首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Previous studies have demonstrated formation of recurrent excitatory circuits between sprouted mossy fibers and granule cell dendrites in the inner molecular layer of the dentate gyrus (9, 28, 30). In addition, there is evidence that inhibitory nonprincipal cells also receive an input from sprouted mossy fibers (39). This study was undertaken to further characterize possible target cells for sprouted mossy fibers, using immunofluorescent staining for different calcium-binding proteins in combination with Timm histochemical staining for mossy fibers. Rats were injected intraperitoneally with kainic acid in order to induce epileptic convulsions and mossy fiber sprouting. After 2 months survival, hippocampal sections were immunostained for parvalbumin, calbindin D28k, or calretinin followed by Timm-staining. Under a fluorescent microscope, zinc-positive mossy fibers in epileptic rats were found to surround parvalbumin-containing neurons in the granule cell layer and to follow their dendrites, which extended toward the molecular layer. In addition, dendrites of calbindin D28k-containing cells were covered by multiple mossy fiber terminals in the inner molecular layer. However, the calretinin-containing cell bodies in the granule cell layer did not receive any contacts from the sprouted fibers. Electron microscopic analysis revealed that typical Timm-positive mossy fiber terminals established several asymmetrical synapses with the soma and dendrites of nonpyramidal cells within the granule cell layer. These results provide direct evidence that, in addition to recurrent excitatory connections, inhibitory circuitries, especially those responsible for the perisomatic feedback inhibition, are formed as a result of mossy fiber sprouting in experimental epilepsy.  相似文献   

2.
The neuropeptide calcitonin gene-related peptide (CGRP) was localized in the hippocampus and dentate gyrus of the rat by immunocytochemistry at the light and electron microscopic levels. Without colchicine treatment only faint neuropil labelling was found in the inner molecular layer of the dentate gyrus. Following colchicine treatment, a large number of neurons with numerous complex spines along the proximal dendrites were visualized in the hilus of the dentate gyrus, particularly in the ventral areas, and, in addition, staining of the inner molecular layer became stronger. Several CA3c pyramidal cells located adjacent to the hilar region in the ventral hippocampus also appeared to be faintly positive, although in most cases only their axon initial segments were labelled. Outside this region, the subicular end of the CA1 subfield contained occasional CGRP-positive non-pyramidal cells. The hilar CGRP-positive neurons were negative for parvalbumin, calretinin, cholecystokinin and somatostatin, whereas most of them were immunoreactive for GluR2/3 (the AMPA-type glutamate receptor known to be expressed largely by principal cells). Correlated electron microscopy showed that the spines along the proximal dendritic shafts indeed correspond to thorny excrescences engulfed by large complex mossy terminals forming asymmetrical synapses. Pre-embedding immunogold staining demonstrated that CGRP immunoreactivity in the inner molecular layer was confined to axon terminals that form asymmetrical synapses, and the labelling was associated with large dense-core vesicles. The present data provide direct evidence that CGRP is present in mossy cells of the dentate gyrus and to a lesser degree in CA3c pyramidal cells of the ventral hippocampus. These CGRP-containing principal cells terminate largely in the inner molecular layer of the dentate gyrus, and may release the neuropeptide in conjunction with their 'classical' neurotransmitter, glutamate.  相似文献   

3.
目的探讨海马Semaphorin-3A(Sema3A)与苔藓纤维出芽(MFS)在癫痫发病机制中的作用。方法通过小剂量多次腹腔注射氯化锂-毛果芸香碱建立癫痫大鼠模型,随机将大鼠分为生理盐水对照组和痫性发作组。痫性发作组分别于药物注射后1、5、7d及3、4周时间点,应用Western blotting法检测大鼠海马Sema3A的表达,同时采用neo-Timm银染观察海马MFS情况。结果生理盐水对照组Sema3A仅有少量表达,痫性发作组1、5d无表达,7d表达明显,3周后亦无表达;痫性发作组1、5d未见MFS,7d可见MFS至齿状回内分子层,3周后明显可见MFS至齿状回分子层。痫性发作组Timm评分与生理盐水对照组比较差异有统计学意义(P<0.05)。结论海马区Sema3A表达变化伴有MFS可能是癫痫发病机制的重要因素之一。  相似文献   

4.
5.
Kainic acid-induced seizures in adult rats produce neurodegeneration in the hippocampus followed by sprouting of the mossy fibres in the inner molecular layer of the dentate gyrus and changes in GAP-43 expression in the granule cells. In the present study we observed that 4 days after kainic acid injection a dense plexus of silver impregnated degenerating terminals detected by Gallyas's method and a decrease of GAP-43 immunostaining was observed in the inner molecular layer of the dentate gyrus indicating deafferentiation of this region. This was associated with the formation of an intense GAP-43 immunostained band in the supragranular layer. MK-801, a non-competitive inhibitor of the NMDA receptor, which partially inhibited the behavioural seizures induced by KA, also protected from the inner molecular layer deafferentation and markedly reduced the expression of GAP-43 mRNA in the granule cells and the intense GAP-43 immunostained band in the supragranular layer, suggesting a relationship among these events. Two months after kainic acid injection the intense supragranular GAP-43 positive band was no longer evident but the whole inner molecular layer appeared more labelled in association with the formation of the collateral sprouting of the mossy fibres in the inner molecular layer as detected by Timm's staining. These effects were also markedly reduced by the pretreatment with MK-801. Taken together, these experiments indicate for the first time a direct relationship between the increase of GAP-43 immunostaining in the inner molecular layer of the dentate gyrus and the collateral sprouting of mossy fibres in this district in response to kainic acid induced seizures. This further supports the hypothesis that the early induction of GAP-43 in granule cells may be one of the molecular mechanisms required for the synaptic reorganization of the mossy fibres.  相似文献   

6.
目的 :观察幼鼠致后海马的组织病理学改变。方法 :采用氯化锂 匹罗卡品腹腔注射制成幼鼠癫持续状态模型 ,应用常规病理及电镜观察海马结构的形态学改变 ,同时应用Timm组织化学染色方法进行苔藓纤维发芽的研究。结果 :海马区神经元可见变性、坏死的改变 ,以CA1区、CA3区为重。Timm染色见齿状回内分子层和CA3区下锥体层苔藓纤维发芽增加。结论 :①氯化锂 匹罗卡品诱导的幼鼠癫持续状态可造成海马区神经元损伤 ;②幼鼠癫持续状态后海马CA1、CA3区神经元损伤较重 ;③幼鼠癫持续状态后可致苔藓纤维发芽增加。  相似文献   

7.
Glial cells provide energy substrates to neurons, in part from glycogen metabolism, which is influenced by glycogen phosphorylase (GP). To gain insight into the potential subfield and laminar-specific expression of GP, histochemistry can be used to evaluate active GP (GPa) or totalGP (GPa + GPb). Using this approach, we tested the hypothesis that changes in GP would occur under pathological conditions that are associated with increased energy demand, i.e. severe seizures (status epilepticus or 'status'). We also hypothesized that GP histochemistry would provide insight into changes in the days and weeks after status, particularly in the hippocampus and entorhinal cortex, where there are robust changes in structure and function. One hour after the onset of pilocarpine-induced status, GPa staining was reduced in most regions of the hippocampus and entorhinal cortex relative to saline-injected controls. One week after status, there was increased GPa and totalGP, especially in the inner molecular layer, where synaptic reorganization of granule cell mossy fibre axons occurs (mossy fibre sprouting). In addition, patches of dense GP reactivity were evident in many areas. One month after status, levels of GPa and totalGP remained elevated in some areas, suggesting an ongoing role of GP or other aspects of glycogen metabolism, possibly due to the evolution of intermittent, recurrent seizures at approximately 3-4 weeks after status. Taken together, the results suggest that GP is dynamically regulated during and after status in the adult rat, and may have an important role in the pilocarpine model of epilepsy.  相似文献   

8.
The dentate gyrus (DG) of the hippocampus is important for cognition and behavior. However, the circuits underlying these functions are unclear. DG mossy cells (MCs) are potentially important because of their excitatory synapses on the primary cell type, granule cells (GCs). However, MCs also activate GABAergic neurons, which inhibit GCs. We used viral delivery of designer receptors exclusively activated by designer drugs (DREADDs) in mice to implement a gain- and loss-of-function study of MCs in diverse behaviors. Using this approach, manipulations of MCs could bidirectionally regulate behavior. The results suggest that inhibiting MCs can reduce anxiety-like behavior and improve cognitive performance. However, not all cognitive or anxiety-related behaviors were influenced, suggesting specific roles of MCs in some, but not all, types of cognition and anxiety. Notably, several behaviors showed sex-specific effects, with females often showing more pronounced effects than the males. We also used the immediate early gene c-Fos to address whether DREADDs bidirectionally regulated MC or GC activity. We confirmed excitatory DREADDs increased MC c-Fos. However, there was no change in GC c-Fos, consistent with MC activation leading to GABAergic inhibition of GCs. In contrast, inhibitory DREADDs led to a large increase in GC c-Fos, consistent with a reduction in MC excitation of GABAergic neurons, and reduced inhibition of GCs. Together, these results suggest that MCs regulate anxiety and cognition in specific ways. We also raise the possibility that cognitive performance may be improved by reducing anxiety.SIGNIFICANCE STATEMENT The dentate gyrus (DG) has many important cognitive roles as well as being associated with affective behavior. This study addressed how a glutamatergic DG cell type called mossy cells (MCs) contributes to diverse behaviors, which is timely because it is known that MCs regulate the activity of the primary DG cell type, granule cells (GCs), but how MC activity influences behavior is unclear. We show, surprisingly, that activating MCs can lead to adverse behavioral outcomes, and inhibiting MCs have an opposite effect. Importantly, the results appeared to be task-dependent and showed that testing both sexes was important. Additional experiments indicated what MC and GC circuitry was involved. Together, the results suggest how MCs influence behaviors that involve the DG.  相似文献   

9.
In order to relate noradrenaline-dependent potentiation in the dentate gyrus to behavioural events, rats were made to explore an environment in which their encounters with novel stimuli could be strictly controlled and monitored. Previous experiments have shown that an encounter with novel objects in a holeboard elicits a burst response in a large population of noradrenergic neurons of the locus coeruleus. Such a burst response has been demonstrated to produce a large and transient potentiation of the population spike in the dentate gyrus. In the present series of experiments, rats were chronically implanted with stimulating electrodes in the perforant pathway and recording electrodes in the dentate gyrus. Evoked potentials were monitored in the awake rat, first while it was resting quietly in a familiar environment and then while it was exploring the holeboard containing a novel object in a specific hole. There was a tonic increase in population spike amplitude when the rat was placed in the novel holeboard environment, but this effect gradually dissipated. This increase was partly blocked by the β-noradenergic antagonist propranolol. In addition there was a robust phasic increase in spike amplitude when the rat encountered a novel stimulus. This phasic response lasted ˜T50–75 s and was absent in animals treated with propranolol. These results show that a behavioural encounter with a novel stimulus can transiently enhance information transmission through the hippocampus, and suggest that activation of the noradrenergic system by the novel stimulus mediates this behaviour-dependent gating.  相似文献   

10.
目的:动态观察小分子GTPase Rho家族的Rnd1 mRNA及其蛋白在氯化锂-毛果芸香碱(匹罗卡品)致痫大鼠模型海马中的表达变化,探讨其在颞叶癫痫发生发展中的作用。方法:在氯化锂-毛果芸香碱颞叶癫痫模型中应用逆转录聚合酶链反应(RT—PCR)检测癫痫持续发作(SE)后各时间点海马内Rnd1 mRNA的表达变化,并运用免疫组织化学染色法及Neo—Timm染色法分别检测齿状回门区、CA1区及CA3区中该蛋白在不同时间点的表达变化及苔藓纤维出芽(MFS)情况。结果:实验发现模型组于SE后8h内即出现Rnd1表达上调,SE后约1d达高峰,7d左右回复至对照组水平,此后其mRNA表达水平与对照组相似;而免疫组化染色发现Rnd1蛋白表达从SE后8h内即开始上调,约3d达高峰,至7d虽略有回落,但仍高于对照组水平,且这种情况可一直持续至慢性期。结论:急性期海马齿状回门区Rnd1表达上调可能通过促进MFS的发生参与了颞叶癫痫的发生。  相似文献   

11.
Summary: Mossy fiber sprouting is a major anatomical reorganization seen in patients with temporal lobe epilepsy and animal models of epilepsy. The final outcome of this reorganization is viewed by many as epileptogenic. Yet, important and relevant data from both human and animal models of epilepsy challenge this prevailing view. Regardless of the outcome of this debate, understanding of the mechanisms that underlie mossy fiber sprouting (MFS) might contribute to our understanding of both the adaptive and maladaptive changes that take place in the nervous system after injury. Available evidence suggests that two events might be crucial for mossy fibers to sprout in epilepsy: the death of mossy cells and the synthesis of trophic factors. The availability of means that prevent MFS, which is normally triggered after induction of status epilepticus, allow for the testing of hypotheses regarding the need for and the sufficiency of specific events for mossy fibers to sprout. We present data on a specific marker for mossy cells, calretinin, in the pilocarpine model of epilepsy in mice. Our data suggest that in the presence of a protein synthesis inhibitor status epilepticus—induced death of mossy cells is not sufficient to trigger mossy fiber sprouting. We suggest that both events, mossy cell death and synthesis of trophic factors, might be necessary for robust MFS to ensue.  相似文献   

12.
We examined the induction and maintenance of long-term potentiation (LTP) in vivo in the dentate gyrus of 4-month-old and 22-month-old urethane-anaesthetized rats. High-frequency stimulation of the perforant path induced an immediate increase in the slope of the population excitatory postsynaptic potential (EPSP), which was sustained in the 4-month-old animals for the duration of the experiment (45 min post-tetanus). In the 22-month-old group, the mean slope of the population EPSP decreased almost to baseline by the end of the experiment. Examination of the individual records indicated that LTP was sustained for the duration of the experiment in half of the 22-month-old animals, while in the others only post-tetanic potentiation was observed. Membrane arachidonic acid concentration was reduced in aged compared with young animals and was lowest in the subgroup of aged animals which failed to sustain LTP. Potassium-stimulated, calcium-dependent release of glutamate was also decreased in aged compared with young animals, but LTP was associated with an increase in glutamate release in the 4-month-old group and 22-month-old subgroup in which LTP was successfully sustained; no change was observed in the 22-month-old group in which LTP was not sustained. The results indicate a correlation between membrane arachidonic acid concentration, glutamate release and ability to sustain LTP in aged animals.  相似文献   

13.
The termination pattern of median raphe axons was studied in the rat dentate gyrus using Phaseolus vulgaris leucoagglutinin as an anterograde tracer, in combination with postembedding immunostaining for γ-amino-butyric acid (GABA), and pre-embedding immunostaining for calbindin D28k, parvalbumin and GABA. Postembedding immunogold staining for GABA revealed that the majority (73.7%) of anterogradely labelled median raphe boutons make synaptic contacts with GABA-immunoreactive postsynaptic targets, mainly with dendritic shafts and perikarya. Pre-embedding immunocytochemical double staining for the anterograde tracer and GABA confirmed the electron microscopic results and showed that varicose median raphe axons establish multiple contacts with fusiform interneurons in the hilus and different types of basket cells in the granule cell layer. Some of the innervated cells were shown to contain calbindin D28k, whereas GABAergic interneurons containing another calcium-binding protein, parvalbumin, were never seen to receive multiple contacts from axons of raphe origin. Our results suggest that serotonergic median raphe fibres influence the firing of dentate granule cells via local inhibitory interneurons. The mechanism of using these interneurons with extensive local connections as monosynaptic targets may explain the great efficacy of this pathway in the control of hippocampal electrical activity.  相似文献   

14.
The sources of GABAergic innervation to granule cells were studied to establish how the basic cortical circuit is implemented in the dentate gyrus. Five types of neuron having extensive local axons were recorded electrophysiologically in vitro and filled intracellularly with biocytin (Han et al., 1993). They were processed for electron microscopy in order to reveal their synaptic organization and postsynaptic targets, and to test whether their terminals contained GABA. (1) The hilar cell, with axon terminals in the commissural and association pathway termination field (HICAP cell), formed Gray's type 2 (symmetrical) synapses with large proximal dendritic shafts (n= 18), two-thirds of which could be shown to emit spines, and with small dendritic branches (n= 6). Other boutons of the HICAP neuron were found to make either Gray's type 1 (asymmetrical) synapses (n= 4) or type 2 synapses (n= 6) with dendritic spines. Using a highly sensitive silver-intensified immunogold method for the postembedding visualization of GABA immunoreactivity, both the terminals and the dendrites of the HICAP cell were found to be immunopositive, whereas its postsynaptic targets were GABA-immunonegative. The dendritic shafts of the HICAP cell received synapses from both GABA-negative and GABA-positive boutons; the dendritic spines which densely covered the main apical dendrite in the medial one-third of the molecular layer received synapses from GABA-negative boutons. (2) The hilar cell, with axon terminals distributed in conjunction with the perforant path termination field (HIPP cell), established type 2 synapses with distal dendritic shafts (n= 17), most of which could be shown to emit spines, small-calibre dendritic profiles (n= 2) and dendritic spines (n= 6), all showing characteristics of granule cell dendrites. The sparsely spiny dendrites of the HIPP cell were covered with many synaptic boutons on both their shafts and their spines. (3) The cell with soma in the molecular layer had an axon associated with the perforant path termination field (MOPP cell). This GABA-immunoreactive cell made type 2 synapses exclusively on dendritic shafts (n= 20), 60% of which could be shown to emit spines. The smooth dendrites of the MOPP cell were also restricted to the outer two-thirds of the molecular layer, where they received both GABA-negative and GABA-positive synaptic inputs. (4) The extensive axonal arborization of the dentate basket cell terminated mainly on somata (n= 26) and proximal dendrites (n= 9) in the granule cell layer, and some boutons made synapses on somatic spines (n= 6); all boutons established type 2 synapses. (5) The dentate axo-axonic cell established type 2 synapses (n= 14) exclusively on axon initial segments of granule cells in the granule cell layer, and on initial segments of presumed mossy cells in the hilus. The results demonstrate that granule cells receive inputs from the local circuit axons of at least five distinct types of dentate neuron terminating in mutually exclusive domains of the cell's surface in four out of five cases. Four of the cell types (HICAP cell, MOPP cell, basket cell, axo-axonic cell) contain GABA, and the HIPP cell may also be inhibitory. The specific local inhibitory neurons terminating in conjunction with particular excitatory amino acid inputs to the granule cells (types 1 – 3) are in a position to interact selectively with the specific inputs on the same dendritic segment. This arrangement provides a possibility for the independent regulation of the gain and long-term potentiation of separate excitatory inputs, through different sets of GABAergic local circuit neurons. The pairing of excitatory and inhibitory inputs may also provide a mechanism for the downward reseating of excitatory postsynaptic potentials, thereby extending their dynamic range.  相似文献   

15.
We have examined basal phosphoinositide turnover in synaptosomes obtained from the dentate gyrus of anaesthetized rats in which long-term potentiation was induced unilaterally in perforant path-granule cell synapses. Relative to the unpotentiated side, [3H]myo-inositol labelling of inositol phosphates was significantly enhanced 45 min and 3 h after induction of long-term potentiation, but reduced after 2.5 min. Similarly, [14C]arachidonic acid labelling of 1,2-diacylglycerol was increased 45 min and 3 h after induction of long-term potentiation, but reduced after 2.5 min. In a second series of experiments, induction of long-term potentiation was blocked by stimulation of the commissural projection to granule cells. In synaptosomes prepared from this tissue, there was no difference in phosphoinositide turnover between tetanized and control sides at any of the three post-tetanic intervals. We conclude that in the dentate gyrus, long-term potentiation is associated with an increase in phosphoinositide turnover which is established between 2.5 min and 45 min post-tetanus and which persists for at least 3 h.  相似文献   

16.
The entorhinal cortex projects monosynaptically to the granule cells in the dentate gyrus via the lateral and medial perforant paths. These two subdivisions of the perforant path differ with respect to synaptic properties, and recent studies suggest that they also differ with respect to long-term potentiation (LTP). In the present study, using the in vitro slice preparation of the guinea-pig hippocampus, field excitatory postsynaptic potentials (EPSPs) and LTP in the lateral and medial perforant paths were compared. The two pathways were distinguished on the basis of their different termination in the dendritic layer, their different pharmacology and short-term synaptic facilitation. The field EPSP [obtained in the presence of γ-aminobutyric acid (GABA) A and B receptor antagonists] consisted of a non- N -methyl- d -aspartate (NMDA) component with different time characteristics in the two pathways, the decay being monoexponential in the lateral perforant path and biexponential in the medial one. In addition, the field EPSP in both pathways contained a small NMDA-mediated component that could also be observed after complete blockade of the non-NMDA one. LTP induction in both lateral and medial perforant paths was facilitated by blockade of GABAA inhibition, showed associative properties, and was blocked by NMDA receptor antagonists. Following the induction event, LTP in both pathways developed to a peak value within 30–40 s, and the stability of LTP was correlated with the amount of postsynaptic, but not presynaptic, activity during the induction event. During blockade of GABAA inhibition the opioid receptor antagonist naloxone and the β-adrenergic antagonist timolol had no effect on the magnitude or stability of LTP. It is concluded that LTP in the lateral and medial perforant paths does not differ with respect to induction mechanisms and early temporal characteristics.  相似文献   

17.
Masako Isokawa 《Epilepsia》2000,41(S6):S14-S17
Summary: Purpose : To study when dendritic alteration can occur in the epileptic hippocampus and how it is influenced by epileptic axonal reorganization.
Methods : Human specimens and the rat pilocarpine model were used. Dentate granule cells (DGCs) were visualized by intracellular biocytin injection for spine count.
Results : In the rat pilocarpine model, dendrites of DGCs revealed a generalized spine loss immediately after the acute status epilepticus induced by pilocarpine. However, this generalized damage was transient and was followed by recovery and plastic changes in spine shape and density, which occurred 15 to 35 days after the initial acute status, i.e., during the period of establishing a chronic phase of this model with the induction of spontaneous seizures. In human epileptic hippocampi, spine density was significantly higher when DGCs generated aberrant mossy fiber collaterals. This was particularly so in the proximal dendrite of DGCs, where the aberrant collaterals were densely localized. These findings suggest that initial acute seizures do not cause permanent damage in dendrites and spines of DGCs and that dendritic spines of epileptic neurons can respond to changes in the local cellular environment, including newly formed afferents, in a plastic manner.
Conclusion : Dendritic spines are dynamically maintained in chronic epilepsy during the course of establishment and maintenance of spontaneous seizures. Local dendritic spine alteration, detected later in the chronic phase of epilepsy, must have a separate cause from initial acute insults.  相似文献   

18.
An attempt was made to study the release of acetylcholine (ACh) and noradrenaline and their presynaptic modulation in isolated slice preparations dissected from different subfields of the hippocampus: CA1, CA3 and the dentate gyrus. The slices were perfused and loaded with [3H]choline or with [3H]noradrenaline. The release in response to field stimulation was determined radiochemically and the content of transmitters was assayed by a chemiluminescent method or by HPLC combined with electrochemical detection. After 30 min of loading with [3H]choline there were marked subregional differences in the specific activity of [3H]ACh content. The highest concentration was measured in the dentate gyrus and the lowest in CA3. Evidence was obtained that in all three subfields the cholinergic axon terminals are equipped with inhibitory muscarinic autoreceptors and the noradrenergic terminals with α2-autoreceptors, as indicated by an increase in transmitter release when the tissue was exposed to selective muscarinic or α2-adrenoceptor antagonists. In contrast, the cholinergic boutons are not equipped with α2-adrenoceptors, and noradrenergic terminals do not possess inhibitory muscarinic receptors. It is therefore concluded that while the release of both ACh and noradrenaline is controlled by negative feedback modulation, there is no possibility of establishing a presynaptic inhibitory interaction between the two.  相似文献   

19.
A variety of morphological types of dentate gyrus/hilus interneurons have been described, but little is known about their corresponding physiological characteristics. To address this issue, intracellular responses to current injection and perforant path stimulation were obtained from putative dentate interneurons in anaesthetized adult gerbils. Our sample of interneurons showed heterogeneity in their intrinsic physiological characteristics and spike thresholds to perforant path stimulation, suggesting the existence of distinct physiologically-defined classes. 'Fast-spiking'interneurons had a low threshold to perforant path stimulation, whereas 'slow-spiking'interneurons responded with predominantly inhibitory potentials. In several cases, cells were intracellularly labelled with biocytin for visualization. Interneurons with different physiological traits had distinct morphological features. These results confirm that, as in hippocampus proper, morphologically identifiable interneurons in the dentate hilus show electrophysiological features that are likely to reflect functionally specific roles in informational processing.  相似文献   

20.
The links among the extent of hippocampal neurodegeneration, the frequency of spontaneous recurrent motor seizures (SRMS), and the degree of aberrant mossy fiber sprouting (MFS) in temporal lobe epilepsy (TLE) are a subject of contention because of variable findings in different animal models and human studies. To understand these issues further, we quantified these parameters at 3-5 months after graded injections of low doses of kainic acid (KA) in adult F344 rats. KA was administered every 1 hr for 4 hr, for a cumulative dose of 10.5 mg/kg bw, to induce continuous stages III-V motor seizures for >3 hr. At 4 days post-KA, the majority of rats (77%) exhibited moderate bilateral neurodegeneration in different regions of the hippocampus; however, 23% of rats exhibited massive neurodegeneration in all hippocampal regions. All KA-treated rats displayed robust SRMS at 3 months post-KA, and the severity of SRMS increased over time. Analyses of surviving neurons at 5 months post-KA revealed two subgroups of rats, one with moderate hippocampal injury (HI; 55% of rats) and another with widespread HI (45%). Rats with widespread HI exhibited greater loss of CA3 pyramidal neurons and robust aberrant MFS than rats with moderate HI. However, the frequency of SRMS (approximately 3/hr) was comparable between rats with moderate and widespread HI. Thus, in comparison with TLE model using Sprague-Dawley rats (Hellier et al. [1998] Epilepsy Res. 31:73-84), a much lower cumulative dose of KA leads to robust chronic epilepsy in F344 rats. Furthermore, the occurrence of SRMS in this model is always associated with considerable bilateral hippocampal neurodegeneration and aberrant MFS. However, more extensive hippocampal CA3 cell loss and aberrant MFS do not appear to increase the frequency of SRMS. Because most of the features are consistent with mesial TLE in humans, the F344 model appears ideal for testing the efficacy of potential treatment strategies for mesial TLE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号