首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nestin expression in ganglioglioma   总被引:3,自引:0,他引:3  
It has been suggested that gangliogliomas represent a neoplastic transformation of a dysplastic focus or heterotopia. Other theories propose that gangliogliomas arise from multipotent stem cells with the ability to differentiate along glial and neuronal cell lines. Our goal was to characterize the expression of nestin, a neuroepithelial precursor/stem cell antigen, in gangliogliomas along with other pathological and clinical features of this entity. The clinical and operative features of 18 recent cases meeting the histological criteria for ganglioglioma were reviewed. The expression of nestin, microtubule-associated protein 2 (MAP2), neurofilament, and glial fibrillary acidic protein (GFAP) was assessed by immunohistochemistry and confocal scanning laser microscopy. Abundant MAP2- and nestin-positive neuronal cells were found by immunohistochemistry in all 18 gangliogliomas. GFAP staining was found in reactive and lesional astrocytes but not in cells of neuronal morphology. Confocal microscopy demonstrated colocalization of nestin and MAP2 in select neuronal cells. The true lineage of gangliogliomas remains controversial. Our findings confirm the presence of cells within these lesions that harbor a persistent stem cell cytoskeletal protein (nestin). Further insight into the cytoskeletal derangement of nestin-positive neuronal cells may shed further light on the pathogenesis of gangliogliomas and its associated epilepsy.  相似文献   

2.
3.
目的探讨胚胎发育不良性神经上皮肿瘤(DNT)的临床病理特征、影像学特点、治疗及预后。方法应用光镜及免疫组织化学染色对5例DNT进行观察分析。结果主要临床症状为顽固性癫痫发作,神经系统检查无阳性体征。MRI病变呈囊实性改变,无强化、无瘤周水肿及占位效应。肿瘤组织形态类似,由神经胶质-神经元成分构成,周围有少突胶质细胞样细胞(OLC),其组织学特点是瘤组织黏液变明显,多见网状微囊变,单个神经元漂浮在微囊的黏液样基质中。免疫组织化学染色示神经元及部分OLC突触素、神经核抗原(NeuN)及S-100阳性,OLC胶质纤维酸性蛋白染色阴性,Ki-67低增殖活性。4例随访2~7年,术后均无复发。结论 DNT属良性肿瘤(WHOⅠ级),手术切除即可治愈。结合临床表现、影像学及病理形态学和免疫组织化学结果DNT才确诊。  相似文献   

4.
5.
I. Bodi, R. Selway, P. Bannister, L. Doey, N. Mullatti, R. Elwes and M. Honavar (2012) Neuropathology and Applied Neurobiology 38, 411–425 Diffuse form of dysembryoplastic neuroepithelial tumour: the histological and immunohistochemical features of a distinct entity showing transition to dysembryoplastic neuroepithelial tumour and ganglioglioma Aims: A diffuse variant of dysembryoplastic neuroepithelial tumour (dDNT) has previously been described, which although composed of oligodendroglia‐like cells (OLC), astrocytes and mature neurones, lacks the multinodularity and ‘specific component’ of typical DNT. The dDNT poses a significant challenge to the neuropathologist. This study was undertaken to further characterize the histological and immunohistochemical features of dDNT. Materials and methods: Review of our archived material from epilepsy surgery identified 16 cases, in which features of dDNT predominated. Their histological and immunohistochemical features, including CD34 and nestin immunohistochemistry, were analysed. Results: Seven cases had the characteristics of pure dDNT. A further two cases of dDNT showed extension into the white matter with occasional dysplastic neurones. Two additional cases had similar features but with the presence of either single, or multiple small nodular clusters of OLC, in keeping with transition to classical DNT. Five cases showed ganglioglioma‐like areas, of which three cases had micronodule formation but with predominant dDNT pattern. In all the cases the dDNT areas showed strong CD34 and less intense nestin immunoreactivity and microglial activation highlighting the full extent of the lesions. There was variable overlap between CD34 and nestin positivity within the micronodular and/or ganglioglioma‐like areas. Conclusions: Immunoreactivity for CD34 and nestin characterizes the dDNT and helps to distinguish it from other lesions associated with epilepsy. Histological evidence indicative of transition of dDNT to other forms of DNT and ganglioglioma suggests that dDNT might be an early histogenetic form of these glioneuronal tumours.  相似文献   

6.
We report here a novel in vitro model for differentiating neuronal and glial cells from mouse embryonic day 10 telencephalon stem cells. At this developmental stage, the telencephalon consists of a single layer of neuroepithelial stem cells. We used various markers of proliferation and differentiation (Ki-67, nestin, BrdU, Tuj-1 and GFAP) to follow proliferative progenitors and to identify neuronal and glial derivatives. Neuronal derivatives were obtained from nestin+ progenitors. GFAP+ astrocytic derivatives were detected after only 72 h of culture. Both neuronal and glial derivatives were generated close to nestin-positive aggregates. In addition, we were able to manipulate neuronal determination of telencephalon stem cells by gene transient transfection as demonstrated by RP42 gene overexpression. These observations suggest that this in vitro model is of potential use for studying early steps in neuronal or glial determination from embryonic stem cells, an issue of key importance for adult brain cell therapy approaches.  相似文献   

7.
Dysembryoplastic neuroepithelial tumor (DNT)-like neoplasms of the septum pellucidum are extremely rare. We reviewed 2 cases of DNT-like neoplasm of the septum pellucidum and specifically studied the immunohistochemical features and chromosomes 1p and 19q deletions. One case was a 26-year-old woman who complained of aggravated headache for 2 weeks. The other case was a 31-year-old female presenting with double vision for a month. Histological examinations showed that the lesions were composed of uniform oligodendrocytelike cells (OLCs) with obvious floating neurons in a mucin-rich background. Immunohistochemical studies revealed that both tumors were diffusely positive for Synaptophysin and Olig2. Sporadic neurons were clearly positive for NeuN. Loss of chromosome 1p/19q and isocitrate dehydrogenase 1(IDH1) mutations were not identified in both cases. It might indicate that these OLCs of DNT-like neoplasms were genetically different from glial tumors, although they showed close morphological similarities.  相似文献   

8.
Mixed dysembryoplastic neuroepithelial tumor and ganglioglioma   总被引:3,自引:0,他引:3  
We report a case of a 15-year-old girl with new onset seizures, who had a mixed dysembryoplastic neuroepithelial tumor (DNT) and ganglioglioma of the right parieto-occipital lobe. The tumor appeared well demarcated and exhibited a low T1 and a high T2 signal on magnetic resonance imaging. Architecturally it was in large part intracortical and multinodular, but also featured a leptomeningeal component. The former corresponded to DNT, a proliferation of oligodendroglia-like cells (OLCs) arranged in nodules, as well as comprising a diffuse internodular element featuring “floating neurons” in a mucoid matrix. The leptomeningeal portion of the lesion was a ganglioglioma consisting of large neurons and astrocytes in association with marked desmoplasia. Spacially, the two components abutted one another but appeared distinct. Immunohistochemistry showed the neurons of the ganglioglioma to be positive for class III β-tubulin, synaptophysin, and chromogranin A, whereas the astrocytic cells stained only for glial fibrillary acidic protein. Most OLCs in the DNT were positive for S-100 protein. This apparently mixed lesion suggests that a close histogenetic relationship exists between DNT and ganglioglioma. We postulate that the pluripotential progenitor cells residing in the subpial granular layer may have given rise to the cortical DNT and to the leptomeningeal ganglioglioma. To our knowledge, this is the first detailed histological, immunochemical and ultrastructural report of a mixed DNT and ganglioglioma. Received: 11 August 1997 / Revised, accepted: 24 November 1997  相似文献   

9.
BACKGROUND: Studies have demonstrated that astrocytes may possess similar properties to neural stem cells/neural precursor cells and have the potential to differentiate into neurons. OBJECTIVE: To observe neuroepithelial stem cell protein (nestin) and glial fibrillary acidic protein (GFAP) expression following spinal cord injury, and to explore whether nestin+/GFAP+ cells, which are detected at peak levels in gray and white matter around the ependymal region of the central canal in injured spinal cord, possess similar properties of neural stem cells. DESIGN, TIME AND SETTING: A randomized, controlled experiment. The study was performed at the Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education between January 2004 and December 2006. MATERIALS: Rabbit anti-rat nestin, β-tubulinⅢ, mouse anti-rat GFAP, galactocerebroside (GaLC) antibodies were utilized, as well as flow cytometry. METHODS: A total of 60 male, Sprague Dawley rats, aged 8 weeks, were randomly assigned to control (n = 12) and model (n = 48) groups. The spinal cord injury model was established in the model group by aneurysm clip compression, while the control animals were not treated. The gray and white matter around the ependymal region of the central canal exhibited peak expression of nestin+/GFAP+ cells. These cells were harvested and prepared into single cell suspension, followed by primary and passage cultures. The cells were incubated with serum-containing neural stem cell complete medium. MAINOUTCOME MEASURES: Nestin and GFAP expression in injured spinal cord was determined using immunohistochemistry and double-labeled immunofluorescence at 1, 3, 5, 7, 14, 28, and 56 days post-injury. In addition, cell proliferation and differentiation were detected using immunofluorescence cytochemistry and flow cytometry. RESULTS: Compared with the control group, the model group exhibited significantly increased nestin and GFAP expression (P 〈 0.05), which reached peak levels between 3 and 7 days. The majority of cells in the ependymal region around the central canal were nestin+/GFAP- cells, while the gray and white matter around the ependymal region were full of nestin+/GFAP+ cells, with an astrocytic-like appearance. A large number of nestin+/GFAP+cells were observed in the model group cell culture, and the cells formed clonal spheres and displayed strong nestin-positive immunofluorescence staining. Following induced differentiation, a large number of GaLC-nestin, β-tubulin Ⅲ-nestin, and GFAP-nestin positive cells were observed. However, no obvious changes were seen in the control group. Cells in S stage, as well as the percentage of proliferating cells, in the model group were significantly greater than in the control group (P 〈 0.01), CONCLUSION: Spinal cord injury in the adult rat induced high expression of nestin+/GFAP+ in the gray and white matter around the ependymal region of the central canal. These nestin+/GFAP+ cells displayed the potential to self-renew and differentiate into various cells. The cells could be neural stem cells of the central nervous system.  相似文献   

10.
Overexpression of nestin and vimentin in ependymal cells in hydrocephalus   总被引:2,自引:0,他引:2  
In order to elucidate the immunohistochemical features of hydrocephalic ependyma, immunohistochemical examination was undertaken in 11 normal, post-mortem brains (age range, 11 weeks’ postconception to 6 months after birth) and 12 hydrocephalic brains (three cases each of congenital aqueductal stenosis, Dandy-Walker malformation, Arnold-Chiari type II malformation and posthemorrhagic hydrocephalus) by using antisera to nestin, vimentin and glial fibrillary acidic protein (GFAP). In normal brains, nestin was predominantly expressed in neuroepithelial cells and radial glial fibers during the period of neuronal migration. Vimentin immunoreactivity was principally detected in immature ependymal cells and their basal fibers after the period of neuronal migration, then partly replaced by GFAP reactivity during late gestation. In hydrocephalus, the areas of ependymal disruption were covered with nestin- or vimentin-positive cells. Nestin and vimentin were also expressed in immature ependymal cells or their basal processes in anatomical regions such as the roof or floor plate of the fourth ventricle or the cerebral aqueduct, and the ventral part of the third ventricle. These results suggest that the overexpression of nestin and vimentin in hydrocephalus follows two patterns: a reactive pattern of proliferating immature glial cells associated with ependymal cell loss and an abnormal developmental pattern of immunopositivity associated with anatomical regions in the midline mesencephalon. Received: 27 November 1995 / Accepted: 29 December 1995  相似文献   

11.
Cerebral tissue from hemispherectomy in three children (two 4-month-old girls and one 4-year-old boy) with hemimegalencephaly was studied using histochemical and immunocytochemical markers of neuronal and glial maturation and identity. Histologic abnormalities of cellular growth and cytomorphology, including "balloon cells," were present in both gray and white matter, in addition to disorganized tissue architecture. Cells in the mitotic cycle were absent. Many hypertrophic, atypical cells with enlarged processes exhibited mixed or ambiguous lineage, with immunoreactivity for both glial (glial fibrillary acidic protein [GFAP]; S-100beta) and neuronal proteins (microtubule-associated protein 2 [MAP2], neuronal nuclear antigen, chromogranin A, and neurofilament protein [NFP]). Strong vimentin reactivity was present in neurons, as well as glial cells and cells of mixed lineage, suggesting incomplete maturation. Synaptophysin-reactive axons terminated on a minority of balloon cells and on most heterotopic single neurons in white matter, confirmed by electron microscopy, demonstrating that single heterotopic neurons are not synaptically "isolated," as they may appear; thus, they are capable of contributing to epilepsy. Oligodendrocytes are the least affected cells, at least in some cases. The findings are reminiscent of the hamartomas of tuberous sclerosis. We conclude that hemimegalencephaly is a primary disorder of neuroepithelial lineage and cellular growth. A migratory disturbance contributes to disorderly tissue architecture but is secondary. No pathologic difference is detected between isolated and syndromic forms of hemimegalencephaly.  相似文献   

12.
Glial fibrillary acidic protein (GFAP)-positive cells derived from the neurogenic areas of the brain can be stem/progenitor cells and give rise to new neurons in vitro and in vivo. We report here that a population of GFAP-positive cells derived from fetal human brain parenchyma coexpress markers of early neural and neuronal cells, and have neural progenitor cell characteristics. We used a monolayer culture system to expend and differentiate these cells. During the initial proliferative phase, all cells expressed GFAP, nestin and low levels of betaIII-tubulin. When these cells were cultured in serum and then basic fibroblast growth factor, they generated two distinct progenies: (i) betaIII-tubulin- and nestin-positive cells and (ii) GFAP- and nestin-positive cells. These cells, when subsequently cultured in serum-free media without growth factors, ceased to proliferate and differentiated into two major neural cell classes, neurons and glia. In the cells of neuronal lineage, nestin expression was down-regulated and betaIII-tubulin expression became robust. Cells of glial lineage differentiated by down-regulating nestin expression and up-regulating GFAP expression. These data suggest that populations of parenchymal brain cells, initially expressing both glial and neuronal markers, are capable of differentiating into single neuronal and glial lineages through asymmetric regulation of gene expression in these cells, rather than acquiring markers through differentiation.  相似文献   

13.
Dysembryoplastic neuroepithelial tumour of the cerebellum   总被引:1,自引:0,他引:1  
A case of dysembryoplastic neuroepithelial tumour of the cerebellum occurring in a 28-year-old woman is presented. The lesion extended from the cortex of the inferior vermis upwards into the white matter. Histologically, it exhibited areas of microcystic cerebellar astrocytoma and glial regions with hamartomatous blood vessels as well as areas with oligodendrocyte-like cells (OLC) with a delicate, fibrillary stroma lying in a mucinous, often microcystic matrix. The OLC showed prominent rosette formation and immunohistochemical features suggesting neuronal, i.e. granule cell, differentiation.  相似文献   

14.
Barry D  McDermott K 《Glia》2005,50(3):187-197
Radial glial cell origins and functions have been studied extensively in the brain; however, questions remain relating to their origin and fate in the spinal cord. In the present study, radial glia are investigated in vivo using the neuroepithelial markers nestin and vimentin and the gliogenic markers GLAST, BLBP, 3CB2, and glial fibrillary acidic protein (GFAP). This has revealed heterogeneity among nestin/vimentin-positive precursor cells and suggests a lineage progression from neuroepithelial cell through to astrocyte in the developing spinal cord. A population of self-renewing radial cells, distinct from an earlier pseudo-stratified neuroepithelium, that resemble radial glial cells in morphology but do not express GLAST, BLBP, or 3CB2, is revealed. These radial cells arise directly from the spinal cord neuroepithelium and are probably the progenitors of neurons and the earliest appearing radial glial cells. GLAST/BLBP-positive radial glia first appear in the ventral cord at E14, and these cells gradually transform through one or more intermediate stages into differentiated astrocytes. Few if any neurons appear to be derived from radial glial cells, which are instead the major sources of astrocytes in the spinal cord. Evidence for the nonradial glial cell origins of some white matter astrocytes is also presented.  相似文献   

15.
Nestin expression in the developing human brain was examined with the use of unique human specific anti-nestin antibodies. Double immunostaining of cell cultures and tissue sections derived from first and second trimester human fetal brain (HFB) examined the co-expression of nestin with other cell type specific phenotypic markers. The immunocytochemical analysis shows that from first to second trimester, the majority of developing glial cells exhibited a transitional state marked by co-expression of nestin and GFAP. However, the corresponding transitional state for developing neuronal cells, co-expressing nestin and MAP-2, was rarely detected. These results imply different temporal patterns of nestin expression in cells of glial and neuronal lineages. Confocal microscopy of HFB tissue section staining also revealed a similar pattern of nestin co-expression with glial and neuronal markers. Our results suggest that nestin expression alone may not identify an undifferentiated stem cell, and that progenitor cells in glial and neuronal lineages express nestin in different temporal patterns.  相似文献   

16.
The presence of the intermediate filament protein nestin has been the predominant marker used to describe stem and progenitor cells in the mammalian CNS. In this study, a 998-bp fragment in the 3' region of the nestin mRNA was cloned from human fetal brain cells (HFBC). The nucleotide sequence of the cloned cDNA revealed 21 differences with the previously published human nestin sequence, resulting in 17 amino acid changes. A 150-amino-acid fragment derived from the cloned nestin cDNA was coupled to glutathione S-transferase and used as an immunogen to generate a rabbit polyclonal antiserum that selectively detects human nestin. HFBC that proliferated in response to basic fibroblast growth factor incorporated 5-bromo-2'-deoxyuridine into their nuclei and immunostained for nestin, indicating nestin expression in proliferating CNS progenitor cells. In all cell cultures, nestin costained with the neuroepithelial cell marker vimentin. A small subset of nestin-stained cells (1-2%) immunostained with neuronal marker MAP-2 during the first week and after 4 weeks in culture. However, during the first week in culture, approximately 10-30% of the total cell population of HFBC stained for the glial cell marker GFAP, and nearly all coimmunostained for nestin. After 4 weeks in culture, a subset of GFAP-positive cells emerged that no longer costained with nestin. These results describe nestin expression not only in CNS progenitor cells but also in the cells which were in transition from a progenitor stage to glial differentiation. Collectively, these data suggest a differential temporal regulation of nestin expression during glial and neuronal cell differentiation.  相似文献   

17.
Neural tissue has limited capacity for intrinsic repair after injury, and the identification of alternate sources of neuronal stem cells has broad clinical potential. Preliminary studies have demonstrated that adipose-derived adult stromal (ADAS) cells are capable of differentiating into mesenchymal and non-mesenchymal cells in vitro, including cells with select characteristics of neuronal/glial tissue. In this study, we extended these observations to test the hypothesis that murine (mu) ADAS cells can be induced to exhibit characteristics of neuronal and glial tissue by exposure to a cocktail of induction agents. We characterized the differentiation of muADAS cells in vitro using immunohistochemistry and immunoblotting, and examined whether these cells respond to the glutamate agonist N-methyl-D-aspartate (NMDA). We found that induced muADAS cells express proteins indicative of neuronal/glial cells, including nestin, GFAP, S-100, NeuN, MAP2, tau, and beta-III tubulin. Induced muADAS cells express gamma-aminobutyric acid (GABA), the NR-1 and NR-2 subunits of the glutamate receptor, GAP-43, synapsin I, and voltage-gated calcium channels. Finally, induced muADAS cells demonstrate decreased viability in response to NMDA. These findings suggest that muADAS cells can be induced to exhibit several phenotypic, morphologic, and excitotoxic characteristics consistent with developing neuronal and glial tissue.  相似文献   

18.
PURPOSE: Focal cortical dysplasia (CD) is characterized by the presence of dysmorphic neurons, laminar and columnar disorganization. A few patients with CD have balloon cells intermixed with dysmorphic neurons. The cellular characteristics of balloon cells remain unknown. This study was intended to determine further the cellular characteristics of balloon cells. METHODS: Neocortical tissue resected from five patients with medically intractable focal epilepsy due to CD was studied. The presence of balloon cells (large opalescent cells with eccentric nuclei) was confirmed in all five patients by using cresylecht violet staining. Immunocytochemistry used antibodies against markers of pluripotential stem cells (CD133), multipotential progenitor cells (nestin), antiapoptotic gene products (Bcl-2), immature neurons (beta-tubulin 3, TUJ1), immature glia (vimentin), mature neurons (MAP2 and NeuN), and astrocytes (glial fibrillary acidic protein; GFAP). RESULTS: Balloon cells (BCs) were found to be immunoreactive to Bcl-2 (46%), vimentin (41%), Nestin (28%), CD133 (28%), MAP2 (27%), GFAP (14%), and TUJ1 (10%). An extremely small number of BCs were immunopositive for NeuN. Confocal double labeling showed that balloon cells were dually immunopositive for CD133/nestin; CD133/GFAP; CD133/Bcl-2, and nestin/GFAP. CONCLUSIONS: These results show that balloon cells are heterogeneous cell populations expressing cell-surface markers for pluripotential stem cells and proteins for multipotent progenitors, or immature neurons/glia. The presence of stem cell/progenitor markers in the balloon cells could be due to a persistent postnatal neurogenesis or early embryonic insult that resulted in arrest of proliferation/differentiation at their early stages. Additionally, the coexpression of Bcl-2 in CD133-positive balloon cells suggests that a resistance to programmed cell death may be involved in the pathogenesis of cortical dysplasia.  相似文献   

19.
MAP5 expression in proliferating neuroblasts   总被引:1,自引:0,他引:1  
MAP5, a microtubule-associated protein present in immature neurons, was found to be expressed in the embryonic mouse telencephalic ventricular zone (VZ). Since the VZ contains proliferating neuroblasts, the source of most of the neurons of the cerebral cortex, this observation raised the possibility that MAP5 is expressed by proliferating neuronal progenitors. MAP5-positive mitotic cells were observed at the ventricular surface, a finding consistent with progenitors expressing MAP5 prior to their last division. This possibility was investigated using dissociated, cortical cells in vitro by measuring the expression of MAP5 and the neuroepithelial marker nestin, together with the incorporation of bromodeoxyuridine (BrdU), a thymidine analogue that labels the DNA of proliferating cells in the S-phase of the cell cycle. All of the proliferating cells expressed nestin. A population of MAP5-positive cells was also found to incorporate BrdU; some cells expressed MAP5 within 30 min of BrdU labeling. The results suggest that uncommitted neuroblasts express only nestin, with expression of MAP5 occurring near the time the cell commits to become a postmitotic neuron after the next cell division. Subsequently, cells expressing both MAP5 and nestin leave the cell cycle and exit the VZ, lose nestin, and differentiate into neurons. Since some cells expressed MAP5 during or shortly after S-phase but before mitosis, MAP5 may be the earliest marker to identify neuronal progenitors that will become post-mitotic neurons following their next mitosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号