首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coexposure to a noninjurious dose of bacterial lipopolysaccharide (LPS; 7.4 x 106 EU/kg) and a nontoxic dose of the food-borne toxin monocrotaline (MCT; 100 mg/kg) leads to synergistic hepatotoxicity in Sprague-Dawley rats. Inflammatory factors, such as Kupffer cells (KCs), tumor necrosis factor-alpha (TNF)-alpha, and neutrophils (polymorphonuclear leukocytes; PMNs), are critical to the pathogenesis. Inasmuch as activation of the coagulation system and sinusoidal endothelial cell (SEC) injury precede hepatic parenchymal cell (HPC) injury, and since fibrin deposition occurs within liver lesions, the coagulation system might be a critical component of injury. In this study, this hypothesis is tested, and the interdependence of the coagulation system and inflammatory factors is explored. Administration of the anticoagulants heparin or warfarin to MCT/LPS-cotreated animals attenuated HPC and SEC injury. Morphometric analysis revealed that anticoagulant treatment significantly reduced the area of centrilobular and midzonal lesions. Heparin treatment also reduced fibrin deposition in these regions. Furthermore, anticoagulant treatment decreased hepatic PMN accumulation but did not affect plasma TNF-alpha concentration. Neither KC inactivation nor TNF-alpha depletion prevented activation of the coagulation system. PMN depletion, however, prevented coagulation system activation, suggesting that PMNs are needed for this response. These results provide evidence that the coagulation system and its interplay with PMNs are important in the pathogenesis of MCT/LPS-induced liver injury.  相似文献   

2.
Copple BL  Ganey PE  Roth RA 《Toxicology》2003,190(3):155-169
Monocrotaline (MCT) is a pyrrolizidine alkaloid (PA) plant toxin that causes hepatotoxicity in humans and animals. Human exposure occurs from consumption of contaminated grains and herbal teas and medicines. Intraperitoneal injection (i.p.) of 300 mg/kg MCT in rats produced time-dependent hepatic parenchymal cell (HPC) injury beginning at 12 h. At this time, an inflammatory infiltrate consisting of neutrophils (PMNs) appeared in areas of hepatocellular injury, and activation of the coagulation system occurred. PMN accumulation was preceded by up-regulation of the PMN chemokines cytokine-induced neutrophil chemoattractant-1 (CINC-1) and macrophage inflammatory protein-2 (MIP-2) in the liver. The monocyte chemokine, monocyte chemoattractant protein-1 (MCP-1), was also upregulated. Inhibition of Kupffer cell function with gadolinium chloride (GdCl3) significantly reduced CINC-1 protein in plasma after MCT treatment but had no effect on hepatic PMN accumulation. Since inflammation can contribute to either pathogenesis or resolution of tissue injury, we explored inflammatory factors as a contributor to MCT hepatotoxicity. To test the hypothesis that PMNs contribute to MCT-induced HPC injury, rats were depleted of PMNs with a rabbit anti-PMN serum prior to MCT treatment. Anti-PMN treatment reduced hepatic PMN accumulation by 80% but had no effect on MCT-induced HPC injury or activation of the coagulation system. To test the hypothesis that Kupffer cells and/or tumor necrosis factor- (TNF-) are required for MCT-induced HPC injury, rats were treated with either GdCl3 to inhibit Kupffer cell function or pentoxifylline (PTX) to prevent synthesis of TNF-. Neither treatment prevented MCT-induced HPC injury. Results from these studies suggest that PMNs, Kupffer cells and TNF- are not critical mediators of MCT hepatotoxicity. Accordingly, although inflammation occurs in the liver after MCT treatment, it is not required for HPC injury and possibly occurs secondary to hepatocellular injury.  相似文献   

3.
A small, noninjurious dose of bacterial lipopolysaccharide (LPS; 7.4 x 106 EU/kg) administered 4 h after a small, nontoxic dose of monocrotaline (MCT; 100 mg/kg) produces synergistic hepatotoxicity in rats within 6 to 12 h after MCT exposure. The resulting centrilobular (CL) and midzonal (MZ) liver lesions are characterized by hepatic parenchymal cell (HPC) necrosis. Pronounced hemorrhage, disruption of sinusoidal architecture, and loss of central vein intima suggest that an additional component to injury may be the liver vasculature. In the present investigation, the hypothesis that sinusoidal endothelial cell (SEC) injury and coagulation system activation occur in this model was tested. Plasma hyaluronic acid (HA) concentration, a biomarker for SEC injury, was significantly increased in cotreated animals before the onset of HPC injury and remained elevated through the time of maximal HPC injury (i.e., 18 h). SEC injury was confirmed by immunohistochemistry and electron microscopy. Pyrrolic metabolites were produced from MCT by SECs in vitro, which suggests that MCT may injure SECs directly through the formation of its toxic metabolite, monocrotaline pyrrole. Inasmuch as SEC activation and injury can promote hemostasis, activation of the coagulation system was evaluated. Coagulation system activation, as marked by a decrease in plasma fibrinogen, occurred before the onset of HPC injury. Furthermore, extensive fibrin deposition was observed immunohistochemically within CL and MZ regions after MCT/LPS cotreatment. Taken together, these results suggest that SEC injury and coagulation system activation are components of the synergistic liver injury resulting from MCT and LPS coexposure.  相似文献   

4.
Exposure to small, noninjurious doses of the inflammagen, bacterial endotoxin (lipopolysaccharide, LPS) augments the toxicity of certain hepatotoxicants including aflatoxin B(1) (AFB(1)). Mediators of inflammation, in particular neutrophils (PMNs), are responsible for tissue injury in a variety of animal models. This study was conducted to examine the role of PMNs in the pathogenesis of hepatic injury after AFB(1)/LPS cotreatment. Male, Sprague-Dawley rats (250-350 g) were treated with either 1 mg AFB(1)/kg, ip or its vehicle (0.5% DMSO/saline), and 4 h later with either E. coli LPS (7. 4 x 10(6) EU/kg, iv) or its saline vehicle. Over a course of 6 to 96 h after AFB(1) administration, rats were killed and livers were stained immunohistochemically for PMNs. LPS resulted in an increase in PMN accumulation in the liver that preceded the onset of liver injury. To assess if PMNs contributed to the pathogenesis, an anti-PMN antibody was administered to reduce PMN numbers in blood and liver, and injury was evaluated. Hepatic parenchymal cell injury was evaluated as increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in serum and from histologic examination of liver sections. Biliary tract alterations were evaluated as increased concentration of serum bile acids and activities of gamma-glutamyltransferase (GGT), alkaline phosphatase (ALP), and 5'-nucleotidase (5'-ND) in serum. Neutrophil depletion protected against hepatic parenchymal cell injury caused by AFB(1)/LPS cotreatment but not against markers of biliary tract injury. This suggests that LPS augments AFB(1) hepatotoxicity through two mechanisms: one of which is PMN-dependent, and another that is not.  相似文献   

5.
Coexposure to small, noninjurious doses of the pyrrolizidine alkaloid phytotoxin monocrotaline (MCT) and bacterial lipopolysaccharide (LPS) results in synergistic hepatotoxicity. Both centrilobular and midzonal liver lesions occur and are similar to those seen from large, toxic doses of MCT and LPS, respectively. The nature of the lesions in vivo and results from studies in vitro suggest that injury is mediated indirectly rather than from a simple interaction of MCT and LPS with hepatic parenchymal cells. Accordingly, the role of inflammatory factors, such as Kupffer cells and TNF-alpha, in the development of MCT/LPS-induced liver injury was investigated. In Sprague-Dawley rats, MCT (100 mg/kg, i.p.) was administered 4 h before LPS (7.4 x 10(6) EU/kg, i.v.). Pretreatment of these animals with gadolinium chloride, an inhibitor of Kupffer cell function, attenuated liver injury 18 h after MCT administration. An increase in plasma TNF-alpha preceded the onset of hepatic parenchymal cell injury, raising the possibility that this inflammatory cytokine contributes to toxicity. Either pentoxifylline, an inhibitor of cellular TNF-alpha synthesis, or anti-TNF-alpha serum coadministered to MCT/LPS-treated animals significantly attenuated liver injury. These results suggest that Kupffer cells and TNF-alpha are important mediators in the synergistic hepatotoxicity resulting from MCT and LPS coexposure.  相似文献   

6.
Zou W  Roth RA  Younis HS  Malle E  Ganey PE 《Toxicology》2011,290(2-3):278-285
Previous studies indicated that lipopolysaccharide (LPS) interacts with the nonsteroidal anti-inflammatory drug sulindac (SLD) to produce liver injury in rats. In the present study, the mechanism of SLD/LPS-induced liver injury was further investigated. Accumulation of polymorphonuclear neutrophils (PMNs) in the liver was greater in SLD/LPS-cotreated rats compared to those treated with SLD or LPS alone. In addition, PMN activation occurred specifically in livers of rats cotreated with SLD/LPS. The hypothesis that PMNs and proteases released from them play critical roles in the hepatotoxicity was tested. SLD/LPS-induced liver injury was attenuated by prior depletion of PMNs or by treatment with the PMN protease inhibitor, eglin C. Previous studies suggested that tumor necrosis factor-α (TNF) and the hemostatic system play critical roles in the pathogenesis of liver injury induced by SLD/LPS. TNF and plasminogen activator inhibitor-1 (PAI-1) can contribute to hepatotoxicity by affecting PMN activation and fibrin deposition. Therefore, the role of TNF and PAI-1 in PMN activation and fibrin deposition in the SLD/LPS-induced liver injury model was tested. Neutralization of TNF or inhibition of PAI-1 attenuated PMN activation. TNF had no effect on PAI-1 production or fibrin deposition. In contrast, PAI-1 contributed to fibrin deposition in livers of rats treated with SLD/LPS. In summary, PMNs, TNF and PAI-1 contribute to the liver injury induced by SLD/LPS cotreatment. TNF and PAI-1 independently contributed to PMN activation, which is critical to the pathogenesis of liver injury. Moreover, PAI-1 contributed to liver injury by promoting fibrin deposition.  相似文献   

7.
Copple BL  Roth RA  Ganey PE 《Toxicology》2006,225(2-3):128-137
Monocrotaline (MCT) is a pyrrolizidine alkaloid plant toxin that produces hepatotoxicity in humans and animals. Administration of MCT to rats causes rapid sinusoidal endothelial cell (SEC) injury, hemorrhage, pooling of blood and fibrin deposition in centrilobular regions of liver. These events precede hepatic parenchymal cell (HPC) injury and produce marked changes in the microvasculature of the liver, which could interrupt blood flow and produce hypoxia in affected regions. To test the hypothesis that hypoxia occurs in liver after MCT exposure, rats were treated with 300mgMCT/kg, and hypoxia was detected immunohistochemically. MCT produced significant hypoxia in centrilobular regions of livers by 8h after treatment. Inasmuch as fibrin deposition can impair oxygen delivery by reducing blood flow, the effect of anticoagulant treatment on MCT-induced hypoxia was determined. Administration of warfarin to MCT-treated rats reduced hypoxia in the liver by approximately 70%, suggesting that fibrin deposition plays a causal role in the development of hypoxia in the liver. Conversely, administration of l-NAME, a nonspecific inhibitor of nitric oxide synthases (NOSs), enhanced MCT-induced hypoxia and HPC injury. l-NAME did not, however, affect SEC injury or coagulation system activation. Results from these studies show that hypoxia occurs in the liver after MCT exposure. Furthermore, hypoxia precedes HPC injury, and manipulations that modify hypoxia also modulate HPC injury.  相似文献   

8.
Exposure to a nontoxic dose of bacterial lipopolysaccharide (LPS) increases the hepatotoxicity of the histamine-2 (H2) receptor antagonist, ranitidine (RAN). Because some of the pathophysiologic effects associated with LPS are mediated through the expression and release of inflammatory mediators such as tumor necrosis factor alpha (TNF), this study was designed to gain insights into the role of TNF in LPS/RAN hepatotoxicity. To determine whether RAN affects LPS-induced TNF release at a time near the onset of liver injury, male Sprague-Dawley rats were treated with 2.5 x 10(6) endotoxin units (EU)/kg LPS or its saline vehicle (iv) and 2 h later with either 30 mg/kg RAN or sterile phosphate-buffered saline vehicle (iv). LPS administration caused an increase in circulating TNF concentration. RAN cotreatment enhanced the LPS-induced TNF increase before the onset of hepatocellular injury, an effect that was not produced by famotidine, a H2-receptor antagonist without idiosyncrasy liability. Similar effects were observed for serum interleukin (IL)-1beta, IL-6, and IL-10. To determine if TNF plays a causal role in LPS/RAN-induced hepatotoxicity, rats were given either pentoxifylline (PTX; 100 mg/kg, iv) to inhibit the synthesis of TNF or etanercept (Etan; 8 mg/kg, sc) to impede the ability of TNF to reach cellular receptors, and then they were treated with LPS and RAN. Hepatocellular injury, the release of inflammatory mediators, hepatic neutrophil (PMN) accumulation, and biomarkers of coagulation and fibrinolysis were assessed. Pretreatment with either PTX or Etan resulted in the attenuation of liver injury and diminished circulating concentrations of TNF, IL-1beta, IL-6, macrophage inflammatory protein-2, and coagulation/fibrinolysis biomarkers in LPS/RAN-cotreated animals. Neither PTX nor Etan pretreatments altered hepatic PMN accumulation. These results suggest that TNF contributes to LPS/RAN-induced liver injury by enhancing inflammatory cytokine production and hemostasis.  相似文献   

9.
Modes of cell death in rat liver after monocrotaline exposure.   总被引:1,自引:0,他引:1  
Monocrotaline (MCT) is a pyrrolizidine alkaloid (PA) plant toxin that produces sinusoidal endothelial cell (SEC) injury, hemorrhage, fibrin deposition, and coagulative hepatic parenchymal cell (HPC) oncosis in centrilobular regions of rat livers. Cells with apoptotic morphology have been observed in the livers of animals exposed to other PAs. Whether apoptosis occurs in the livers of MCT-treated animals and whether it is required for full manifestation of pathological changes is not known. To determine this, rats were treated with 300 mg MCT/kg, and apoptosis was detected by transmission electron microscopy and the TUNEL (TdT-mediated dUTP nick end labeling) assay. MCT produced significant apoptosis in the liver by 4 h after treatment. To determine if MCT kills cultured HPCs by apoptosis, HPCs were isolated from the livers of rats and exposed to MCT. MCT caused a concentration-dependent release of alanine aminotransferase (ALT), a marker of HPC injury. Furthermore, caspase 3 was activated and TUNEL staining increased in MCT-treated HPCs. MCT-induced TUNEL staining and release of ALT into the medium were completely prevented by the pancaspase inhibitors z-VAD.fmk and IDN-7314, suggesting that MCT kills cultured HPCs by apoptosis. To determine if caspase inhibition prevents MCT-induced apoptosis in the liver, rats were cotreated with MCT and IDN-7314. IDN-7314 reduced MCT-induced TUNEL staining in the liver and release of ALT into the plasma. Morphometric analysis confirmed that IDN-7314 reduced HPC oncosis in the liver by approximately 50%. Inasmuch as HPC hypoxia occurred in the livers of MCT-treated animals, upregulation of the hypoxia-regulated cell-death factor, BNIP3 (Bcl2/adenovirus EIB 19kD-interacting protein 3), was examined. BNIP3 was increased in the livers of mice treated 24 h earlier with MCT. Results from these studies show that MCT kills cultured HPCs by apoptosis but causes both oncosis and apoptosis in the liver in vivo. Furthermore, caspase inhibition reduces both apoptosis and HPC oncosis in the liver after MCT exposure.  相似文献   

10.
These studies were aimed at characterizing an animal model of inflammation-induced hepatotoxicity that would mimic features of idiosyncratic liver toxicity observed in humans. An attempt was made to identify oxidative damage and the involvement of coagulation system in liver after monocrotaline (MCT) administration under the modest inflammatory condition induced by lipopolysaccharide (LPS) exposure. Mice were given MCT (200 mg/kg) or an equivalent volume of sterile saline (Veh.) po followed 4 h later by ip injection of LPS (6 mg/kg) or vehicle. Mice co-treated with MCT and LPS showed increased plasma alanine aminotransferase (ALT), decrease in platelet number, and a reduction in hematocrit. Accumulation of oxidized low-density lipoprotein (ox-LDL) was remarkably higher in the liver sections of mice co-treated with MCT and LPS compared to those given MCT or LPS alone. A similar trend was observed in the expression of CXCL16 receptor in the same liver sections. Elevated expression of tissue factor (TF) and fibrinogen was also observed in the liver sections of MCT/LPS co-treated mice. The in vitro results showed that incubation of HepG2 cells with CXCL16 antibody strongly diminished uptake of ox-LDL. Expression of ox-LDL, CXCL16, and TF represents an early event in the onset of hepatotoxicity induced by MCT/LPS; thus, it may contribute to our understanding of idiosyncratic liver injury and points to potential targets for protection or intervention.  相似文献   

11.
Monocrotaline (MCT) is a pyrrolizidine alkaloid that causes liver injury in animals. In rats, injury is characterized by sinusoidal endothelial cell (SEC) damage and centrilobular parenchymal cell necrosis. Loss of endothelium is a possible outcome of the action of matrix metalloproteinases (MMPs), specifically MMP-9 from neutrophils and SECs and MMP-2 from SECs, on basement membrane collagen. Accordingly, the dynamics of MMPs in MCT-induced SEC damage were studied. Rats were treated with MCT (300 mg/kg, ip), and livers were collected at 8, 12, and 18 h. Immunofluorescence analysis of frozen sections of livers from MCT-treated rats revealed a progressive reduction in basement membrane heparan sulfate proteoglycan and collagen IV. A time-dependent increase in total type IV collagenase activity and MMP-9 content occurred in the livers of MCT-treated rats, as measured by fluorescent collagenase activity assay and gelatin zymography, respectively. Progressive neutrophil accumulation and activation in the liver after MCT treatment were demonstrated by an increased activity of myeloperoxidase and pronounced staining for hypochlorite-modified proteins generated via the myeloperoxidase-hydrogen peroxide-halide system. However, neutrophil depletion did not protect against MCT-induced SEC injury. Treatment of NP-26 cells, a sinusoidal endothelial cell line, with MCT resulted in dose-dependent release of MMP-9 from the cells. The results demonstrate the degradation of basement membrane components with a concurrent increase in the amount and activity of MMP-9, likely originating from sinusoidal endothelial cells, neutrophils, and probably other cell types. This suggests the possibility of a role for MMPs in the SEC detachment and loss that occurs during MCT hepatotoxicity.  相似文献   

12.
Tissue factor (TF) is a membranous glycoprotein that functions as a receptor for coagulation factor VII/VIIa and activates the coagulation system when blood vessels or tissues are damaged. TF was upregulated in our monocrotaline (MCT)/lipopolysaccharide (LPS) hepatotoxicity model. We tested the hypothesis that TF‐dependent fibrin deposition and lipid peroxidation in the form of oxidized low‐density‐lipoprotein (ox‐LDL) accumulation contribute to liver inflammation induced by MCT/LPS in mice. In the present study, we blocked TF using antisense oligodeoxynucleotides against mouse TF (TF‐ASO). TF‐ASO (5.6 mg kg?1) was given i.v. to ND4 male mice 30 min after administration of MCT (200 mg kg?1) p.o. followed after 3.5 h by LPS i.p. (6 mg kg?1). Blood alanine aminotransferase (ALT), TF, ox‐LDL, platelets, hematocrit and keratinocyte‐derived chemokine (KC) levels were evaluated in different treatment groups. Fibrin deposition and ox‐LDL accumulation were also analyzed in the liver sections using immunofluorescent staining. The results showed that TF‐ASO significantly restored blood ALT, hematocrit and KC levels, distorted after MCT/LPS co‐treatment, as well as preventing the accumulation of ox‐LDL and the deposition of fibrin in the liver tissues, and thereby inhibited liver injury caused by MCT/LPS. In a separate experiment, TF‐ASO administration significantly prolonged animal survival. The current study demonstrates that TF is associated with MCT/LPS‐induced liver injury. Administration of TF‐ASO successfully prevented this type of liver injury. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Nontoxic doses of endotoxin (lipopolysaccharide, LPS) enhance the hepatotoxicity of many xenobiotic agents, including allyl alcohol. Systemic LPS exposure induces an inflammatory response, including accumulation and activation of neutrophils (PMNs) in the liver. The hypothesis that PMNs play a causal role in LPS enhancement of allyl alcohol hepatotoxicity was tested. Rats were pretreated with an anti-neutrophil antibody (anti-PMN immunoglobulin [lg]) to deplete circulating PMNs. Subsequently, they were given LPS or its vehicle, and 2 h later allyl alcohol was administered. The numbers of circulating and hepatic PMNs were decreased in rats pretreated with anti-PMN lg, and liver toxicity induced by cotreatment with LPS and allyl alcohol was attenuated. Treatment with allyl alcohol diminishes the concentration of reduced glutathione (GSH) in liver, raising the possibility that antioxidant defense was compromised in these livers. Accordingly, the hypothesis was tested that allyl alcohol-induced reduction in GSH renders liver cells more sensitive to reactive oxygen species produced by activated PMNs. Isolated hepatocytes were incubated with allyl alcohol in the presence and absence of isolated PMNs stimulated to produce reactive oxygen species. Allyl alcohol produced a concentration-dependent increase in ALT release from hepatocytes. Activated PMNs produced a statistically significant increase in cell killing that was so small it is unlikely to explain the role of PMNs in liver injury in vivo. To test the hypothesis that proteases released from activated PMNs increase the sensitivity of liver cells to allyl alcohol, isolated hepatocytes were incubated with medium from PMNs activated to undergo degranulation. Protease-containing medium from PMNs did not affect allyl alcohol-induced release of ALT from hepatocytes. Taken together, these results indicate that PMNs play a role in the potentiation of allyl alcohol toxicity by LPS. It is unlikely that PMNs contribute to this injury through release of reactive oxygen species or proteases, and other mechanisms must be involved.  相似文献   

14.
15.
Exposure of mice to lipopolysaccharide (LPS) plus interferon-gamma (IFN-gamma) increases nitric oxide (NO) production, which is proposed to play a role in the resulting pulmonary damage and inflammation. To determine the role of inducible nitric oxide synthase (iNOS)-induced NO in this lung reaction, the responses of inducible nitric oxide synthase knockout (iNOS KO) versus C57BL/6J wild-type (WT) mice to aspirated LPS + IFN-gamma were compared. Male mice (8-10 weeks) were exposed to LPS (1.2 mg/kg) + IFN-gamma (5000 U/mouse) or saline. At 24 or 72 h postexposure, lungs were lavaged with saline and the acellular fluid from the first bronchoalveolar lavage (BAL) was analyzed for total antioxidant capacity (TAC), lactate dehydrogenase (LDH) activity, albumin, tumor necrosis factor-alpha (TNF-alpha), and macrophage inflammatory protein-2 (MIP-2). The cellular fraction of the total BAL was used to determine alveolar macrophage (AM) and polymorphonuclear leukocyte (PMN) counts, and AM zymosan-stimulated chemiluminescence (AM-CL). Pulmonary responses 24 h postexposure to LPS + IFN-gamma were characterized by significantly decreased TAC, increased BAL AMs and PMNs, LDH, albumin, TNF-alpha, and MIP-2, and enhanced AM-CL to the same extent in both WT and iNOS KO mice. Responses 72 h postexposure were similar; however, significant differences were found between WT and iNOS KO mice. iNOS KO mice demonstrated a greater decline in total antioxidant capacity, greater BAL PMNs, LDH, albumin, TNF-alpha, and MIP-2, and an enhanced AM-CL compared to the WT. These data suggest that the role of iNOS-derived NO in the pulmonary response to LPS + IFN-gamma is anti-inflammatory, and this becomes evident over time.  相似文献   

16.
Liver injury from a variety of hepatotoxicants, including the food-borne phytotoxin monocrotaline (MCT), can be augmented by exposure to a noninjurious dose of the inflammagen bacterial lipopolysaccharide (LPS). In a previous study, a nontoxic dose of LPS given 4 h after MCT resulted in synergistic hepatotoxicity within 12-18 h. This study was designed to determine whether temporal differences in MCT and LPS exposure affect toxicity. When LPS (3.4 2 10 6 EU/kg; iv) was given one hour before MCT (100 mg/kg; ip), hepatotoxicity developed between 4 and 8 h after MCT administration, and mortality was much greater than when LPS was administered 4 h after MCT. To explore this difference, the temporal relationship between LPS and MCT exposure (7.4 2 10 6 EU/kg and 100 mg/kg, respectively) was altered. Twenty-four-hour survival was high in animals that received LPS 4 h before (86%) or after (88%) MCT, but it decreased markedly when LPS was administered 1 h before MCT (17%). Using this latter dosing regimen, animals became moribund as early as 4 h after MCT administration. Since liver injury was similar from regimens that differed greatly in mortality, death appeared to result from extrahepatic causes. To explore a role for nitric oxide (NO)-induced shock in this regimen, animals were treated with aminoguanidine (AG), an inhibitor of inducible NO synthase, prior to administration of LPS given an hour before MCT. In the cotreated animals, AG significantly attenuated mortality and decreased plasma nitrate/nitrite concentrations, markers of NO biosynthesis. Hence, the primary target of toxicity from MCT and LPS cotreatment appeared to shift from the liver to an extrahepatic site or sites as exposure to these agents occurred closer together temporally. NO appears to be causally involved in the deaths of animals treated with LPS 1 h before MCT.  相似文献   

17.
Liver injury from a variety of hepatotoxicants, including the food-borne phytotoxin monocrotaline (MCT), can be augmented by exposure to a noninjurious dose of the inflammagen bacterial lipopolysaccharide (LPS). In a previous study, a nontoxic dose of LPS given 4 h after MCT resulted in synergistic hepatotoxicity within 12-18 h. This study was designed to determine whether temporal differences in MCT and LPS exposure affect toxicity. When LPS (3.4 x 10(6) EU/kg; iv) was given one hour before MCT (100 mg/kg; ip), hepatotoxicity developed between 4 and 8 h after MCT administration, and mortality was much greater than when LPS was administered 4 h after MCT. To explore this difference, the temporal relationship between LPS and MCT exposure (7.4 x 10(6) EU/kg and 100 mg/kg, respectively) was altered. Twenty-four-hour survival was high in animals that received LPS 4 h before (86%) or after (88%) MCT, but it decreased markedly when LPS was administered 1 h before MCT (17%). Using this latter dosing regimen, animals became moribund as early as 4 h after MCT administration. Since liver injury was similar from regimens that differed greatly in mortality, death appeared to result from extrahepatic causes. To explore a role for nitric oxide (NO)-induced shock in this regimen, animals were treated with aminoguanidine (AG), an inhibitor of inducible NO synthase, prior to administration of LPS given an hour before MCT. In the cotreated animals, AG significantly attenuated mortality and decreased plasma nitrate/nitrite concentrations, markers of NO biosynthesis. Hence, the primary target of toxicity from MCT and LPS cotreatment appeared to shift from the liver to an extrahepatic site or sites as exposure to these agents occurred closer together temporally. NO appears to be causally involved in the deaths of animals treated with LPS 1 h before MCT.  相似文献   

18.
Individuals are commonly exposed to bacterial endotoxin (lipopolysaccharide [LPS]) through gram-negative bacterial infection and from its translocation from the gastrointestinal lumen into the circulation. Inasmuch as noninjurious doses of LPS augment the hepatotoxicity of certain xenobiotic agents, exposure to small amounts of LPS may be an important determinant of susceptibility to chemical intoxication. Monocrotaline (MCT) is a pyrrolizidine alkaloid phytotoxin that at large doses produces centrilobular liver lesions in rats. In the present study, MCT was coadministered with LPS to determine whether LPS would enhance its hepatotoxicity. Doses of MCT (100 mg/kg, ip) and LPS (7.4 x 10(6) EU/kg, iv), which were nonhepatotoxic when administered separately, produced significant liver injury in male, Sprague-Dawley rats when given in combination. Within 18 h after MCT administration, this cotreatment resulted in enhanced plasma alanine aminotransferase and aspartate aminotransferase activities, two markers of liver injury. Histologically, overt hemorrhage and necrosis appeared between 12 and 18 h. The lesions were centrilobular and midzonal and exhibited characteristics similar to lesions associated with larger doses of MCT and LPS, respectively. In the presence of LPS, the threshold for MCT toxicity was reduced to 13-33% of the dose required for toxicity with MCT alone. A study in isolated, hepatic parenchymal cells revealed no interaction between MCT and LPS in producing cytotoxicity. In summary, coexposure of rats to noninjurious doses of MCT and LPS resulted in pronounced liver injury. Results in vitro suggest that the enhanced toxicity does not result from a direct interaction of MCT and LPS with hepatic parenchymal cells. These results provide additional evidence that exposure to small amounts of LPS may be a determinant of susceptibility to food-borne hepatotoxins.  相似文献   

19.
Rats cotreated with lipopolysaccharide (LPS) and ranitidine (RAN) but not LPS and famotidine (FAM) develop hepatocellular injury in an animal model of idiosyncratic drug reactions. Evaluation of liver gene expression in rats given LPS and/or RAN led to confirmation that the hemostatic system, hypoxia, and neutrophils (PMNs) are critical mediators in LPS/RAN-induced liver injury. We tested the hypothesis that unique gene expression changes distinguish LPS/RAN-treated rats from rats given LPS or RAN alone and from those cotreated with LPS/FAM. Rats were treated with a nonhepatotoxic dose of LPS (44.4 x 10(6) endotoxin units/kg, iv) or its vehicle. Two hours thereafter they were given RAN (30 mg/kg, iv), FAM (either 6 mg/kg, a pharmacologically equi-efficacious dose, or 28.8 mg/kg, an equimolar dose, iv), or vehicle. They were killed 2 or 6 h after drug treatment for evaluation of hepatotoxicity (2 and 6 h) and liver gene expression (2 h only). At a time before the onset of hepatocellular injury, hierarchical clustering distinguished rats treated with LPS/RAN from those given LPS alone. 205 probesets were expressed differentially to a greater or lesser degree only in LPS/RAN-treated rats compared to LPS/FAM or LPS alone, which did not develop liver injury. These included VEGF, EGLN3, MAPKAPK-2, BNIP3, MIP-2, COX-2, EGR-1, PAI-1, IFN-gamma, and IL-6. Expression of these genes was confirmed by real-time PCR. Serum concentrations of MIP-2, PAI-1, IFN-gamma, and IL-6 correlated with their respective gene expression patterns. Overall, the expression of several gene products capable of controlling requisite mediators of injury (i.e., hemostasis, hypoxia, PMNs) in this model were enhanced in livers of LPS/RAN-treated rats. Furthermore, enhanced expression of MAPKAPK-2 in RAN-treated rats and its target genes in LPS/RAN-treated rats suggests that p38/MAPKAPK-2 signaling is a regulation point for enhancement of LPS-induced gene expression by RAN.  相似文献   

20.
The effects of glycyrrhizin isolated from licorice root were investigated on acute hepatitis induced by lipopolysaccharide (LPS) and d-galactosamine in mice. Serum alanine aminotransferase (ALT) activity was markedly increased 6 h to 8 h after administration of LPS/d-galactosamine. Levels in serum of cytokines such as tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, IL-10 and IL-12 reached a maximum by 2 h, whereas levels of IL-18, as well as of ALT, were maximal at 8 h. Glycyrrhizin (ED(50): 14.3 mg/kg) inhibited the increase in ALT levels when it was given to mice at 30 min before administration of LPS/d-galactosamine. Inflammatory responses, including infiltration of neutrophils and macrophages in the liver injury, were modulated by glycyrrhizin. Increases in ALT levels were reduced by an administration of glycyrrhizin at 10 min and 60 min but not 3 h, even after LPS/d-galactosamine treatment. However, glycyrrhizin had no effect on the production of TNF-alpha, IL-6, IL-10 and IL-12, whereas it significantly inhibited IL-18 production. Exogenous IL-18 further increased the elevation in ALT levels in mice treated with LPS/d-galactosamine. Glycyrrhizin completely suppressed the effect of IL-18 of increasing ALT levels. IL-18 was detected by immunohistochemistry in inflammatory cells such neutrophils and macrophages in liver injury. Glycyrrhizin reduced the responsiveness of cells to IL-18 in the liver injury. These results suggest that glycyrrhizin inhibits the LPS/d-galactosamine-induced liver injury through preventing inflammatory responses and IL-18 production. Furthermore, it seems that glycyrrhizin prevents IL-18-mediated inflammation in liver injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号