首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Corticotropin (ACTH) secretion by the anterior pituitary is stimulated by catecholamines in vivo and in vitro. The nature of the response in vivo is controversial but appears to be mediated by beta-adrenergic receptors, whereas the response is dependent on alpha-adrenergic receptors in cultured anterior pituitary cells. In the present studies, by using a superfusion technique, we demonstrate that catecholamine stimulation of ACTH release from rat anterior pituitaries changes with time from a predominantly beta-adrenergic-mediated event to a predominantly alpha-adrenergic-mediated event. From 0 to 2 hr after initiating the superfusion, release of ACTH from anterior pituitary glands is stimulated up to 2.4-fold by the beta-adrenergic agonist l-isoproterenol. However, the ACTH secretory response to the alpha-adrenergic agonist l-phenylephrine is less than or equal to 5% of that to l-isoproterenol during the same time period. Beginning 2 hr after the start of the superfusion, the responsiveness to the beta-adrenergic agonist declines, and the response to the alpha-adrenergic agonist increases until, 10 hr after removal, greater than 95% of the catecholamine-inducible ACTH release is mediated by an alpha-adrenergic pathway. The addition of interleukin 1 alone to the medium from the beginning of the superfusion does not modify basal ACTH secretion rates and does not affect the acquisition of the response to phenylephrine. However, the presence of interleukin 1 does allow the maintenance of the full ACTH secretory response to isoproterenol. This effect of interleukin 1 is reversed by an interleukin 1 antagonist. These observations suggest an additional way in which immune regulators might interact with the hypothalamic-pituitary-adrenal axis.  相似文献   

3.
Sympathetic nerve activity increases in the heart during cardiac failure. Here, we hypothesized that beta1 integrins play a protective role in chronic beta-adrenergic receptor-stimulated cardiac myocyte apoptosis and heart failure. L-isoproterenol (iso; 400 microg/kg per hour) was infused in a group of wild-type (WT) and beta1 integrin heterozygous knockout (hKO) mice. Left ventricular structural and functional remodeling was studied at 7 and 28 days of iso-infusion. Western blot analysis demonstrated reduced beta1 integrin levels in the myocardium of hKO-sham. Iso-infusion increased heart weight:body weight ratios in both groups. However, the increase was significantly higher in WT-iso. M-mode echocardiography indicated increased left ventricular end-diastolic diameter, percentage of fractional shortening, and ejection fraction in the WT-iso group. The percentage of fractional shortening and ejection fraction were significantly lower in hKO-iso versus hKO-sham and WT-iso. Peak left ventricular developed pressure and left ventricular end-diastolic pressure measured using Langendorff-perfusion analyses were significantly higher in the WT-iso group (P<0.05 versus WT-sham and hKO-Iso). The number of TUNEL-positive myocytes was significantly higher in hKO-iso hearts 7 and 28 days after iso-infusion. The increase in myocyte cross-sectional area and fibrosis was higher in the WT-iso group. Matrix metalloproteinase-9 protein levels were significantly higher in WT-iso, whereas matrix metalloproteinase-2 levels were increased in hKO-iso hearts. Iso-infusion increased phosphorylation of c-Jun N-terminal kinase and extracellular signal-regulated kinase 1/2 in both groups. The increase in c-Jun N-terminal kinase phosphorylation was significantly higher in hKO-iso (P<0.001 versus WT-iso). Thus, beta1 integrins play a crucial role in beta-adrenergic receptor-stimulated myocardial remodeling with effects on cardiac myocyte hypertrophy, apoptosis, and left ventricular function.  相似文献   

4.
Previous studies have shown that proinflammatory cytokines, such as tumor necrosis factor (TNF), are expressed after acute hemodynamic overloading and myocardial ischemia/infarction. To define the role of TNF in the setting of ischemia/infarction, we performed a series of acute coronary artery occlusions in mice lacking one or both TNF receptors. Left ventricular infarct size was assessed at 24 h after acute coronary occlusion by triphenyltetrazolium chloride (TTC) staining in wild-type (both TNF receptors present) and mice lacking either the type 1 (TNFR1), type 2 (TNFR2), or both TNF receptors (TNFR1/TNFR2). Left ventricular infarct size as assessed by TTC staining was significantly greater (P < 0.005) in the TNFR1/TNFR2-deficient mice (77.2% +/- 15.3%) when compared with either wild-type mice (46.8% +/- 19.4%) or TNFR1-deficient (47.9% +/- 10.6%) or TNFR2-deficient (41.6% +/- 16.5%) mice. Examination of the extent of necrosis in wild-type and TNFR1/TNFR2-deficient mice by anti-myosin Ab staining demonstrated no significant difference between groups; however, the peak frequency and extent of apoptosis were accelerated in the TNFR1/TNFR2-deficient mice when compared with the wild-type mice. The increase in apoptosis in the TNFR1/TNFR2-deficient mice did not appear to be secondary to a selective up-regulation of the Fas ligand/receptor system in these mice. These data suggest that TNF signaling gives rise to one or more cytoprotective signals that prevent and/or delay the development of cardiac myocyte apoptosis after acute ischemic injury.  相似文献   

5.
Tumor necrosis factor (TNF) is a proinflammatory cytokine that can produce widespread deleterious effects when expressed in large amounts. It is produced in the heart by both cardiac myocytes and resident macrophages under conditions of cardiac stress, and is thought to be responsible for many of the untoward manifestations of cardiac disease. This article discusses the role of TNF in heart disease and some potential therapeutic modalities that can influence the cytokine activity. The results of controlled studies would suggest that TNF inhibition does not influence the clinical course of patients with heart failure.  相似文献   

6.
Infection with multiple sexually transmitted agents has been associated with inflammation of the cervix and an increased risk of cervical cancer in women infected with human papillomaviruses (HPVs). Two proinflammatory cytokines, interleukin 1 alpha (IL-1 alpha) and tumor necrosis factor alpha (TNF-alpha), inhibited proliferation of normal epithelial cells cultured from human cervix. In contrast, both cytokines significantly stimulated proliferation of cervical cell lines (5 of 7) immortalized by transfection with HPV-16 or -18 DNAs or lines derived from cervical carcinomas (7 of 11). Stimulation was dose dependent from 0.01 to 1.0 nM and was blocked by specific inhibitors, such as the IL-1 receptor antagonist or the TNF type 1 or 2 soluble receptors. Growth stimulation by IL-1 alpha or TNF-alpha was accompanied by a 6- to 10-fold increase in RNA encoding amphiregulin, an epidermal growth factor (EGF) receptor ligand. Recombinant human amphiregulin (0.1 nM) was as effective as IL-1 alpha or TNF-alpha in promoting proliferation. Monoclonal antibodies that blocked signal transduction by the EGF receptor or that neutralized amphiregulin activity prevented mitogenic stimulation by IL-1 alpha or TNF-alpha. These studies indicate that IL-1 alpha and TNF-alpha stimulate proliferation of immortal and malignant cervical epithelial cells by an EGF receptor-dependent pathway requiring autocrine stimulation by amphiregulin. Furthermore, they suggest that chronic inflammation and release of proinflammatory cytokines might provide a selective growth advantage for abnormal cervical cells in vivo.  相似文献   

7.
8.
Transforming growth factor beta (TGF-beta) as well as tumor necrosis factor alpha (TNF-alpha) gene expression are up-regulated in chronically inflamed liver. These cytokines were investigated for their influence on apoptosis and proliferation of activated hepatic stellate cells (HSCs). Spontaneous apoptosis in activated HSC was significantly down-regulated by 53% +/- 8% (P <.01) under the influence of TGF-beta and by 28% +/- 2% (P <.05) under the influence of TNF-alpha. TGF-beta and TNF-alpha significantly reduced expression of CD95L in activated HSCs, whereas CD95 expression remained unchanged. Furthermore, HSC apoptosis induced by CD95-agonistic antibodies was reduced from 96% +/- 2% to 51 +/- 7% (P <.01) by TGF-beta, and from 96% +/- 2% to 58 +/- 2% (P <.01) by TNF-alpha, suggesting that intracellular antiapoptotic mechanisms may also be activated by both cytokines. During activation, HSC cultures showed a reduced portion of cells in the G0/G1 phase and a strong increment of G2-phase cells. This increment was significantly inhibited (G1 arrest) by administration of TGF-beta and/or TNF-alpha to activated cells. In liver sections of chronically damaged rat liver (CCl4 model), using desmin and CD95L as markers for activated HSC, most of these cells did not show apoptotic signs (TUNEL-negative). Taken together, these findings indicate that TGF-beta and/or TNF-alpha both inhibit proliferation and also apoptosis in activated HSC in vitro. Both processes seem to be linked to each other, and their inhibition could represent the mechanism responsible for prolonged survival of activated HSC in chronic liver damage in vivo.  相似文献   

9.
肌钙蛋白T、TNF对不同程度心功能障碍的诊断价值   总被引:1,自引:0,他引:1  
目的:评价血清心脏特异性肌钙蛋白T(cTnT)定量测定以及肿瘤坏死因子(TNF)对不同程度心功能障碍患者心肌损伤的诊断价值。方法:对51例不同程度心功能障碍患者及25例健康人分别采用链霉系和包被一步法测定血清cTnT,肌酸激酶同工酶(CK-MB)试剂盒测定CK-MB和双抗体夹心ELISA法测定TNF。结果:患者组cTnT、CK-MB、TNF均高于对照组(P<0.001)。心功能IV级患者cTnT、CK-MB、TNF高于心功能Ⅲ级患者。同时5l例心功能障碍患者中有47例cTnT阳性,占92.16%,CK-MB仅14例阳性,占27.45%,直线相关分析表明cTnT与TNF呈正相关。结论:cTnT是反映心肌损伤的灵敏性和特异性较高的生化指标,TNF参与了心肌损伤过程、二者测值增高可作为判断心肌损伤的辅助指标。  相似文献   

10.
OBJECTIVE: The cellular basis of alterations in beta-adrenergic signal transduction in rats with chronic heart failure (CHF) remains unclear. The aim of the present study was to examine this signal transduction system in isolated ventricular cardiomyocytes of rats with CHF. We focused on changes in the levels of stimulatory (Gs) and inhibitory G-proteins (Gi). METHODS: CHF was induced in male Wistar rats by coronary artery ligation (CAL). Hemodynamic and biochemical parameters were measured 8 weeks after CAL. Alterations in contractile function and Ca(2+) transients via beta-adrenergic receptor signaling of cardiomyocytes isolated from rats with CHF were characterized by simultaneous measurements of cell shortening and fura-2 fluorescence intensity. RESULTS: Coronary artery-ligated rats showed symptoms of CHF, such as decreased contractile function, increased left ventricular volume, decreased chamber stiffness, and about 40% infarct formation of the left ventricle, by 8 weeks after surgery. The contractile function and Ca(2+) dynamics of cardiomyocytes from the rats with CHF remained normal under basal conditions. Only cardiac cell length was increased. The responses of peak shortening, fura-2 fluorescence ratio amplitude, and cAMP content to beta-adrenoceptor stimulation were reduced in cardiomyocytes of the rats with CHF, whereas direct stimulation of adenylate cyclase did not affect the response of these variables. Cardiomyocyte Gsalpha protein was decreased, whereas no changes in Gialpha proteins were seen in these cells. Increases in tissue Gsalpha and Gialpha proteins in the scar zone were detected. The results on tissue levels of collagen and G-proteins in the viable left ventricle appeared to depend on the presence of nonmyocytes. CONCLUSIONS: The results suggest that impaired contractile function of cardiomyocytes is unlikely to account for global LV contractile dysfunction, and that down-regulation of beta-adrenoceptors occurs in cardiomyocytes per se. The difference in changes of G-protein between the cardiomyocyte and myocardial tissue suggests an appreciable contribution of nonmyocytes to myocardial G-protein levels.  相似文献   

11.
Glycogen synthase kinase 3beta (GSK-3beta) negatively regulates cardiac hypertrophy. A potential target mediating the antihypertrophic effect of GSK-3beta is eukaryotic translation initiation factor 2Bepsilon (eIF2Bepsilon). Overexpression of GSK-3beta increased the cellular kinase activity toward GST-eIF2Bepsilon in neonatal rat cardiac myocytes, whereas LiCl (10 mmol/L) or isoproterenol (ISO) (10 micromol/L), a treatment known to inhibit GSK-3beta, decreased it. Immunoblot analyses using anti-S535 phosphospecific eIF2Bepsilon antibody showed that S535 phosphorylation of endogenous eIF2Bepsilon was decreased by LiCl or ISO, suggesting that GSK-3beta is the predominant kinase regulating phosphorylation of eIF2Bepsilon-S535 in cardiac myocytes. Decreases in eIF2Bepsilon-S535 phosphorylation were also observed in a rat model of cardiac hypertrophy in vivo. Overexpression of wild-type eIF2Bepsilon alone moderately increased cell size (+31+/-11%; P<0.05 versus control), whereas treatment of eIF2Bepsilon-transduced myocytes with LiCl (+73+/-22% versus eIF2Bepsilon only; P<0.05) or ISO (+84+/-33% versus eIF2Bepsilon only; P<0.05) enhanced the effect of eIF2Bepsilon. Overexpression of eIF2Bepsilon-S535A, which is not phosphorylated by GSK-3beta, increased cell size (+107+/-35%) as strongly as ISO (+95+/-25%), and abolished antihypertrophic effects of GSK-3beta, indicating that S535 phosphorylation of eIF2Bepsilon critically mediates antihypertrophic effects of GSK-3beta. Furthermore, expression of eIF2Bepsilon-F259L, a dominant-negative mutant, inhibited ISO-induced hypertrophy, indicating that eIF2Bepsilon is required for beta-adrenergic hypertrophy. Interestingly, expression of eIF2Bepsilon-S535A partially increased cytoskeletal reorganization, whereas it did not increase expression of atrial natriuretic factor gene. These results suggest that GSK-3beta is the predominant kinase mediating phosphorylation of eIF2Bepsilon-S535 in cardiac myocytes, which in turn plays an important role in regulating cardiac hypertrophy primarily through protein synthesis.  相似文献   

12.
Local analgesic effects of exogenous opioid agonists are particularly prominent in painful inflammatory conditions and are mediated by opioid receptors on peripheral sensory nerves. The endogenous ligands of these receptors, opioid peptides, have been demonstrated in resident immune cells within inflamed tissue of animals and humans. Here we examine in vivo and in vitro whether interleukin 1 beta (IL-1) or corticotropin-releasing factor (CRF) is capable of releasing these endogenous opioids and inhibiting pain. When injected into inflamed rat paws (but not intravenously), IL-1 and CRF produce antinociception, which is reversible by IL-1 receptor antagonist and alpha-helical CRF, respectively, and by the immunosuppressant cyclosporine A. In vivo administration of antibodies against opioid peptides indicates that the effects of IL-1 and CRF are mediated by beta-endorphin and, in addition, by dynorphin A and [Met]enkephalin, respectively. Correspondingly, IL-1 effects are inhibited by mu-, delta-, and kappa-opioid antagonists, whereas CRF effects are attenuated by all except a kappa-antagonist. Finally, IL-1 and CRF produce acute release of immunoreactive beta-endorphin in cell suspensions freshly prepared from inflamed lymph nodes. This effect is reversible by IL-1 receptor antagonist and alpha-helical CRF, respectively. These findings suggest that IL-1 and CRF activate their receptors on immune cells to release opioids that subsequently occupy multiple opioid receptors on sensory nerves and result in antinociception. beta-Endorphin, mu- and delta-opioid receptors play a major role, but IL-1 and CRF appear to differentially release additional opioid peptides.  相似文献   

13.
14.
15.
OBJECTIVE: Tumor necrosis factor receptor-associated periodic syndrome (TRAPS) is an autoinflammatory syndrome associated with mutations in the gene that encodes tumor necrosis factor receptor superfamily 1A (TNFRSF1A). The purpose of this study was to describe a novel TNFRSF1A mutation (C43S) in a patient with TRAPS and to examine the effects of this TNFRSF1A mutation on tumor necrosis factor alpha (TNFalpha)-induced signaling in a patient-derived primary dermal fibroblast line. METHODS: TNFRSF1A shedding from neutrophils was measured by flow cytometry and enzyme-linked immunosorbent assay (ELISA). Primary dermal fibroblast lines were established from the patient with the C43S TRAPS mutation and from healthy volunteers. Activation of NF-kappaB and activator protein 1 (AP-1) was evaluated by electrophoretic mobility shift assays. Cytokine production was measured by ELISA. Cell viability was measured by alamar blue assay. Apoptosis was measured by caspase 3 assay in the fibroblasts and by annexin V assay in peripheral blood mononuclear cells. RESULTS: Activation-induced shedding of the TNFRSF1A from neutrophils was not altered by the C43S TRAPS mutation. TNFalpha-induced activation of NF-kappaB and AP-1 was decreased in the primary dermal fibroblasts with the C43S TNFRSF1A mutation. Nevertheless, the C43S TRAPS fibroblasts were capable of producing interleukin-6 (IL-6) and IL-8 in response to TNFalpha. However, TNFalpha-induced cell death and apoptosis were significantly decreased in the samples from the patient with the C43S TRAPS mutation. CONCLUSION: The C43S TNFRSF1A mutation results in decreased TNFalpha-induced nuclear signaling and apoptosis. Our data suggest a new hypothesis, in that the C43S TRAPS mutation may cause the inflammatory phenotype by increasing resistance to TNFalpha-induced apoptosis.  相似文献   

16.
Summary This study was designed to investigate acute effects of various doses of the cytokines IFN-alpha, IFN-gamma Interleukin 2 and tumor necrosis factor alpha on white blood cell differential counts. Before initiation of phase II trials, a dose-determination phase was performed, where three different dose levels of each cytokine were applied as a single dose. White blood cell differential counts were assessed immediately before and 2, 12, 24, 48 and 168 h after injection. Patients enrolled suffered from metastatic cancer or chronic active hepatitis. In addition, IFN-alpha was administered to five healthy volunteers. Results indicate that cytokines cause rapid and transient changes in the numbers of leukocyte subsets. Hematologic changes were cell-type- and cytokine-specific: transient lymphopenia was observed after administration of all four cytokines, reaching a nadir 12 to 24 h after subcutaneous injection. Administration of TNF-alpha and IFN-gamma also caused transient monocytopenia. Neutrophilia developed after administration of Interleukin 2, IFN-alpha and TNF-alpha. We conclude that cytokines play a key role in the regulation of peripheral blood cell traffic by their capacity to influence homing patterns of peripheral blood leukocytes.  相似文献   

17.
B D Chen  M Mueller 《Blood》1990,75(8):1627-1632
Tumor necrosis factor (TNF) is a protein produced by activated macrophages in response to endotoxin. The effect of recombinant murine TNF (rMuTNF) on the growth of murine tissue-derived macrophage colony-forming units (CFU-M) which are responsive to both macrophage and granulocyte-macrophage colony-stimulating factors (M-CSF and GM-CSF), was studied. TNF alone did not stimulate macrophage proliferation but did prolong their survival in vitro. The proliferative response of CFU-M to M-CSF, however, was greatly enhanced by the presence of TNF. The enhancement effect of TNF is dose-dependent, reaching a maximum at approximately 50 U/mL. In contrast, the proliferative responsiveness of CFU-M to GM-CSF was inhibited by the concurrent addition of rMuTNF. Both effects appear to be caused directly by rMuTNF, rather than by the secondary factor(s) produced by TNF-treated macrophages. TNF treatment also induced a transient downmodulation of M-CSF receptors in cultured macrophages and accelerated their uptake and use of exogenous M-CSF, which may account for, at least in part, the enhanced proliferative activity in response to M-CSF. Short-term treatment (24 hours) was not sufficient to induce either an enhancing or an inhibitory effect upon CFU-M. This study suggests an autoregulatory role for TNF in the production of mature tissue macrophages by selectively enhancing their proliferative response to lineage specific growth factor, M-CSF.  相似文献   

18.
A cross-talk between cardiac myocytes and nonmyocytes via humoral factors plays an important role in the development of cardiac growth. However, it remains to be elucidated whether humoral factors produced from nonmyocytes have a protective effect on acute myocardial injury. The present in vitro study investigated the antiapoptotic effect of nonmyocytes on doxorubicin (DOX)-induced myocyte apoptosis and its molecular mechanism. Myocyte-nonmyocyte coculture and treatment with nonmyocyte-conditioned media significantly attenuated DOX-induced myocyte apoptosis. Treatment with nonmyocyte-conditioned media stimulated the phosphorylation of ERK, Akt, and cAMP response element-binding protein (CREB) in myocytes. Nonmyocyte-conditioned media also increased protein levels of Bcl-2 but not Bcl-xL and decreased caspase-3 activation induced by DOX. MAPK kinase-specific inhibitor PD98059, phosphatidylinositol-3 kinase-Akt inhibitor LY294002, and CREB antisense oligonucleotide significantly blocked the antiapoptotic effect of nonmyocyte-conditioned media. A considerable amount of endothelin (ET)-1 production was detected in nonmyocytes but not in myocytes. Exogenous ET-1 mimicked nonmyocyte-conditioned media-mediated ERK and CREB phosphorylation and Bcl-2 protein increase but not Akt phosphorylation. In addition, ET-A receptor antagonists BQ123 and BQ485 partially blocked nonmyocyte-conditioned media-mediated antiapoptotic effect, ERK and CREB phosphorylation, and Bcl-2 protein increase. Nonmyocyte-conditioned media and exogenous ET-1 unchanged protein levels of manganese superoxide dismutase and oxidative stress-related product levels augmented by DOX. The present findings demonstrate that cardiac nonmyocytes inhibit DOX-induced myocyte apoptosis, at least in part, via ET-1 secretion-mediated CREB activation independent of the decrease in oxidative stress.  相似文献   

19.
An inhibitor of tumor necrosis factor (TNF) has been isolated from the human histiocytic lymphoma cell line U-937 that is capable of inhibiting both TNF-alpha and TNF-beta. Protein sequencing has verified that it is distinct from a previously described TNF inhibitor that is a soluble fragment of a TNF receptor molecule (TNFrI). The cDNA sequence of this second TNF inhibitor clone suggests that it is also a soluble fragment of a TNF receptor. Expression of this cDNA sequence in COS-7 cells verified that it encodes a receptor for TNF-alpha (TNFrII) that can give rise to a soluble inhibitor of TNF-alpha, presumably through proteolytic cleavage. The extracellular domain of TNFrII has significant homology with that of TNFrI and these two receptors share a striking conservation of cysteine residue alignment with the extracellular domain of the nerve growth factor receptor. These three receptor molecules are therefore members of a family of polypeptide hormone receptors.  相似文献   

20.
慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)发病率高.发病机制不清.外界环境的刺激导致气道和血管损伤与修复的失平衡可能与COPD的发生相关.其中吸烟致细胞因子、炎症细胞及炎症介质增多,气道和肺实质慢性炎症,导致气道损伤和重构.最终导致气流受限,在肺气肿的形成中起主要作用.肿瘤坏死因子a是重要的炎症因子,通过其主要受体肿瘤坏死因子受体1参与COPD的形成,在COPD的发生、发展中起重要作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号