首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sun Y  Qian C  Peng D  Prieto J 《Human gene therapy》2000,11(1):127-138
To investigate the cooperative effect of B7-1 and IL-12 in the induction of antitumor activity, we have developed retroviral vectors encoding human B7-1, murine IL-12, or both B7-1 and IL-12 coordinately. Murine transformed liver cells (BNL) were engineered to stably express B7-1, IL-12, or both by infection with corresponding retroviruses. No tumor was observed in 20, 75, and 95% of mice receiving, respectively, B7-1-, IL-12-, and B7-1/IL-12-modified tumor cells after 250 days of inoculation. In contrast, injection of parental BNL or BNL/Neo cells resulted in lethal tumor progression in all mice. Protection against rechallenge with parental tumor cells was observed only in mice who had rejected BNL/IL-12, but not in animals that rejected BNL/B7-1 or BNL/B7-1-IL-12. Growth of parental tumor cells was significantly delayed by simultaneous injection in a distant site of irradiated tumor cells engineered to express IL-12 or both B7-1 and IL-12 but not B7-1 alone. BNL/B7-1 and BNL/B7-1-IL-12 showed similar efficacy in these experiments. Antitumor immunity induced by B7, with or without IL-12, was found to depend mainly on CD4+ T cells with a minor contribution of a non-T cell mechanism; whereas the effect of IL-12 was dependent on CD8+ T cells and on non-T cell effectors. Immunization of mice with IL-12-modified BNL cells induced secretion of a Thl pattern of cytokines while immunization with cells expressing both IL-12 and B7-1 resulted in inhibition of IFN-gamma production. Immunization with BNL/B7-1-IL-12 cells in the presence of anti-human B7-1 MAb resulted in restoration of IFN-gamma production to the levels found in animals injected with BNL/IL-12 cells. To summarize, in our model coexpression of B7-1 and IL-12 in tumor cells does not result in improved antitumoral activity as compared with expression of IL-12 alone. This may be related to the fact that B7-1 changes the mechanisms of antitumor immunity and inhibits IFN-gamma production induced by IL-12 in vivo.  相似文献   

2.
We have demonstrated that a single injection of interleukin (IL)-12 on the day of bone marrow transplantation (BMT) inhibits acute graft-versus-host disease (GVHD) in mice. This effect of IL-12 can be diminished by anti-interferon (IFN)-gamma mAb. To determine the mechanism by which IFN-gamma affects IL-12-mediated GVHD protection, we have compared the effect of IL-12 on GVHD in C57BL/6 wild-type (WT) or IFN-gamma gene knockout (GKO) recipients of fully major histocompatibility complex plus minor antigen-mismatched allogeneic BMT from WT or GKO BALB/c mice. Lethal acute GVHD was readily induced in the absence of IFN-gamma. IL-12 inhibited GVHD mortality to a similar extent in WT and GKO recipients of WT allogeneic BMT. However, neither WT nor GKO recipients were protected by IL-12 from GVHD induced by GKO allogeneic BMT. Moreover, the effective inhibition of host-reactive donor T cell activation and expansion that is associated with IL-12-mediated GVHD protection was dependent on the ability of BALB/c donors to produce IFN-gamma. These results demonstrate that (a) acute GVHD can be induced in the absence of IFN-gamma, (b) host IFN-gamma does not play a critical role in IL-12-induced GVHD protection, and (c) the protective effect of IL-12 against GVHD is dependent on the ability of the donor to produce IFN-gamma.  相似文献   

3.
Administration of plasmid/lipid complexes to the lung airways for the treatment of metastatic pulmonary diseases represents a new strategy of gene therapy. In this study we present evidence that intratracheal administration of a plasmid encoding murine IL-12 complexed with N-[1-(2,3-dioleyloxy)propyl)-N,N,N-trimethylammonium chloride:cholesterol inhibits the growth of lung metastases, using a renal cell carcinoma model. Instillation of pIL-12/lipid complexes resulted in expression of biologically active IL-12 (170-240 pg/ml) and IFN-gamma (100-190 pg/ml) in the bronchoalveolar lavage fluid. A significantly reduced number of lung metastases (26+/-24) was observed in mice instilled with IL-12/lipid complexes 24 hr after tumor challenge, whereas more than 250 metastatic foci were counted in lungs of untreated mice. Moreover, IL-12/lipid inhibited the growth of 3-day-old established metastases when compared with empty plasmid/lipid or IL-12 plasmid in saline. Mice receiving IL-12 gene therapy survived significantly longer (median survival of 43 days) than untreated mice (median survival of 31 days) or mice treated with control plasmid/lipid complexes (median survival of 35 days). These data demonstrate that a nonviral IL-12 gene therapy employing synthetic cationic lipids as a delivery system can be used to inhibit the development of lung metastases. Thus, this method provides support for the use of IL-12/lipid complexes to control the growth of pulmonary metastases and represents a potentially safer alternative to IL-12 protein immunotherapy.  相似文献   

4.
We investigated the role of antigen-presenting cells in early interferon (IFN)-gamma production in normal and recombinase activating gene 2-deficient (Rag-2(-/-)) mice in response to Listeria monocytogenes (LM) infection and interleukin (IL)-12 administration. Levels of serum IFN-gamma in Rag-2(-/-) mice were comparable to those of normal mice upon either LM infection or IL-12 injection. Depletion of natural killer (NK) cells by administration of anti-asialoGM1 antibodies had little effect on IFN-gamma levels in the sera of Rag-2(-/-) mice after LM infection or IL-12 injection. Incubation of splenocytes from NK cell-depleted Rag-2(-/-) mice with LM resulted in the production of IFN-gamma that was completely blocked by addition of anti-IL-12 antibodies. Both dendritic cells (DCs) and monocytes purified from splenocytes were capable of producing IFN-gamma when cultured in the presence of IL-12. Intracellular immunofluorescence analysis confirmed the IFN-gamma production from DCs. It was further shown that IFN-gamma was produced predominantly by CD8alpha+ lymphoid DCs rather than CD8alpha- myeloid DCs. Collectively, our data indicated that DCs are potent in producing IFN-gamma in response to IL-12 produced by bacterial infection and play an important role in innate immunity and subsequent T helper cell type 1 development in vivo.  相似文献   

5.
Intramuscular injection of plasmid DNA encoding both subunits of the cytokine interleukin 12 (IL-12) exhibits strong antimetastatic activity against lung metastases induced by the malignant melanoma cell line B16-F10. The protective effect of IL-12 DNA is long-lasting, since administration of tumor cells 9 days after IL-12 DNA treatment prevented metastasis formation. No effects were observed with empty plasmid controls, DNA encoding the melanoma-associated antigen pmel17/gp100, the granulocyte-macrophage colony-stimulating factor GM-CSF, B7.1, or CpG-containing oligodeoxynucleotides. IL-12 DNA is required during early phases of metastasis formation and is ineffective when administered later. Its efficiency is dose dependent. The cytotoxic T cell response contributes to the antimetastatic effect as evidenced by genetically modified CD8- or perforin knockout mice. Depletion of natural killer (NK) cells by antibodies completely abrogated the effect. In contrast, the IL-12-induced antimetastatic effect was not mediated by interferon gamma (IFN-gamma) or tumor necrosis factor alpha (TNF-alpha) as shown with IFN-gamma receptor and TNF-alpha knockout mice, respectively. Toxic side effects by IL-12 were low. Our results suggest that plasmid DNA encoding IL-12 might have potential value as gene medicine against the initiation of metastasis formation.  相似文献   

6.
To elucidate the molecular mechanism underlying IL-4-induced tumor rejection, we challenged mice with a mouse adenocarcinoma cell line, colon 26, genetically engineered to express constitutively IL-4 gene (colon 26/IL-4). Immunocompetent BALB/c mice rejected colon 26/IL-4 cells but not parental cells or cells transduced with a control gene (colon 26/control). Moreover, on rechallenge, parental cells and colon 26/control cells were rejected by normal BALB/c mice that had previously rejected colon 26/IL-4. However, both nude and severe combined immunodeficiency (SCID) mice failed to reject colon 26/IL-4 as well as parental or colon 26/control cells. In contrast, nude mice did reject colon 26/IL-4 after transfer of lymphocytes obtained from the draining lymph nodes of BALB/c mice injected with colon 26/IL-4. These results indicate that challenging mice with colon 26/IL-4 tumor cells resulted in the generation of memory cytotoxic T lymphocytes in the draining lymph nodes. At 3 days after the challenge, IFN-gamma, IL-12 p35, and p40 mRNA expression was selectively enhanced in the draining lymph nodes of mice bearing colon 26/IL-4 cells. Finally, mice deficient in the IFN-gamma gene did not reject colon 26/IL-4 cells. These results suggest that IL-4-induced memory cytotoxic T lymphocyte generation requires IFN-gamma production in the draining lymph nodes, in order to generate a protective immune response.  相似文献   

7.
Chemokines play an important role in regulating tumor-mediated immunity, angiogenesis, and tumor cell metastasis. The chemokine receptor, CXCR3, is expressed in various human tumors, including renal cell carcinoma (RCC). CXCR3 is also associated with antiangiogenic effects in multiple tumors, and we hypothesized that interleukin-2 (IL-2) treatment of patients with metastatic clear cell RCC could augment CXCR3 levels on circulating mononuclear cells and correlate to outcome. The kinetics of CXCR3 expression on circulating mononuclear cells and its ligands (CXCL9, CXCL10, and CXCL11) in plasma were evaluated in 20 patients with metastatic clear cell RCC during cycles 1 and 2 of high dose IL-2 therapy. Subpopulations of peripheral blood mononuclear cells (PBMCs) were studied by dual color flow cytometry. Angiogenic ligands were measured and an "angiogenic ratio" was calculated prehigh and posthigh dose IL-2. CXCR3 expression on PBMC at baseline was similar in patients with metastatic RCC and normal controls. PBMC CXCR3 expression increased during treatment, and peaked during cycle 2. Plasma from RCC patients displayed similar baseline levels of CXCR3 ligands to normal controls. However, the angiogenic ratio was significantly increased in patients with metastatic RCC at baseline. Plasma levels of CXCR3 ligands increased during treatment, resulting in a reversal in the angiogenic ratio to favor angiostatic chemokines. The CXCR3/CXCR3 ligand biologic axis and angiogenic ratio may be important biomarkers in clear cell RCC patients who are undergoing high dose IL-2 therapy.  相似文献   

8.
We have shown previously that interleukin-12 (IL-12) gene therapy induced strong antitumor effects in several syngeneic murine tumor models including 4T1 mammary adenocarcinoma. Antiangiogenic treatment with a monoclonal antibody (mAb) directed against the vascular endothelial growth factor receptor-2 (VEGFR-2) is another promising treatment approach that can cause transient suppression of tumor growth. We hypothesized that the combination of IL-12 gene therapy and anti-VEGFR-2 mAb will achieve better antitumor and antimetastatic effects against 4T1 adenocarcinoma than each treatment alone via implementation of different mechanisms. Administration of anti-VEGFR-2 mAb into BALB/c mice bearing s.c. 4T1 tumors induced significant suppression of tumor growth, as did intratumoral administration of naked IL-12 DNA. The combined treatment with anti-VEGFR-2 mAb and IL-12 DNA resulted in significantly enhanced inhibition of tumor growth as compared with each treatment alone. This combination was also effective against spontaneous lung metastases. In T-cell-deficient nude mice, both IL-12 DNA and anti-VEGFR-2 mAb were effective in suppressing tumor growth. In T-cell- and natural killer cell-deficient scid/beige mice, only anti-VEGFR-2 mAb was effective, suggesting that natural killer cells are involved in the antitumor effects induced by IL-12 DNA. In both types of immunodeficient mice, the combination of anti-VEGFR-2 mAb and IL-12 DNA was as effective in suppressing 4T1 tumor growth as anti-VEGFR-2 mAb alone. Antitumor effects of anti-VEGFR-2 mAb were associated with the inhibition of angiogenesis within the tumors, whereas the antiangiogenic effect of IL-12 gene therapy was not detected. Our results show a therapeutic benefit of combining IL-12 gene therapy and anti-VEGFR-2 mAb for cancer treatment.  相似文献   

9.
The antitumor effect and mechanisms activated by murine IL-12 and IL-18, cytokines that induce IFN-gamma production, were studied using engineered SCK murine mammary carcinoma cells. In syngeneic A/J mice, SCK cells expressing mIL-12 or mIL-18 were less tumorigenic and formed tumors more slowly than control cells. Neither SCK.12 nor SCK.18 cells protected significantly against tumorigenesis by distant SCK cells. However, inoculation of the two cell types together synergistically protected 70% of mice from concurrently injected distant SCK cells and 30% of mice from SCK cells established 3 d earlier. Antibody neutralization studies revealed that the antitumor effects of secreted mIL-12 and mIL-18 required IFN-gamma. Interestingly, half the survivors of SCK.12 and/or SCK.18 cells developed protective immunity suggesting that anti-SCK immunity is unlikely to be responsible for protection. Instead, angiogenesis inhibition, assayed by Matrigel implants, appeared to be a property of both SCK.12 and SCK.18 cells and the two cell types together produced significantly greater systemic inhibition of angiogenesis. This suggests that inhibition of tumor angiogenesis is an important part of the systemic antitumor effect produced by mIL-12 and mIL-18.  相似文献   

10.
The presence of natural killer (NK) cells contributes to early defense against murine cytomegalovirus (MCMV) infection. Although NK cells can mediate in vivo protection against MCMV, the mechanism by which they do so has not been defined. The studies presented here evaluate cytokine production by NK cells activated during MCMV infection and the role of NK cell-produced cytokines in early in vivo antiviral defenses. Experiments with normal C57BL/6, T cell-deficient C57BL/6 nude, and severe combined immunodeficient mice lacking T and B cells demonstrated that both interferon gamma (IFN-gamma) and tumor necrosis factor (TNF) production were induced at early times after infection with MCMV. Conditioned media samples prepared with cells from these mice, on day 2 after infection, produced 11-43 pg/million cells of IFN-gamma and 12-19 pg/million cells of TNF as evaluated by specific protein enzyme-linked immunosorbent assays. Studies in the NK- and T cell-deficient mouse line, E26, in mice that had been depleted in vivo of NK cells by treatment with antibodies eliminating NK cells, anti-asialo ganglio-N- tetraosylceramide or anti-NK1.1, and with populations of cells that had been depleted of NK cells by complement treatment with the anti-NK cell antibody, SW3A4, demonstrated that NK cells were solely responsible for the IFN-gamma but were not required for TNF production. The in vivo absence of NK cells was accompanied by increased viral hepatitis and viral replication in both immunocompetent and immunodeficient mice, as well as decreased survival time of immunodeficient mice. In vivo treatments with antibodies neutralizing IFN-gamma demonstrated that this factor contributed to the NK cell-mediated antiviral defense and reduced the measured parameters of viral defense to levels indistinguishable from those observed in NK cell-deficient mice. These effects appeared to be independent of cytolytic activity, as NK cells isolated from anti-IFN-gamma-treated mice mediated killing at levels comparable to those observed in control-treated mice. The consequences of interleukin 12 (IL-12) administration, a known potent inducer of IFN- gamma production by NK cells, were evaluated in MCMV-infected mice. Low IL-12 doses, i.e., 1 ng/d, increased NK cell cytotoxicity and IFN-gamma production up to twofold and resulted in improved antiviral status; virus-induced hepatitis was decreased as much as fivefold, and viral burdens were decreased to levels below detection.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
BACKGROUND: Interleukin-12 (IL-12) is a cytokine that promotes type-1 helper T-cell responses and may have therapeutic utility in the treatment of cancer, asthma, and a variety of infectious diseases. METHODS: In a phase I trial, recombinant human IL-12 (rHuIL-12) was administered subcutaneously once a week at a fixed dose of 0.1 to 1.0 microg/kg to 24 patients with renal cell carcinoma. A similar study was later performed in mice to evaluate the mechanism of down-regulation of pharmacokinetic-pharmacodynamic response observed in patients with cancer. RESULTS: Adverse events, serum IL-12 levels, and serum levels of interferon-gamma (IFN-gamma) and interleukin-10 (IL-10) produced in response to IL- 12 were all maximum in the week after the first dose of rHuIL-12 and decreased after long-term administration. Similar to these results, repetitive subcutaneous administration of recombinant mouse IL-12 (rMoIL-12) to normal mice led to down-regulation of serum levels of IL-12 and IFN-gamma measured 5 hours after rMoIL-12 injection. Down-regulation of IL-12 serum levels was inversely correlated with the up-regulation of IL-12 receptor expression and may be the result of increased clearance of rMoIL-12 from serum by binding to lymphoid cells expressing increased amounts of IL-12 receptor. The down-regulation of serum IFN-gamma levels correlated with decreased IFN-gamma messenger ribonucleic acid expression and may result from feedback inhibition of IL-12 signaling or from a more specific inhibition of IFN-gamma synthesis. CONCLUSION: Administration of rHuIL-12 in fixed weekly doses resulted in decreased serum levels of IL-12 and of IFN-gamma, a secondary cytokine believed to be critical to response of IL-12. A better understanding of the complex regulation of the pharmacokinetic-pharmacodynamic response to IL-12 should facilitate the development of more effective dosing regimens for its use in the clinic.  相似文献   

12.
Syngeneic IFN-gamma(-/-) and IRF-1(-/-) mice are very sensitive to B16F10-Nex2 murine melanoma cells implanted subcutaneously. In contrast, IFN-gamma-R(-/-) (GRKO) mice are remarkably resistant to tumor development. Only 0-30% of these animals, challenged with a high dose of melanoma cells (5 x 10(5)), developed tumors at a late stage. The hypothesis of interferon gamma (IFN-gamma) accumulation and consequent cytotoxicity to implanted tumor cells was confirmed in vitro and ex vivo. IFN-gamma reduced tumor-cell growth in vitro in 60-81%, added alone or with LPS. Splenocytes and peritoneal macrophages from na?ve GRKO mice activated with anti-CD3 and interleukin-12 (IL-12), respectively, accumulated IFN-gamma at levels 10-fold those of the wild-type. Supernatants of IL-12-activated macrophages from GRKO mice were toxic to B16F10-Nex2 cells, an effect reversible by anti-IFN-gamma antibody treatment. IL-12-activated macrophages from iNOS(-/-) mice were still highly cytotoxic to B16F10-Nex2 cells, but IL-12-activated macrophages from IFN-gamma-deficient mice were not inhibitory. In vivo, a single injection of anti-IFN-gamma antibody 18 h after tumor-cell challenge in GRKO mice rendered all animals susceptible to B16F10-Nex2 melanoma development. No tumors developed in the untreated GRKO mice during up to 45 days of observation. This model can be useful in understanding immune responses that involve IFN-gamma as a direct cytotoxic factor.  相似文献   

13.
Earlier studies have shown that a point mutation in human endostatin at position 125 (human endostatin wherein proline 125 was substituted with alanine, P125A-endostatin) improves endothelial cell binding and antiangiogenic activity. In the present study, we investigated the effect of recombinant adeno-associated virus (rAAV)-mediated gene delivery of P125A-endostatin (rAAV-P125Aendo) in a mouse model of ovarian carcinoma. Intramuscular (i.m.) injection of rAAV-P125Aendo resulted in a dose-dependent increase in serum endostatin levels. Consequently, vascular endothelial growth factor- and basic fibroblast growth factor-mediated angiogenesis was significantly inhibited in mice injected with rAAV-P125Aendo as compared to control mice injected with rAAV-LacZ. Furthermore, gene therapy using rAAV-P125Aendo construct showed sustained secretion of P125A-endostatin for up to 9 weeks after a single i.m. administration. Recombinant AAV-P125Aendo injection significantly inhibited the growth of human ovarian cancer cells in athymic nude mice. Immunofluorescence studies of residual tumors surgically removed from the rAAV-P125Aendo-treated animals showed decreased number of vessel ends and vessel length, indicating inhibition of angiogenesis. These studies suggest that recombinant AAV-mediated antiangiogenic gene therapy methods can be used to inhibit ovarian cancer growth.  相似文献   

14.
Abdominal aortic aneurysm (AAA), an inflammatory disease, involves leukocyte recruitment, immune responses, inflammatory cytokine production, vascular remodeling, neovascularization, and vascular cell apoptosis, all of which contribute to aortic dilatation. This study demonstrates that mast cells, key participants in human allergic immunity, participate in AAA pathogenesis in mice. Mast cells were found to accumulate in murine AAA lesions. Mast cell-deficient KitW-sh/KitW-sh mice failed to develop AAA elicited by elastase perfusion or periaortic chemical injury. KitW-sh/KitW-sh mice had reduced aortic expansion and internal elastic lamina degradation; decreased numbers of macrophages, CD3+ T lymphocytes, SMCs, apoptotic cells, and CD31+ microvessels; and decreased levels of aortic tissue IL-6 and IFN-gamma. Activation of mast cells in WT mice via C48/80 injection resulted in enhanced AAA growth while mast cell stabilization with disodium cromoglycate diminished AAA formation. Mechanistic studies demonstrated that mast cells participated in angiogenesis, aortic SMC apoptosis, and matrix-degrading protease expression. Reconstitution of KitW-sh/KitW-sh mice with bone marrow-derived mast cells from WT or TNF-alpha-/- mice, but not from IL-6-/- or IFN-gamma-/- mice, caused susceptibility to AAA formation to be regained. These results demonstrate that mast cells participate in AAA pathogenesis in mice by releasing proinflammatory cytokines IL-6 and IFN-gamma, which may induce aortic SMC apoptosis, matrix-degrading protease expression, and vascular wall remodeling, important hallmarks of arterial aneurysms.  相似文献   

15.
Song K  Chang Y  Prud'homme GJ 《Gene therapy》2000,7(18):1527-1535
Intramuscular (i.m.) injection of a plasmid encoding human carcinoembryonic antigen (CEA) elicited immunity against transplanted syngeneic (C57BL/6) CEA-positive Lewis lung carcinoma (CEA/LLC) cells, but tumors still appeared in all mice. In wild-type mice, coinjection of an IL-12 plasmid markedly enhanced anti-CEA humoral, T-helper-1 and cytotoxic T lymphocyte (CTL) responses, and resistance to a CEA/LLC tumor challenge such that 80% of mice remained tumor free. Injection of the IL- 12 plasmid alone was not protective. To analyze immune requirements, we immunized gene knockout (KO) mice of C57BL/6 background, deficient in either CD3, CD4, CD8, interferon gamma (IFNgamma), perforin or Fas ligand (FasL). Only CD3+ mice expressing both CD4 and CD8, which appear equally important, as well as IFNgamma and perforin, could fully resist a tumor challenge. IL-12 stimulated CTL activity, which was strictly CD3/CD8/perforin-dependent. FasL-KO mice had normal CTL activity and tumor resistance, indicating that only the perforin lytic pathway was involved. CD4-KO and IFNgamma-KO mice still generated CTLs. CEA-stimulated IFNgamma production occurred in both CD4- or CD8-KO mice and in both cases was augmented by IL-12. In IFNgamma-KO mice, IL-12 still enhanced anti-CEA antibody production but only moderately restored impaired DTH and tumor resistance. We conclude that the immune requirements for tumor rejection are stringent, involving multiple mechanisms which are all enhanced by IL-12.  相似文献   

16.
CD7 is an immunoglobulin superfamily molecule involved in T and natural killer (NK) cell activation and cytokine production. CD7-deficient animals develop normally but have antigen-specific defects in interferon (IFN)-gamma production and CD8(+) CTL generation. To determine the in vivo role of CD7 in systems dependent on IFN-gamma, the response of CD7-deficient mice to lipopolysaccharide (LPS)-induced shock syndromes was studied. In the high-dose LPS-induced shock model, 67% of CD7-deficient mice survived LPS injection, whereas 19% of control C57BL/6 mice survived LPS challenge (P < 0.001). CD7-deficient or C57BL/6 control mice were next injected with low-dose LPS (1 microgram plus 8 mg D-galactosamine [D-gal] per mouse) and monitored for survival. All CD7-deficient mice were alive 72 h after injection of LPS compared with 20% of C57BL/6 control mice (P < 0.001). After injection of LPS and D-gal, CD7-deficient mice had decreased serum IFN-gamma and tumor necrosis factor (TNF)-alpha levels compared with control C57BL/6 mice (P < 0.001). Steady-state mRNA levels for IFN-gamma and TNF-alpha in liver tissue were also significantly decreased in CD7-deficient mice compared with controls (P < 0.05). In contrast, CD7-deficient animals had normal liver interleukin (IL)-12, IL-18, and interleukin 1 converting enzyme (ICE) mRNA levels, and CD7-deficient splenocytes had normal IFN-gamma responses when stimulated with IL-12 and IL-18 in vitro. NK1.1(+)/ CD3(+) T cells are known to be key effector cells in the pathogenesis of toxic shock. Phenotypic analysis of liver mononuclear cells revealed that CD7-deficient mice had fewer numbers of liver NK1.1(+)/CD3(+) T cells (1.5 +/- 0.3 x 10(5)) versus C57BL/6 control mice (3.7 +/- 0.8 x 10(5); P < 0.05), whereas numbers of liver NK1.1(+)/CD3(-) NK cells were not different from controls. Thus, targeted disruption of CD7 leads to a selective deficiency of liver NK1.1(+)/ CD3(+) T cells, and is associated with resistance to LPS shock. These data suggest that CD7 is a key molecule in the inflammatory response leading to LPS-induced shock.  相似文献   

17.
Interleukin (IL)-12 synergizes with other cytokines to stimulate the proliferation and differentiation of early hematopoietic progenitors in vitro. However, in vivo administration of IL-12 decreases peripheral blood counts and bone marrow hematopoiesis. Here, we used interferon (IFN) gamma receptor-deficient (IFN gamma R-/-) mice to investigate whether the in vivo inhibition of hematopoiesis by IL-12 is indirectly mediated by IL-12-induced IFN-gamma. IL-12 administered for 4 d (1 microgram/mouse per day) resulted in lower peripheral blood counts and a 2-fold decrease in bone marrow cellularity in wild-type mice, but not in IFN gamma R-/- mice. Bone marrow hematopoietic progenitors were decreased after IL-12 treatment in wild-type mice, but rather increased in IFN gamma R-/- mice. Splenic cellularity was 2.3-fold higher after IL-12 administration in wild-type mice, largely due to natural killer (NK) cell and macrophage infiltration together with some extramedullary hematopoiesis. In IFN gamma R-/- mice, spleen cellularity was less increased, there were fewer infiltrating NK cells, but a strong extramedullary hematopoiesis. Thus, alterations mediated by IL-12- induced IFN-gamma include reduction in bone marrow cellularity and hematopoietic progenitors, as well as pronounced splenomegaly, largely caused by NK cell infiltration. In the absence of IFN-gamma signaling, IL-12 promotes hematopoiesis, consistent with its in vitro activities.  相似文献   

18.
19.
Cancer immunotherapy relies on the ability of the immune system to destroy tumor cells selectively and to elicit a long-lasting memory of such activity. Interleukin-12 (IL-12) is an immunomodulatory cytokine produced primarily by antigen-presenting cells, which play an important role in promoting Th1-type immune response and cell-mediated immunity. To augment the antitumor immune action by in vivo IL-12 gene delivery, mannosylated chitosan (MC) was prepared to induce mannose receptor-mediated endocytosis of IL-12 gene directly into dendritic cells which reside within the tumor. Upon characterization, MC was proven to be suitable for IL-12 gene delivery due to good physicochemical properties and low cytotoxicity. In addition, MC exhibited much enhanced IL-12 gene transfer efficiency to dendritic cells rather than chitosan itself in terms of the induction of murine IL-12 p70 and murine IFN-gamma. In animal studies, intratumoral injection of MC/plasmid encoding murine IL-12 complex into BALB/c mice bearing CT-26 carcinoma cells clearly suppressed tumor growth and angiogenesis, and significantly induced cell cycle arrest and apoptosis. Therefore, this study provides a new MC-mediated cytokine gene delivery system for cancer immunotherapy.  相似文献   

20.
Leukocyte 12-lipoxygenase (12-LO) gene expression in pancreatic beta cells is upregulated by cytotoxic cytokines like IL-1beta. Recent studies have demonstrated that 12-LO inhibitors can prevent glutamate-induced neuronal cell death when intracellular glutathione stores are depleted. Therefore, 12-LO pathway inhibition may prevent beta-cell cytotoxicity. To evaluate the role of 12-LO gene expression in immune-mediated islet destruction, we used 12-LO knockout (12-LO KO) mice. Male homozygous 12-LO KO mice and control C57BL/6 mice received 5 consecutive daily injections of low-dose streptozotocin to induce immune-mediated diabetes. Fasting serum glucose and insulin levels were measured at 7-day intervals, and the mice were followed up for 28 days. 12-LO KO mice were highly resistant to diabetes development compared with control mice and had higher serum insulin levels on day 28. Isolated pancreatic islets were treated with IL-1beta, TNF-alpha, and IFN-gamma for 18 hours. Glucose-stimulated insulin secretion in cytokine-treated islets from C57/BL6 mice decreased 54% from that of untreated islets. In marked contrast, the same cytokine mix led to only a 26% decrease in islets from 12-LO KO mice. Furthermore, cytokine-induced 12-hydroxyeicosatetraenoic acid (12-HETE) production was absent in 12-LO KO islets but present in C57/BL6 islets. Isolated peritoneal macrophages were stimulated for 48 hours with IFN-gamma + LPS and compared for nitrate/nitrite generation. 12-LO KO macrophages generated 50% less nitrate/nitrite when compared with C57BL/6 macrophages. In summary, elimination of leukocyte 12-LO in mice ameliorates low dose streptozotocin-induced diabetes by increasing islet resistance to cytokines and decreasing macrophage production of nitric oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号