首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbonyl reduction is a main but undesired metabolic pathway of the anti-cancer drug daunorubicin (DRC). The resulting alcohol metabolite daunorubicinol has a far less anti-tumor potency and, in addition, is responsible for the life-threatening cardiac toxicity that limits the clinical use of DRC. Elevated levels of carbonyl-reducing enzymes in cancer cells may therefore contribute to the development of DRC chemoresistance and affect the clinical outcome. In the present investigation, human pancreas carcinoma cells were transfected with three important DRC reductases, namely carbonyl reductase (CBR1), aldehyde reductase (AKR1A1) and aldose reductase (AKR1B1), and levels of resistance towards DCR determined. Overexpression of all three reductases lead to a higher DRC inactivation and to an elevation of chemoresistance (7-fold for CBR1, 4.5-fold for AKR1A1 and 3.7-fold for AKR1B1), when IC(50)-values were considered. Coadministration of DRC reductase inhibitors in DRC chemotherapy may be desirable since this would reduce the formation of the cardiotoxic alcohol metabolite and prevent drug resistance.  相似文献   

2.

Purpose

Aldo-keto reductases (including AKR1B1 and AKR1B10) constitute a family of oxidoreductases that have been implicated in the pathophysiology of diabetes and cancer, including colorectal cancer (CRC). Available data indicate that, despite their similarities in structure and enzymatic functions, their roles in CRC may be divergent. Here, we aimed to determine the expression and functional implications of AKR1B1 and AKR1B10 in CRC.

Methods

AKR1B1 and AKR1B10 gene expression levels were analyzed using publicly available microarray data and ex vivo CRC-derived cDNA samples. Gene Set Enrichment Analysis (GSEA), The Cancer Genome Atlas (TCGA) RNA-seq data and The Cancer Proteome Atlas (TCPA) proteome data were analyzed to determine the effect of high and low AKR1B1 and AKR1B10 expression levels in CRC patients. Proliferation, cell cycle progression, cellular motility, adhesion and inflammation were determined in CRC-derived cell lines in which these genes were either exogenously overexpressed or silenced.

Results

We found that the expression of AKR1B1 was unaltered, whereas that of AKR1B10 was decreased in primary CRCs. GSEA revealed that, while high AKR1B1 expression was associated with increased cell cycle progression, cellular motility and inflammation, high AKR1B10 expression was associated with a weak inflammatory phenotype. Functional studies carried out in CRC-derived cell lines confirmed these data. Microarray data analysis indicated that high expression levels of AKR1B1 and AKR1B10 were significantly associated with shorter and longer disease-free survival rates, respectively. A combined gene expression signature of AKR1B10 (low) and AKR1B1 (high) showed a better prognostic stratification of CRC patients independent of confounding factors.

Conclusions

Despite their similarities, the expression levels and functions of AKR1B1 and AKR1B10 are highly divergent in CRC, and they may have prognostic implications.
  相似文献   

3.
PURPOSE: Squamous cell carcinoma (SCC) and adenocarcinoma of the lung are currently subject to similar treatment regimens despite distinct differences in histology and epidemiology. The aim of this study is to identify a molecular target with diagnostic and therapeutic values for SCC. EXPERIMENTAL DESIGN: Genes specifically up-regulated in SCC were explored through microarray analysis of 5 SCCs, 5 adenocarcinomas, 10 small cell lung carcinomas, 27 normal tissues, and 40 cancer cell lines. Clinical usefulness of these genes was subsequently examined mainly by immunohistochemical analysis. RESULTS: Seven genes, including aldo-keto reductase family 1, member B10 (AKR1B10), were identified as SCC-specific genes. AKR1B10 was further examined by immunohistochemical analysis of 101 non-small cell lung carcinomas (NSCLC) and its overexpression was observed in 27 of 32 (84.4%) SCCs and 19 of 65 (29.2%) adenocarcinomas. Multiple regression analysis showed that smoking was an independent variable responsible for AKR1B10 overexpression in NSCLCs (P < 0.01) and adenocarcinomas (P < 0.01). AKR1B10 staining was occasionally observed even in squamous metaplasia, a precancerous lesion of SCC. CONCLUSION: AKR1B10 was overexpressed in most cases with SCC, which is closely associated with smoking, and many adenocarcinoma cases of smokers. These results suggest that AKR1B10 is a potential diagnostic marker specific to smokers' NSCLCs and might be involved in tobacco-related carcinogenesis.  相似文献   

4.
Aldo-keto reductase family 1 B10 (AKR1B10), a member of aldo-keto reductase superfamily, is overexpressed in human hepatocellular carcinoma, lung squamous cell carcinoma and lung adenocarcinoma. Our previous study had demonstrated that the ectopic expression of AKR1B10 in 293T cells promotes cell proliferation. To evaluate its potential as a target for cancer intervention, in the current study we knocked down AKR1B10 expression in HCT-8 cells derived from a colorectal carcinoma, using chemically synthesized small interfering RNA (siRNA). The siRNA 1, targeted to encoding region, downregulated AKR1B10 expression by more than 60%, and siRNA 2, targeted to 3' untranslational region, reduced AKR1B10 expression by more than 95%. AKR1B10 silencing resulted in approximately a 50% decrease in cell growth rate and nearly 40% suppression of DNA synthesis. More importantly, AKR1B10 downregulation significantly reduced focus formation rate and colony size in semisolid culture, indicating the critical role of AKR1B10 in HCT-8 cell proliferation. Recombinant AKR1B10 protein showed strong enzymatic activity to acrolein and crotonaldehyde, with K(m) = 110.1 +/- 12.2 microM and V(max) = 3,122.0 +/- 64.7 nmol/mg protein/min for acrolein and K(m) = 86.7 +/- 14.3 microM and V(max) = 2,647.5 +/- 132.2 nmol/mg protein/min for crotonaldehyde. AKR1B10 downregulation enhanced the susceptibility of HCT-8 cells to acrolein (25 microM) and crotonaldehyde (50 microM), resulting in rapid oncotic cell death characterized with lactate dehydrogenase efflux and annexin-V staining. These results suggest that AKR1B10 may regulate cell proliferation and cellular response to additional carbonyl stress, thus being a potential target for cancer intervention.  相似文献   

5.

Background

AKR1B10 is considered to contribute to cell proliferation and chemoresistance. In the present study, we examined whether AKR1B10 expression is associated with disease-free survival in bladder cancer patients.

Methods

We obtained bladder cancer specimens from 10 patients before and after chemotherapy and measured AKR1B10 mRNA levels using real-time PCR. In addition, we conducted an immunohistochemical examination of AKR1B10 expression in 57 patients with bladder cancer before and after chemotherapy.

Results

AKR1B10 mRNA expression was significantly higher in the post-chemotherapy group than in the pre-chemotherapy group (p < 0.001). The average immunohistochemical intensity score in the pre-chemotherapy group was 0.83 ± 1.08, compared with the significantly higher score of 2.03 ± 1.03 in the post-chemotherapy group (p < 0.001). The disease-free survival rate of post-chemotherapy AKR1B10(+) patients (61.2%) was significantly lower than that of AKR1B10(?) patients (100%) (log-rank test, p = 0.039).

Conclusions

Although the present study is small and preliminary, our data suggest that post-chemotherapy AKR1B10 expression may be associated with a poor prognosis in patients who received carboplatin–gemcitabine combination chemotherapy and underwent cystectomy. Further study is warranted to elucidate its clinical significance.  相似文献   

6.
Lung cancer rates among men and particularly among women, almost all of whom are non-smokers, in Xuan Wei County, China are among the highest in China and have been causally associated with exposure to indoor smoky coal emissions that contain very high levels of polycyclic aromatic hydrocarbons (PAHs). As such, this population provides a unique opportunity to study the pathogenesis of PAH-induced lung cancer that is not substantially influenced by the large number of other carcinogenic constituents of tobacco smoke. Aldo-keto reductases (AKRs) activate PAH dihydrodiols to yield their corresponding reactive and redox-active o-quinones, which can then generate reactive oxygen species that cause oxidative DNA damage. We therefore examined the association between single nucleotide polymorphisms (SNPs) in four genes (AKR1C3-Gln5His, NQO1-Pro187Ser, MnSOD-Val16Ala and OGG1-Ser326Cys) that play a role in the generation, prevention or repair of oxidative damage and lung cancer risk in a population-based, case-control study of 119 cases and 113 controls in Xuan Wei, China. The AKR1C3-Gln/Gln genotype was associated with a 1.84-fold [95% confidence interval (CI) = 0.98-3.45] increased risk and the combined OGG1-Cys/Cys and Ser/Cys genotypes were associated with a 1.93-fold (95% CI = 1.12-3.34) increased risk of lung cancer. Subgroup analysis revealed that the effects were particularly elevated among women who had relatively high cumulative exposure to smoky coal. SNPs in MnSOD and NQO1 were not associated with lung cancer risk. These results suggest that SNPs in the oxidative stress related-genes AKR1C3 and OGG1 may play a role in the pathogenesis of lung cancer in this population, particularly among heavily exposed women. However, due to the small sample size, additional studies are needed to evaluate these associations within Xuan Wei and other populations with substantial exposure to PAHs.  相似文献   

7.
8.
AKR7A3 is a member of the aldo-keto reductase (AKR) protein family, whose primary purpose is to reduce aldehydes and ketones to generate primary and secondary alcohols. It has been reported that AKR7A3 is downregulated in pancreatic cancer (PC). However, the mechanism underlying the effects of AKR7A3 in PC remains largely unclarified. Here, we explored the biological function, molecular mechanism and clinical relevance of AKR7A3 in pancreatic ductal adenocarcinoma (PDAC). AKR7A3 expression was downregulated in PDAC compared with adjacent normal tissues, and the lower AKR7A3 expression was related to poor prognosis. In addition, our results demonstrated that AKR7A3 could be a potential diagnostic marker for PDAC, especially in the early stages. Knockdown of AKR7A3 promoted PDAC progression and chemoresistance, while inhibiting autophagy flux. Mechanistically, AKR7A3 affected the metastasis, autophagy, and chemoresistance of PDAC by regulating PHGDH. Overall, the present study suggests that AKR7A3 inhibits PDAC progression by regulating PHGDH-induced autophagy. In addition, AKR7A3 inhibits chemoresistance via regulating PHGDH and may serve as a new therapeutic target for PDAC.  相似文献   

9.
14-3-3ε is overexpressed in hepatocellular carcinoma (HCC) and its expression significantly associates with a poor prognostic outcome. To uncover how 14-3-3ε contributes to the tumor progression of HCC, we investigated the potential downstream targets regulated by 14-3-3ε. We found that 14-3-3ε increases expression and nuclear translocation of β-catenin and that 14-3-3ε-induced cell proliferation is attenuated by β-catenin silencing in HCC cells. Moreover, 14-3-3ε induces aldo-keto reductase family 1 member B10 (AKR1B10) expression through the activation of β-catenin signaling. Knockdown of AKR1B10 by siRNAs abolished 14-3-3ε-induced in vitro cell proliferation, anchorage-independent growth as well as in vivo tumor growth. Furthermore, AKR1B10 silencing increased retinoic acid (RA) levels in the serum of tumor-bearing mice and RA treatment attenuated 14-3-3ε-induced HCC cell proliferation. We further examined 14-3-3ε and AKR1B10 expression and clinicopathological characteristics of HCC tumors. Although the expression of AKR1B10 was significantly correlated with 14-3-3ε, an increase of AKR1B10 expression in 14-3-3ε positive patients paradoxically had better overall survival and disease-free survival rates as well as lower metastatic incidence than those without an AKR1B10 increase. Finally, we found a loss of AKR1B10 expression in cells exhibiting a high capacity of invasiveness. Silencing of AKR1B10 resulted in inducing snail and vimentin expression in HCC cells. These results indicate that AKR1B10 may play a dual role during HCC tumor progression. Our results also indicate that 14-3-3ε regulates AKR1B10 expression by activating β-catenin signaling. A combination of 14-3-3ε with AKR1B10 is a potential therapeutic target and novel prognostic biomarker of HCC.  相似文献   

10.

Background and objectives

The aim of the study was to investigate the correlation between AKR1B10 expression and clinicopathological features of gastric cancer (GC).

Methods

Real-time polymerase chain reaction (RT-PCR) was performed to determine AKR1B10 mRNA expression. AKR1B10 protein levels were measured by immunohistochemistry.

Results

RT-PCR analysis confirmed that AKR1B10 was significantly down-regulated in gastric cancer compared with paired, normal mucosa. Immunohistochemistry revealed that the percentage of AKR1B10-positive specimens was lower in gastric carcinoma compared with normal specimens. The frequency of AKR1B10-positive GC specimens was higher in patients with tumor size <5 cm, no lymph node metastasis, no distant metastasis and lower tumor stages The mean survival time for patients in the AKR1B10-positive group was significantly higher compared with the AKR1B1-negative group. The 5-year survival rate for the AKR1B10-positive group was also significantly higher than for the AKR1B1-negative group. Cox regression analysis revealed that AKR1B10 expression is an independent prognostic factor of GC.

Conclusions

Expression of AKR1B10 in gastric cancer was significantly associated with tumor size, lymph node metastasis, distance metastasis and TNM stage, and AKR1B10 may be a good prognostic indicator in gastric cancer.  相似文献   

11.
Dihydrodiol dehydrogenase (DDH) is a member of the aldo-keto reductases superfamily (AKR1C1-AKR1C4), which plays central roles in the metabolism of steroid hormone, prostaglandin and xenobiotics. We have previously detected overexpression of DDH as an indicator of poor prognosis and chemoresistance in human non-small lung cancer (NSCLC). We also found DDH expression to be closely related to chronic inflammatory conditions. The aim of this study was to investigate the links between inflammation, DDH expression and drug resistance in NSCLC cells. We showed that pro-inflammatory mediators including interleukin-6 (IL-6) could induce AKR1C1/1C2 expression in NSCLC cells and increase cellular resistance to cisplatin and adriamycin. This effect was nullified by Safingol, a protein kinase C inhibitor. Moreover, the expression of AKR1C1/1C2 was inversely correlated to NBS1 and apoptosis-inducing factor (AIF). We also showed that IL-6-induced AKR1C1/1C2 expression and drug resistance were inhibited by wogonin and chrysin, which are major flavonoids in Scutellaria baicalensis, a widely used traditional Chinese and Japanese medicine. In conclusion, this study demonstrated novel links of pro-inflammatory signals, AKR1C1/1C2 expression and drug resistance in NSCLC. The protein kinase C pathway may play an important role in this process. Overexpression of AKR1C1/1C2 may serve as a marker of chemoresistance. Further studies are warranted to evaluate wogonin and chrysin as a potential adjuvant therapy for drug-resistant NSCLC, especially for those with AKR1C1/1C2 overexpression.  相似文献   

12.
2‐Deoxyglucose (2DG) is a non‐metabolizable glucose analog currently in clinical trials to determine its efficacy in enhancing the therapeutic effects of radiotherapy and chemotherapy of several types of cancers. It is thought to preferentially kill cancer cells by inhibiting glycolysis because cancer cells are more dependent on glycolysis for their energy needs than normal cells. However, we found that the toxicity of 2DG in cancer cells is mediated by the enzymatic activities of AKR1B1 and/or AKR1B10 (AKR1Bs), which are often overexpressed in cancer cells. Our results show that 2DG kills cancer cells because, in the process of being reduced by AKR1Bs, depletion of their cofactor NADPH leads to the depletion of glutathione (GSH) and cell death. Furthermore, we showed that compounds that are better substrates for AKR1Bs than 2DG are more effective than 2DG in killing cancer cells that overexpressed these 2 enzymes. As cancer cells can be induced to overexpress AKR1Bs, the anticancer mechanism we identified can be applied to treat a large variety of cancers. This should greatly facilitate the development of novel anticancer drugs.  相似文献   

13.
The nicotine-derived tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, is one of the most potent and abundant procarcinogens found in tobacco and tobacco smoke, and glucuronidation of its major metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), is an important mechanism for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone detoxification. Substantial interindividual variability in urinary NNAL glucuronide formation has been observed in smokers and tobacco chewers. To determine whether genetic variations may play a role in this interindividual variability, NNAL-glucuronidating activities were analyzed in 78 human liver microsomal specimens and compared with the prevalence of missense polymorphisms in the two major NNAL-glucuronidating enzymes UGT1A4 and UGT2B7. In vitro assays using liver microsomal specimens from individual subjects demonstrated a 70- and 50-fold variability in NNAL-N-Gluc and NNAL-O-Gluc formation, respectively, and a 20-fold variability in the ratio of NNAL-N-Gluc:NNAL-O-Gluc formation. Microsomes from subjects with a homozygous polymorphic UGT1A4(24Thr)/UGT1A4(24Thr) genotype exhibited a significantly higher (P < 0.05) level of NNAL-N-Gluc activity compared with microsomes from subjects with the wild-type UGT1A4(24Pro)/UGT1A4(24Pro) genotype, and a significantly higher (P < 0.05) number of subjects with liver microsomes having high NNAL-N-Gluc formation activity contained the UGT1A4(24Thr)/UGT1A4(24Thr) genotype. Microsomes from subjects with the homozygous polymorphic UGT2B7(268Tyr)/UGT2B7(268Tyr) genotype exhibited a significantly lower level (P < 0.025) of NNAL-O-Gluc activity when compared with microsomes from subjects with the wild-type UGT2B7(268His)/UGT2B7(268His) genotype, and a significantly (P < 0.05) higher number of subjects with liver microsomes having low NNAL-O-Gluc formation activity contained the UGT2B7(268Tyr)/UGT2B7(268Tyr) genotype. These data suggest that the UGT1A4 codon 24 and UGT2B7 codon 268 polymorphisms may be associated with altered rates glucuronidation and detoxification of NNAL in vivo.  相似文献   

14.
The aim of the present study was to investigate the expression of aldo-keto reductase family 1 member B10 (AKR1B10) in benign prostatic hyperplasia (BPH) and its related mechanism. In total, 142 BPH patients admitted from March 2017 to March 2019 at the First Hospital of Hunan University of Chinese Medicine and 140 healthy people undergoing physical examination were selected as the research subjects. The clinical value of AKR1B10 in BPH was analyzed. Twenty clean SD rats were selected, and 10 were selected to establish the prostate hyperplasia model, while the remaining 10 were set as the control group. Ten days after the model was established, AKR1B10 and NF-κB expression in prostate tissues of rats in both groups was detected by PCR and immunohistochemistry. The primary cells in prostate hyperplasia were cultured, and then they were transfected with AKR1B10 to observe the changes of cell biological behavior. AKR1B10 and NF-κB mRNA significantly increased in peripheral blood of BPH patients and prostate tissue of BPH model rats (P<0.001), and AKR1B10 had good diagnostic value for BPH (P<0.001). In addition, it was positively correlated with PSA, EGF, IL-6 and TNF-α (P<0.001). After transfection with AKR1B10-inhibitor, it was revealed that the proliferation of prostate hyperplasia cells decreased, while the apoptosis of prostate hyperplasia cells increased and the NF-κB protein expression decreased (P<0.001). Collectively, high expression of AKR1B10 in BPH promoted the proliferation of prostate cells and reduced their apoptosis, and the mechanism may be through regulation of NF-κB.  相似文献   

15.
Aldo-keto reductase 1B10 (AKR1B10) is a secretory protein that is upregulated with tumorigenic transformation of human mammary epithelial cells. This study demonstrated that AKR1B10 was overexpressed in 20 (71.4%) of 28 ductal carcinomas in situ, 184 (83.6%) of 220 infiltrating carcinomas and 28 (87.5%) of 32 recurrent tumors. AKR1B10 expression in breast cancer was correlated positively with tumor size (p = 0.0012) and lymph node metastasis (p = 0.0123) but inversely with disease-related survival (p = 0.0120). Univariate (p = 0.0077) and multivariate (p = 0.0192) analyses both suggested that AKR1B10, alone or together with tumor size and node status, is a significant prognostic factor for breast cancer. Silencing of AKR1B10 in BT-20 human breast cancer cells inhibited cell growth in culture and tumorigenesis in female nude mice. Importantly, AKR1B10 in the serum of breast cancer patients was significantly increased to 15.18 ± 9.08 ng/ml [n = 50; 95% confidence interval (CI), 12.60-17.76], with a high level up to 58.4 ng/ml, compared to 3.34 ± 2.27 ng/ml in healthy donors (n = 60; 95% CI, 2.78-3.90). In these patients, AKR1B10 levels in serum were correlated with its expression in tumors (r = 0.8066; p < 0.0001). Together our data suggests that AKR1B10 is overexpressed in breast cancer and may be a novel prognostic factor and serum marker for this deadly disease.  相似文献   

16.
Small-molecule-induced degradation of mutant Bcr-Abl1 provides a potential approach to overcome Bcr-Abl1 tyrosine kinase inhibitor (TKI)-resistant chronic myeloid leukemia (CML). Our previous study reported that a synthetic steroidal glycoside SBF-1 showed remarkable anti-CML activity by inducing the degradation of native Bcr-Abl1 protein. Here, we observed the comparable growth inhibition for SBF-1 in CML cells harboring T315I mutant Bcr-Abl1 in vitro and in vivo. SBF-1 triggered its degradation through disrupting the interaction between protein-tyrosine phosphatase 1B (PTP1B) and Bcr-Abl1. Using SBF-1 as a tool, we found that Tyr46 in the PTP1B catalytic domain and Tyr852 in the Bcr-Abl1 pleckstrin-homology (PH) domain are critical for their interaction. Moreover, the phosphorylation of Tyr1086 within the Bcr-Abl1 SH2 domain recruited the E3 ubiquitin ligase c-Cbl to catalyze K27-linked ubiquitin chains, which serve as a recognition signal for p62-dependent autophagic degradation. PTP1B dephosphorylated Bcr-Abl1 at Tyr1086 and prevented the recruitment of c-Cbl, leading to the stability of Bcr-Abl1. This study unravels the action mechanism of PTP1B in stabilizing Bcr-Abl1 protein and indicates that the PTP1B-Bcr-Abl1 interaction might be one of druggable targets for TKI-resistant CML with point mutations.  相似文献   

17.
目的 探讨醛酮还原酶1B10(aldo-keto reductase family 1B10,AKR1B10)在甲状腺乳头状癌(papillary thyroid carcinoma,PTC)组织中的表达及其临床意义。方法 收集2013年1月至2015年7月于郴州市第一人民医院经超声诊断的237例甲状腺结节患者的病理标本。采用Western blot法检测甲状腺正常组织和PTC组织中AKR1B10蛋白的表达;采用免疫组织化学法检测不同甲状腺组织AKR1B10蛋白的表达。结果 Western blot检测结果显示,AKR1B10蛋白在PTC组织中的表达水平明显高于甲状腺正常组织(0.82±0.10 vs 0.22±0.07,t=2.702,P=0.011)。免疫组织化学法结果显示,AKR1B10在PTC组织中呈高表达,且在不同甲状腺组织中其阳性表达率最高(79.5%)。AKR1B10表达与甲状腺癌组织周围淋巴结转移有关(P=0.007)。结论 AKR1B10在甲状腺乳头状癌组织中呈高表达,且与周围淋巴结转移有关。  相似文献   

18.

Background  

Over recent years, enzymes of the aldo-keto reductase (AKR) 1C subfamily have been implicated in the progression of prostate, breast, endometrial and leukemic cancers. This is due to the ability of AKR1C enzymes to modify androgens, estrogens, progesterone and prostaglandins (PGs) in a tissue-specific manner, regulating the activity of nuclear receptors and other downstream effects. Evidence supporting a role for AKR1C enzymes in cancer derives mostly from studies with isolated primary cells from patients or immortalized cell lines. Mice are ideal organisms for in vivo studies, using knock-out or over-expression strains. However, the functional conservation of AKR1C enzymes between human and mice has yet to be described.  相似文献   

19.
Glutathione S-transferase P1 (GSTP1) belongs to xenobiotic enzymes, and is supposed to contribute to chemoresistance. Though it was reported that GSTP1 gene is suppressed by cytosine-guanine (CpG) island methylation of its promoter, this promoter is not strongly methylated and GSTP1 protein is highly expressed in lung cancer. We intended to induce methylation of GSTP1 CpG island by using a methylated sense oligonucleotide complementary to this region. When we transduced the methylated oligonucleotides to A549 lung adenocarcinoma cells, methylation of the GSTP1 promoter and reduction of GSTP1 expression was induced, cell viability was reduced; however, chemoresistance against cisplatin has not clearly changed.  相似文献   

20.
Urinary metabolites of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and its glucuronides, termed total NNAL, have recently been shown to be good predictors of lung cancer risk, years before diagnosis. We sought to determine the contribution of several genetic polymorphisms to total NNAL output and inter-individual variability. The study subjects were derived from the Harvard/Massachusetts General Hospital Lung cancer case-control study. We analyzed 87 self-described smokers (35 lung cancer cases and 52 controls), with urine samples collected at time of diagnosis (1992-1996). We tested 82 tagging SNPs in 16 genes related to the metabolism of NNK to total NNAL. Using weighted case status least squares regression, we tested for the association of each SNP with square-root (sqrt) transformed total NNAL (pmol per mg creatinine), controlling for age, sex, sqrt packyears and sqrt nicotine (ng per mg creatinine). After a sqrt transformation, nicotine significantly predicted a 0.018 (0.014, 0.023) pmol/mg creatinine unit increase in total NNAL for every ng/mg creatinine increase in nicotine at p < 10E-16. Three HSD11B1 SNPs and AKR1C4 rs7083869 were significantly associated with decreasing total NNAL levels: HSD11B1 rs2235543 (p = 4.84E-08) and rs3753519 (p = 0.0017) passed multiple testing adjustment at FDR q = 1.13E-05 and 0.07 respectively, AKR1C4 rs7083869 (p = 0.019) did not, FDR q = 0.51. HSD11B1 and AKR1C4 enzymes are carbonyl reductases directly involved in the single step reduction of NNK to NNAL. The HSD11B1 SNPs may be correlated with the functional variant rs13306401 and the AKR1C4 SNP is correlated with the enzyme activity reducing variant rs17134592, L311V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号