selection. A method for identification of linkage disequilibrium (LD) groups and selection of SNPs that capture sufficient intra-genic genetic diversity is described. We assume all SNPs with minor allele frequency above a pre-determined frequency have been identified. Principal component analysis (PCA) is applied to evaluate multivariate SNP correlations to infer groups of SNPs in LD (LD-groups) and to establish an optimal set of group-tagging SNPs (gtSNPs) that provide the most comprehensive coverage of intra-genic diversity while minimizing the resources necessary to perform an informative association analysis. This PCA method differs from haplotype block (HB) and haplotype-tagging SNP (htSNP) methods, in that an LD-group of SNPs need not be a contiguous DNA fragment. Results of the PCA method compared well with existing htSNP methods while also providing advantages over those methods, including an indication of the optimal number of SNPs needed. Further, evaluation of the method over multiple replicates of simulated data indicated PCA to be a robust method for SNP selection. Our findings suggest that PCA may be a powerful tool for establishing an optimal SNP set that maximizes the amount of genetic variation captured for a candidate gene using a minimal number of SNPs.  相似文献   

2.
Analysis of rare variants is currently a major focus of genetic studies of human disease. Single-nucleotide polymorphism (SNP) genotypes can be assayed using microarray genotyping or by sequencing, but neither technology produces perfect genotype calls, especially at rare SNPs. Studies that collect both types of data are becoming increasingly common, so it may be possible to combine data types to increase accuracy. We present a method, called Chiamante, which calls genotypes on individuals with either array data, sequence data, or both. The model adapts to data quality and can estimate when either the array or the sequence data should be ignored when calling the genotypes at each SNP. As a special case, our method will call genotypes from only array data and outperforms existing methods in this scenario. We have applied our method to array and sequence data from Phase I of the 1000 Genomes Project and show that it provides improved performance, especially at rare SNPs. This method provides a foundation for future efforts to fuse genetic data from different sources, for example, when combining data from exome sequencing and exome microarrays.  相似文献   

3.
Genome-wide association studies using thousands to hundreds of thousands of single nucleotide polymorphism (SNP) markers and region-wide association studies using a dense panel of SNPs are already in use to identify disease susceptibility genes and to predict disease risk in individuals. Because these tasks become increasingly important, three different data sets were provided for the Genetic Analysis Workshop 15, thus allowing examination of various novel and existing data mining methods for both classification and identification of disease susceptibility genes, gene by gene or gene by environment interaction. The approach most often applied in this presentation group was random forests because of its simplicity, elegance, and robustness. It was used for prediction and for screening for interesting SNPs in a first step. The logistic tree with unbiased selection approach appeared to be an interesting alternative to efficiently select interesting SNPs. Machine learning, specifically ensemble methods, might be useful as pre-screening tools for large-scale association studies because they can be less prone to overfitting, can be less computer processor time intensive, can easily include pair-wise and higher-order interactions compared with standard statistical approaches and can also have a high capability for classification. However, improved implementations that are able to deal with hundreds of thousands of SNPs at a time are required.  相似文献   

4.
By systematic examination of common tag single-nucleotide polymorphisms (SNPs) across the genome, the genome-wide association study (GWAS) has proven to be a successful approach to identify genetic variants that are associated with complex diseases and traits. Although the per base pair cost of sequencing has dropped dramatically with the advent of the next-generation technologies, it may still only be feasible to obtain DNA sequence data for a portion of available study subjects due to financial constraints. Two-phase sampling designs have been used frequently in large-scale surveys and epidemiological studies where certain variables are too costly to be measured on all subjects. We consider two-phase stratified sampling designs for genetic association, in which tag SNPs for candidate genes or regions are genotyped on all subjects in phase 1, and a proportion of subjects are selected into phase 2 based on genotypes at one or more tag SNPs. Deep sequencing in the region is then applied to genotype phase 2 subjects at sequence SNPs. We investigate alternative sampling designs for selection of phase 2 subjects within strata defined by tag SNP genotypes and develop methods of inference for sequence SNP variant associations using data from both phases. In comparison to methods that use data from phase 2 alone, the combined analysis improves efficiency.  相似文献   

5.
单核苷酸多态性(single nucleotide olymorphisms,SNPs)是指在基因组水平上由单个核苷酸的变异所引起的DNA序列多态性,作为第三代遗传标志,SNPs检测对疾病相关基因的生物学基础性研究,针对个体的用药设计和治疗以及有关人类进化和演化的人类学研究都有重要意义。SNPs检测方法多种多样,该文对2型糖尿病相关的SNPs基因多态性检测方法进行了介绍,按照检测的基本原理划分为酶学方法和物理方法,并对相关的应用做了较详细的回顾和分析。  相似文献   

6.
With a typical sample size of a few thousand subjects, a single genome‐wide association study (GWAS) using traditional one single nucleotide polymorphism (SNP)‐at‐a‐time methods can only detect genetic variants conferring a sizable effect on disease risk. Set‐based methods, which analyze sets of SNPs jointly, can detect variants with smaller effects acting within a gene, a pathway, or other biologically relevant sets. Although self‐contained set‐based methods (those that test sets of variants without regard to variants not in the set) are generally more powerful than competitive set‐based approaches (those that rely on comparison of variants in the set of interest with variants not in the set), there is no consensus as to which self‐contained methods are best. In particular, several self‐contained set tests have been proposed to directly or indirectly “adapt” to the a priori unknown proportion and distribution of effects of the truly associated SNPs in the set, which is a major determinant of their power. A popular adaptive set‐based test is the adaptive rank truncated product (ARTP), which seeks the set of SNPs that yields the best‐combined evidence of association. We compared the standard ARTP, several ARTP variations we introduced, and other adaptive methods in a comprehensive simulation study to evaluate their performance. We used permutations to assess significance for all the methods and thus provide a level playing field for comparison. We found the standard ARTP test to have the highest power across our simulations followed closely by the global model of random effects (GMRE) and a least absolute shrinkage and selection operator (LASSO)‐based test.  相似文献   

7.
Single nucleotide polymorphisms (SNPs) are becoming widely used as genotypic markers in genetic association studies of common, complex human diseases. For such association screens, a crucial part of study design is determining what SNPs to prioritize for genotyping. We present a novel power-based algorithm to select a subset of tag SNPs for genotyping from a map of available SNPs. Blocks of markers in strong linkage disequilibrium (LD) are identified, and SNPs are selected to represent each block such that power to detect disease association with an underlying disease allele in LD with block members is preserved; all markers outside of blocks are also included in the tagging subset. A key, novel element of this method is that it incorporates information about the phase of LD observed among marker pairs to retain markers likely to be in coupling phase with an underlying disease locus, thus increasing power compared to a phase-blind approach. Power calculations illustrate important issues regarding LD phase and make clear the advantages of our approach to SNP selection. We apply our algorithm to genotype data from the International HapMap Consortium and demonstrate that considerable reduction in SNP genotyping may be attained while retaining much of the available power for a disease association screen. We also demonstrate that these tag SNPs effectively represent underlying variants not included in the LD analysis and SNP selection, by using leave-one-out tests to show that most (approximately 90%) of the "untyped" variants lying in blocks are in coupling-phase LD with a tag SNP. Additional performance tests using the HapMap ENCyclopedia of DNA Elements (ENCODE) regions show that the method compares well with the popular r2 bin tagging method. This work is a concrete example of how empirical LD phase may be used to benefit study design.  相似文献   

8.
Tag SNP selection for association studies   总被引:6,自引:0,他引:6  
This report describes current methods for selection of informative single nucleotide polymorphisms (SNPs) using data from a dense network of SNPs that have been genotyped in a relatively small panel of subjects. We discuss the following issues: (1) Optimal selection of SNPs based upon maximizing either the predictability of unmeasured SNPs or the predictability of SNP haplotypes as selection criteria. (2) The dependence of the performance of tag SNP selection methods upon the density of SNP markers genotyped for the purpose of haplotype discovery and tag SNP selection. (3) The likely power of case-control studies to detect the influence upon disease risk of common disease-causing variants in candidate genes in a haplotype-based analysis. We propose a quasi-empirical approach towards evaluating the power of large studies with this calculation based upon the SNP genotype and haplotype frequencies estimated in a haplotype discovery panel. In this calculation, each common SNP in turn is treated as a potential unmeasured causal variant and subjected to a correlation analysis using the remaining SNPs. We use a small portion of the HapMap ENCODE data (488 common SNPs genotyped over approximately a 500 kb region of chromosome 2) as an illustrative example of this approach towards power evaluation.  相似文献   

9.
Variable selection is growing in importance with the advent of high throughput genotyping methods requiring analysis of hundreds to thousands of single nucleotide polymorphisms (SNPs) and the increased interest in using these genetic studies to better understand common, complex diseases. Up to now, the standard approach has been to analyze the genotypes for each SNP individually to look for an association with a disease. Alternatively, combinations of SNPs or haplotypes are analyzed for association. Another added complication in studying complex diseases or phenotypes is that genetic risk for the disease is often due to multiple SNPs in various locations on the chromosome with small individual effects that may have a collectively large effect on the phenotype. Hence, multi-locus SNP models, as opposed to single SNP models, may better capture the true underlying genotypic-phenotypic relationship. Thus, innovative methods for determining which SNPs to include in the model are needed. The goal of this article is to describe several methods currently available for variable and model selection using Bayesian approaches and to illustrate their application for genetic association studies using both real and simulated candidate gene data for a complex disease. In particular, Bayesian model averaging (BMA), stochastic search variable selection (SSVS), and Bayesian variable selection (BVS) using a reversible jump Markov chain Monte Carlo (MCMC) for candidate gene association studies are illustrated using a study of age-related macular degeneration (AMD) and simulated data.  相似文献   

10.
Genome-wide expression quantitative trait loci (eQTLs) mapping explores the relationship between gene expression and DNA variants, such as single-nucleotide polymorphism (SNPs), to understand genetic basis of human diseases. Due to the large number of genes and SNPs that need to be assessed, current methods for eQTL mapping often suffer from low detection power, especially for identifying trans-eQTLs. In this paper, we propose the idea of performing SNP ranking based on the higher criticism statistic, a summary statistic developed in large-scale signal detection. We illustrate how the HC-based SNP ranking can effectively prioritize eQTL signals over noise, greatly reduce the burden of joint modeling, and improve the power for eQTL mapping. Numerical results in simulation studies demonstrate the superior performance of our method compared to existing methods. The proposed method is also evaluated in HapMap eQTL data analysis and the results are compared to a database of known eQTLs.  相似文献   

11.
For most complex diseases, the fraction of heritability that can be explained by the variants discovered from genome‐wide association studies is minor. Although the so‐called “rare variants” (minor allele frequency [MAF] < 1%) have attracted increasing attention, they are unlikely to account for much of the “missing heritability” because very few people may carry these rare variants. The genetic variants that are likely to fill in the “missing heritability” include uncommon causal variants (MAF < 5%), which are generally untyped in association studies using tagging single‐nucleotide polymorphisms (SNPs) or commercial SNP arrays. Developing powerful statistical methods can help to identify chromosomal regions harboring uncommon causal variants, while bypassing the genome‐wide or exome‐wide next‐generation sequencing. In this work, we propose a haplotype kernel association test (HKAT) that is equivalent to testing the variance component of random effects for distinct haplotypes. With an appropriate weighting scheme given to haplotypes, we can further enhance the ability of HKAT to detect uncommon causal variants. With scenarios simulated according to the population genetics theory, HKAT is shown to be a powerful method for detecting chromosomal regions harboring uncommon causal variants.  相似文献   

12.
We develop a new genetic prediction method, smooth‐threshold multivariate genetic prediction, using single nucleotide polymorphisms (SNPs) data in genome‐wide association studies (GWASs). Our method consists of two stages. At the first stage, unlike the usual discontinuous SNP screening as used in the gene score method, our method continuously screens SNPs based on the output from standard univariate analysis for marginal association of each SNP. At the second stage, the predictive model is built by a generalized ridge regression simultaneously using the screened SNPs with SNP weight determined by the strength of marginal association. Continuous SNP screening by the smooth thresholding not only makes prediction stable but also leads to a closed form expression of generalized degrees of freedom (GDF). The GDF leads to the Stein's unbiased risk estimation (SURE), which enables data‐dependent choice of optimal SNP screening cutoff without using cross‐validation. Our method is very rapid because computationally expensive genome‐wide scan is required only once in contrast to the penalized regression methods including lasso and elastic net. Simulation studies that mimic real GWAS data with quantitative and binary traits demonstrate that the proposed method outperforms the gene score method and genomic best linear unbiased prediction (GBLUP), and also shows comparable or sometimes improved performance with the lasso and elastic net being known to have good predictive ability but with heavy computational cost. Application to whole‐genome sequencing (WGS) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) exhibits that the proposed method shows higher predictive power than the gene score and GBLUP methods.  相似文献   

13.
The pattern and nature of linkage disequilibrium in the human genome is being studied and catalogued as part of the International HapMap Project [:2003 Nature 426:789-796]. A key goal of the HapMap Project is to enable identification of tag single nucleotide polymorphisms (SNPs) that capture a substantial portion of common human genetic variability while requiring only a small fraction of SNPs to be genotyped [International HapMap Consortium, 2005: Nature 437:1299-1320]. In the current study, we examined the effectiveness of using the CEU HapMap database to select tag SNPs for a Finnish sample. We selected SNPs in a 17.9-Mb region of chromosome 14 based on pairwise linkage disequilibrium (r(2)) estimates from the HapMap CEU sample, and genotyped 956 of these SNPs in 1,425 Finnish individuals. An excess of SNPs showed significantly different allele frequencies between the HapMap CEU and the Finnish samples, consistent with population-specific differences. However, we observed strong correlations between the two samples for estimates of allele frequencies, r(2) values, and haplotype frequencies. Our results demonstrate that the HapMap CEU samples provide an adequate basis for tag SNP selection in Finnish individuals, without the need to create a map specifically for the Finnish population, and suggest that the four-population HapMap data will provide useful information for tag SNP selection beyond the specific populations from which they were sampled.  相似文献   

14.
A genome‐wide association study (GWAS) correlates marker and trait variation in a study sample. Each subject is genotyped at a multitude of SNPs (single nucleotide polymorphisms) spanning the genome. Here, we assume that subjects are randomly collected unrelateds and that trait values are normally distributed or can be transformed to normality. Over the past decade, geneticists have been remarkably successful in applying GWAS analysis to hundreds of traits. The massive amount of data produced in these studies present unique computational challenges. Penalized regression with the ?1 penalty (LASSO) or minimax concave penalty (MCP) penalties is capable of selecting a handful of associated SNPs from millions of potential SNPs. Unfortunately, model selection can be corrupted by false positives and false negatives, obscuring the genetic underpinning of a trait. Here, we compare LASSO and MCP penalized regression to iterative hard thresholding (IHT). On GWAS regression data, IHT is better at model selection and comparable in speed to both methods of penalized regression. This conclusion holds for both simulated and real GWAS data. IHT fosters parallelization and scales well in problems with large numbers of causal markers. Our parallel implementation of IHT accommodates SNP genotype compression and exploits multiple CPU cores and graphics processing units (GPUs). This allows statistical geneticists to leverage commodity desktop computers in GWAS analysis and to avoid supercomputing. Availability : Source code is freely available at https://github.com/klkeys/IHT.jl .  相似文献   

15.
Significance testing one SNP at a time has proven useful for identifying genomic regions that harbor variants affecting human disease. But after an initial genome scan has identified a "hit region" of association, single-locus approaches can falter. Local linkage disequilibrium (LD) can make both the number of underlying true signals and their identities ambiguous. Simultaneous modeling of multiple loci should help. However, it is typically applied ad hoc: conditioning on the top SNPs, with limited exploration of the model space and no assessment of how sensitive model choice was to sampling variability. Formal alternatives exist but are seldom used. Bayesian variable selection is coherent but requires specifying a full joint model, including priors on parameters and the model space. Penalized regression methods (e.g., LASSO) appear promising but require calibration, and, once calibrated, lead to a choice of SNPs that can be misleadingly decisive. We present a general method for characterizing uncertainty in model choice that is tailored to reprioritizing SNPs within a hit region under strong LD. Our method, LASSO local automatic regularization resample model averaging (LLARRMA), combines LASSO shrinkage with resample model averaging and multiple imputation, estimating for each SNP the probability that it would be included in a multi-SNP model in alternative realizations of the data. We apply LLARRMA to simulations based on case-control genome-wide association studies data, and find that when there are several causal loci and strong LD, LLARRMA identifies a set of candidates that is enriched for true signals relative to single locus analysis and to the recently proposed method of Stability Selection.  相似文献   

16.
A central goal of medical genetics is to accurately predict complex disease from genotypes. Here, we present a comprehensive analysis of simulated and real data using lasso and elastic‐net penalized support‐vector machine models, a mixed‐effects linear model, a polygenic score, and unpenalized logistic regression. In simulation, the sparse penalized models achieved lower false‐positive rates and higher precision than the other methods for detecting causal SNPs. The common practice of prefiltering SNP lists for subsequent penalized modeling was examined and shown to substantially reduce the ability to recover the causal SNPs. Using genome‐wide SNP profiles across eight complex diseases within cross‐validation, lasso and elastic‐net models achieved substantially better predictive ability in celiac disease, type 1 diabetes, and Crohn's disease, and had equivalent predictive ability in the rest, with the results in celiac disease strongly replicating between independent datasets. We investigated the effect of linkage disequilibrium on the predictive models, showing that the penalized methods leverage this information to their advantage, compared with methods that assume SNP independence. Our findings show that sparse penalized approaches are robust across different disease architectures, producing as good as or better phenotype predictions and variance explained. This has fundamental ramifications for the selection and future development of methods to genetically predict human disease.  相似文献   

17.
Genome‐wide association studies (GWAS) have confirmed the ubiquitous existence of genetic heterogeneity for common disease: multiple common genetic variants have been identified to be associated, while many more are yet expected to be uncovered. However, the single SNP (single‐nucleotide polymorphism) based trend test (or its variants) that has been dominantly used in GWAS is based on contrasting the allele frequency difference between the case and control groups, completely ignoring possible genetic heterogeneity. In spite of the widely accepted notion of genetic heterogeneity, we are not aware of any previous attempt to apply genetic heterogeneity motivated methods in GWAS. Here, to explicitly account for unknown genetic heterogeneity, we applied a mixture model based single‐SNP test to the Wellcome Trust Case Control Consortium (WTCCC) GWAS data with traits of Crohn's disease, bipolar disease, coronary artery disease, and type 2 diabetes, identifying much larger numbers of significant SNPs and risk loci for each trait than those of the popular trend test, demonstrating potential power gain of the mixture model based test.  相似文献   

18.
We summarize the work done by the contributors to Group 13 at Genetic Analysis Workshop 17 (GAW17) and provide a synthesis of their data analyses. The Group 13 contributors used a variety of approaches to test associations of both rare variants and common single-nucleotide polymorphisms (SNPs) with the GAW17 simulated traits, implementing analytic methods that incorporate multiallelic genotypes and haplotypes. In addition to using a wide variety of statistical methods and approaches, the contributors exhibited a remarkable amount of flexibility and creativity in coding the variants and their genes and in evaluating their proposed approaches and methods. We describe and contrast their methods along three dimensions: (1) selection and coding of genetic entities for analysis, (2) method of analysis, and (3) evaluation of the results. The contributors consistently presented a strong rationale for using multiallelic analytic approaches. They indicated that power was likely to be increased by capturing the signals of multiple markers within genetic entities defined by sliding windows, haplotypes, genes, functional pathways, and the entire set of SNPs and rare variants taken in aggregate. Despite this variability, the methods were fairly consistent in their ability to identify two associated genes for each simulated trait. The first gene was selected for the largest number of causal alleles and the second for a high-frequency causal SNP. The presumed model of inheritance and choice of genetic entities are likely to have a strong effect on the outcomes of the analyses.  相似文献   

19.
Understanding the genetic basis of idiopathic male infertility has long been the focus of many researchers. Numerous recent studies have attempted to identify relevant single nucleotide polymorphisms (SNPs) through medical re-sequencing studies in which candidate genes are sequenced in large numbers of cases and controls in the search for risk or causative polymorphisms. Two major characteristics have limited the utility of the re-sequencing studies. First, reported SNPs have only accounted for a small percentage of idiopathic male infertility. Second, SNPs reported to have an association with male infertility based on gene re-sequencing studies often fail validation in follow-up studies. Recent advances in the tools available for genetic studies have enabled interrogation of the entire genome in search of common, and more recently, rare variants. In this review, we discuss the progress of studies on genetic and epigenetic variants of male infertility as well as future directions that we predict will be the most productive in identifying the genetic basis for male factor infertility based on our current state of knowledge in this field as well as lessons learned about the genetic basis for complex diseases from other disease models.  相似文献   

20.
Understanding the genetic basis of idiopathic male infertility has long been the focus of many researchers. Numerous recent studies have attempted to identify relevant single nucleotide polymorphisms (SNPs) through medical re-sequencing studies in which candidate genes are sequenced in large numbers of cases and controls in the search for risk or causative polymorphisms. Two major characteristics have limited the utility of the re-sequencing studies. First, reported SNPs have only accounted for a small percentage of idiopathic male infertility. Second, SNPs reported to have an association with male infertility based on gene re-sequencing studies often fail validation in follow-up studies. Recent advances in the tools available for genetic studies have enabled interrogation of the entire genome in search of common, and more recently, rare variants. In this review, we discuss the progress of studies on genetic and epigenetic variants of male infertility as well as future directions that we predict will be the most productive in identifying the genetic basis for male factor infertility based on our current state of knowledge in this field as well as lessons learned about the genetic basis for complex diseases from other disease models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号