共查询到20条相似文献,搜索用时 65 毫秒
1.
《Expert opinion on investigational drugs》2013,22(9):1449-1457
Intravenous antihypertensive agents are used in clinical situations in which the immediate, precise control of blood pressure is a clinical necessity. Clevidipine is a new, vascular-selective, dihyrdopyridine Ca2+ channel blocker, which exerts its hemodynamic effects through selective arterial vasodilation without effects on the venous circulation. Because it is a potent coronary vasodilator, reduction in mean arterial pressure does not impair coronary perfusion. The unique properties of clevidipine include an ultra-short pharmacodynamic duration of action and a half-life after intravenous administration of ~ 2 min, resulting in very rapid onset and offset of antihypertensive effects. In clinical trials performed in patients undergoing cardiac surgery, clevidipine proved superior to nitroprusside and nitroglycerin in maintaining blood pressure within predetermined ranges during the perioperative period. Its safety profile is comparable to nicardipine and nitroglycerin and, in one study, was associated with reduced 30-day mortality compared with nitroprusside. Clevidipine constitutes a useful addition to available intravenous agents and could prove particularly valuable in circumstances that require the ability to rapidly terminate the blood pressure-lowering effects of administered agents. 相似文献
2.
Kakizaki A Takahashi M Akagi H Tachikawa E Yamamoto T Taira E Yamakuni T Ohizumi Y 《European journal of pharmacology》2006,536(3):223-231
The actions of maitotoxin were studied using cultured brainstem cells and adrenal chromaffin cells. Maitotoxin induced a profound increase in the Ca2+ influx into cultured brainstem cells after a brief lag period. The maitotoxin-induced Ca2+ influx was suppressed by various voltage-dependent Ca2+ channel blockers such as Co2+, Mn2+, verapamil and diltiazem. Maitotoxin-catecholamine release in brainstem cells initiated to increase after a lag period of about 1 min and the increase continued even at 4 min after treatment, while in the adrenal chromaffin cells the release started after an about 1-min lag period to attain a maximum within first 2-min and gradually decrease thereafter. These results suggest that maitotoxin acts on Ca2+ channels to increase the Ca2+ influx, accompanied by enhancement of catecholamine release in the brainstem cells with a different temporal profile from that in the adrenal chromaffin cells. 相似文献
3.
BACKGROUND AND PURPOSE
SKF 96365 is well known for its suppressing effect on human glioblastoma growth by inhibiting pre-activated transient receptor potential canonical (TRPC) channels and Ca2+ influx. The effect of SKF 96363 on glioblastoma cells, however, may be multifaceted and this possibility has been largely ignored.EXPERIMENTAL APPROACH
The effects of SKF 96365 on cell cycle and cell viability of cultured human glioblastoma cells were characterized. Western blot, Ca2+ imaging and patch clamp recordings were used to delineate cell death mechanisms. siRNA gene knockdown provided additional evidence.KEY RESULTS
SKF 96365 repressed glioblastoma cell growth via increasing intracellular Ca2+ ([Ca2+]i) irrespective of whether TRPC channels were blocked or not. The effect of SKF 96365 primarily resulted from enhanced reverse operation of the Na+/Ca2+ exchanger (NCX) with an EC50 of 9.79 μM. SKF 96365 arrested the glioblastoma cells in the S and G2 phases and activated p38-MAPK and JNK, which were all prevented by the Ca2+ chelator BAPTA-AM or EGTA. The expression of NCX in glioblastoma cells was significantly higher than in normal human astrocytes. Knockdown of the NCX1 isoforms diminished the effect of SKF 96365 on glioblastoma cells.CONCLUSIONS AND IMPLICATIONS
At the same concentration, SKF 96365 blocks TRPC channels and enhances the reverse mode of the NCX causing [Ca2+]i accumulation and cytotoxicity. This finding suggests an alternative pharmacological mechanism of SKF 96365. It also indicates that modulation of the NCX is an effective method to disrupt Ca2+ homeostasis and suppress human glioblastoma cells. 相似文献4.
Iwata Y Katanosaka Y Shijun Z Kobayashi Y Hanada H Shigekawa M Wakabayashi S 《Biochemical pharmacology》2005,70(5):740-751
Deficiency of delta-sarcoglycan (delta-SG), a component of the dystrophin-glycoprotein complex (DGC), causes skeletal muscular dystrophy and cardiomyopathy in BIO14.6 hamsters. Here, we studied the involvement of abnormal Ca2+ homeostasis in muscle degeneration and the protective effect of drugs against Ca2+ handling proteins in vivo as well as in vitro. First, we characterized the properties of cultured myotubes from muscles of normal and BIO14.6 hamsters (30-60 days old). While there were no apparent differences in the levels of expression of various Ca2+ handling proteins (L-type Ca2+ channel, ryanodine receptor, SR-Ca2+ ATPase, and Na+/Ca2+ exchanger), muscle-specific proteins (contractile actin and acetylcholine receptor), or DGC member proteins except SGs, BIO14.6 myotubes showed a high degree of susceptibility to mechanical stressors, such as cyclic stretching and hypo-osmotic stress as compared to normal myotubes, as evidenced by marked increases in creatine phosphokinase (CK) release and bleb formation. BIO14.6 myotubes showed abnormal Ca2+ homeostasis characterized by elevated cytosolic Ca2+ concentration, frequent Ca2+ oscillation, and increased 45Ca2+ uptake. These abnormal Ca2+ events and CK release were significantly prevented by Ca2+ handling drugs, tranilast, diltiazem, and FK506. The calpain inhibitor E64 prevented CK release, but not 45Ca2+ uptake. Some of these drugs (tranilast, diltiazem, and FK506) also exerted a significant protective effect for muscle degeneration in BIO14.6 hamsters and mdx mice in vivo. These observations suggest that elevated Ca2+ entry through sarcolemmal Ca2+ channels predominantly contributes to muscle degeneration and that the drugs tested here may have novel therapeutic potential against muscular dystrophy. 相似文献
5.
The effect of the novel 1,4-dihydronaphthyridine Ca2+ channel inhibitor Goe 5438 (CI-951) on voluntary ethanol consumption was examined in selectively bred alcohol-preferring (P) rats in a free choice two bottle preference test versus water. Intraperitoneally injected Goe 5438 dose-dependently (5, 10 or 20 µmol/kg, twice daily) inhibited ethanol and increased water intake over the 24 h period (injection day). The drug decreased ethanol preference, originally above 90%, by 6%, 19% and 45% at respective doses, on the injection day. That inhibitory effect of the highest dose of Goe 5438 on ethanol preference remained significant also on days 2 and 3 after injections (–51% and –18%, respectively). Goe 5438, in the highest dose, also tended to decrease granulated chow consumption during the injection day only. To further test whether the inhibition of ethanol preference is secondary to decrease in reinforcing properties of ethanol and not due to interference with satiety mechanisms, we compared the effect of two higher doses (10 and 20 µmol/kg, intraperitoneally, twice daily) of Goe 5438 on spontaneous preference for a non-caloric 0.04% saccharin solution in Sprague-Dawley rats. We observed a dose-dependent suppression of preference (by 44% and 58%, respectively) during the injection day, but not the subsequent 24 h period. However, Goe 5438 also significantly alleviated food pellet intake on the injection day. In conclusion, Goe 5438 produces potent and long-lasting inhibition of voluntary ethanol consumption, which may be secondary to attenuation of reinforcing properties of ethanol. Additionally, this particular Ca2+ channel inhibitor appears to have mild anorectic properties which may be conducive to acute suppression of alcohol intake. 相似文献
6.
Effects of presynaptic modulators on Ca2+-induced noradrenaline relase from cardiac sympathetic nerves 总被引:11,自引:0,他引:11
M. Göthert 《Naunyn-Schmiedeberg's archives of pharmacology》1977,298(3):267-272
Summary In order to elucidate the mode of action of the Ca2+-antagonistic inhibitor nifedipine, its effect on Ca2+-mediated action potentials and transmembrane slow inward current in papillary muscles of guinea pigs and cats was studied.Nifedipine (0.5 mg/l1.4×10–6M) depressed upstroke velocity and overshoot of the Ca2+-mediated action potential and reduced the transmembrane slow inward current by about 50%, but the kinetics of inactivation and recovery from inactivation were not affected. The decrease of upstroke velocity was accompanied by a proportional diminution of isometric contractile force. This indicates that nifedipine exerts its Ca2+-antagonistic effect on excitation-contraction coupling in mammalian ventricular myocardium by inhibition of the transmembrane Ca2+ inward current. The inhibitory action of nifedipine on contractile tension development could be neutralized by an augmentation of the extracellular Ca2+ concentration from 2 mM to 4 mM or by -receptor stimulation (isoproterenol) that promotes the transmembrane Ca2+-rich medium or under the influence of isoproterenol the upstroke velocity of the Ca2+-mediated action potentials rose even above the initial values which were measured prior to the nifedipine administration. 相似文献
7.
Vitaly Buryi Nicole Morel Salvatore Salomone Simone Kerger Théophile Godfraind 《Naunyn-Schmiedeberg's archives of pharmacology》1995,351(1):40-45
The effect of thapsigargin, an inhibitor of the sarco-endoplasmic reticulum Ca2+-ATPase, on voltage-dependent Ca2+ channels has been investigated in the A7r5 cell line and in membrane preparations from rat aorta, heart and brain. Patch-clamp technique showed that, at micromolar concentrations, thapsigargin inhibited the L-type Ca2+ channel current in A7r5 cells. It depressed the current at all voltages without change in the steady state inactivation curve. The rates of inactivation of the Ca2+ current were highly variable among the cells suggesting that more than one component of L-type Ca2+ current coexist in A7r5 cells, differing in the kinetics of inactivation. Thapsigargin appeared to be more potent on the slower-inactivating Ca2+ current than on the faster-inactivating one. In the same range of concentrations, thapsigargin inhibited the specific binding of 3H(+)-isradipine in intact cells while 45Ca2+ uptake in intracellular stores of skinned cells was inhibited at nanomolar concentrations. The equilibrium dissociation constant of 3H(+)-isradipine was increased in the presence of thapsigargin as a result of an increase of the dissociation rate constant indicating that the inhibitory effect of the antagonist cannot be attributed to a simple competitive interaction with the dihydropyridine binding site. Maximum binding capacity was unaffected. A similar pattern of inhibition of 3H(+)-isradipine binding was observed in membrane preparations from rat aorta, heart and brain.Those results indicate that, at micromolar concentrations, thapsigargin inhibits the voltage-dependent Ca2+ current by a direct interaction with the L-type Ca2+ channels.On leave from the A. A. Bogomoletz Institute of Physiology, Kiev, Ukraine 相似文献
8.
Changes in intracellular Na+ and Ca2+ in inspiratory neurons of neonatal mice were examined by using ion-selective fluorescent indicator dyes SBFI and fura-2, respectively. Both [Na+]i and [Ca2+]i signals showed rhythmic elevations, correlating with the inspiratory motor output. Brief (2-3 min) hypoxia, induced initial potentiation of rhythmic transients followed by their depression. During hypoxia, the basal [Na+]i and [Ca2+]i levels slowly increased, reflecting development of an inward current (Im). By antagonizing specific mechanisms of Na+ and Ca2+ transport we found that increases in [Na+]i, [Ca2+]i and Im due to hypoxia are suppressed by CNQX, nifedipine, riluzole and flufenamic acid, indicating contribution of AMPA/kainate receptors, persistent Na+ channels, L-type Ca2+ channels and Ca2+-sensitive non-selective cationic channels, respectively. The blockers decreased also the amplitude of the inspiratory bursts. Modification of mitochondrial properties with FCCP and cyclosporine A decreased [Ca2+]i elevations due to hypoxia by about 25%. After depletion of internal Ca2+ stores with thapsigargin, the blockade of NMDA receptors, Na+/K+ pump, Na+/H+ and Na+/Ca2+ exchange, the hypoxic response was not changed. We conclude that slow [Na+]i and [Ca2+]i increases in inspiratory neurons during hypoxia are caused by Na+ and Ca2+ entry due to combined activation of persistent Na+ and L-type Ca2+ channels and AMPA/kainate receptors. 相似文献
9.
The effects of monensin, an activator of Na(+)/H(+) exchanger (NHE), on capacitative Ca(2+) entry (CCE) were investigated using A7r5 cells. Capacitative Ca(2+) entry was induced by elevation of extracellular Ca(2+) concentrations of A7r5 cells in which stored Ca(2+) had been depleted by previous administration of thapsigargin. Capacitative Ca(2+) entry was abolished by pretreatment of the cells with SKF-96365 (1-[beta-(3-[4-methoxyphenyl]propoxy)-4-methoxyphenethyl]-1H-imidazole hydrochloride) but was not affected by pretreatment with verapamil. Monensin significantly increased capacitative Ca(2+) entry. On the other hand, 5-hydroxytryptamine-induced inositol monophosphate accumulation and subsequent intracellular Ca(2+) release from its stores were significantly inhibited by monensin, while thapsigargin-induced Ca(2+) release was not affected by monensin. These results suggest that monensin has diverse actions on capacitative Ca(2+) entry and agonist-induced release of stored Ca(2+) in vascular smooth muscle cells. 相似文献
10.
Birinyi P Acsai K Bányász T Tóth A Horváth B Virág L Szentandrássy N Magyar J Varró A Fülöp F Nánási PP 《Naunyn-Schmiedeberg's archives of pharmacology》2005,372(1):63-70
SEA0400 and KB-R7943 are compounds synthesised to block transsarcolemmal Na+/Ca2+ exchange current (INa/Ca); however, they Have also been shown to inhibit L-type Ca2+ current (ICa). The potential value of these compounds depends critically on their relative selectivity for INa/Ca over ICa. In the present work, therefore, the concentration-dependent effects of SEA0400 and KB-R7943 on INa/Ca and ICa were studied and compared in canine ventricular cardiomyocytes using the whole-cell configuration of the patch clamp technique. SEA0400 and KB-R7943 decreased INa/Ca in a concentration-dependent manner, having EC50 values of 111±43 nM and 3.35±0.82 M, when suppressing inward currents, while the respective EC50 values were estimated at 108±18 nM and 4.74±0.69 M in the case of outward current block. SEA0400 and KB-R7943 also blocked ICa, having comparable EC50 values (3.6 M and 3.2 M, respectively). At higher concentrations (10 M) both drugs accelerated inactivation of ICa, retarded recovery from inactivation and shifted the voltage dependence of inactivation towards more negative voltages. The voltage dependence of activation was slightly modified by SEA0400, but not by KB-R7943. Based on the relatively good selectivity of submicromolar concentrations of SEA0400—but not KB-R7943—for INa/Ca over ICa, SEA0400 appears to be a suitable tool to study the role of INa/Ca in Ca2+ handling in canine cardiac cells. At concentrations higher than 1 M, however, ICa is progressively suppressed by the compound. 相似文献
11.
Effects of intermediate-conductance Ca2+-activated K+ channel modulators on human prostate cancer cell proliferation 总被引:5,自引:0,他引:5
Parihar AS Coghlan MJ Gopalakrishnan M Shieh CC 《European journal of pharmacology》2003,471(3):157-164
The effects of 1-ethyl-2-benzimidazolinone (1-EBIO) and riluzole on human prostate cancer cells, LNCaP and PC-3, were evaluated using rubidium (86Rb(+)) efflux and proliferation assays. 1-EBIO and riluzole evoked concentration-dependent increases in 86Rb(+) efflux from LNCaP and PC-3 cells that were sensitive to inhibition by intermediate-conductance Ca(2+)-activated K(+) channel (IK(Ca)) blockers clotrimazole and charybdotoxin. Blockers of large-conductance Ca(2+)-activated K(+) (BK(Ca)) channel, iberiotoxin, or small-conductance Ca(2+)-activated K(+) (SK(Ca)) channel, apamin or scyllatoxin, had no effect. Concurrently, both 1-EBIO and riluzole evoked concentration-dependent increases in proliferation from human prostate cancer cell lines (LNCaP and PC-3 cells). Clotrimazole and charybdotoxin, but not iberiotoxin, apamin or scyllatoxin, inhibited 1-EBIO- and riluzole-evoked increases in proliferation from LNCaP and PC-3 cells. N-(3-(trifluoromethyl)phenyl)-N'-(2-hydroxy-5-chlorophenyl)urea (NS-1608) and 2-amino-5-(2-fluorophenyl)-4-methyl-1H-pyrrole-3-carbonitrile (NS-8), BK(Ca) channel openers had no effect on LNCaP and PC-3 proliferation. These results demonstrate that IK(Ca) channels play an important role in the regulation of human prostate cancer cell proliferation. 相似文献
12.
Fioretti B Castigli E Calzuola I Harper AA Franciolini F Catacuzzeno L 《European journal of pharmacology》2004,497(1):1-6
We have shown that the Cl(-) channel blocker 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) also blocks the intermediate-conductance Ca(2+)-activated K(+) (IK(Ca)) current in human leukemic HL-60 and glioblastoma GL-15 cell lines. The macroscopic IK(Ca) current was activated by ionomycin plus 1-EBIO, and identified as intermediate conductance by being fully blocked by charybdotoxin, clotrimazole, nitrendipine (L-type Ca(2+) channel blocker), and NS1619 (BK(Ca) channel opener), but not by D-tubocurarine or TEA. The IK(Ca) current was blocked by NPPB in a reversible dose-dependent manner, with an IC(50) of 39 microM in HL-60 and 125 microM in GL-15 cells. The block of the IK(Ca) current was also recorded at the single channel level in excised inside-out patches. As expected, NPPB also blocked the volume-activated Cl(-) current expressed by GL-15 cells, with an IC(50) of 44 microM. The functional implications of IK(Ca) current block by NPPB are discussed. 相似文献
13.
Diastolic Ca2+ overload caused by Na+/Ca2+ exchanger during the first minutes of reperfusion results in continued myocardial stunning 总被引:1,自引:0,他引:1
Wei GZ Zhou JJ Wang B Wu F Bi H Wang YM Yi DH Yu SQ Pei JM 《European journal of pharmacology》2007,572(1):1-11
The pathogenesis of myocardial stunning caused by brief ischemia and reperfusion remains unclear. The aim of the present study was to investigate the underlying mechanism of myocardial stunning. An isolated cell model of myocardial stunning was firstly established in isolated rat ventricular myocytes exposed to 8 min of simulated ischemia and 30 min of reperfusion, the cardiomyocyte contractile function was used to evaluate myocardial stunning. A diastolic Ca(2+) overload without significant changes in systolic Ca(2+) and the amplitude of Ca(2+) transient during the first 10 min of reperfusion played an important role in the occurrence of myocardial stunning. Decreasing Ca(2+) entry into myocardial cells with low Ca(2+) reperfusion was a very efficient way to prevent myocardial stunning. Diastolic Ca(2+) overload was closely related to the reverse mode of Na(+)/Ca(2+) exchanger (NCX) rather than L-type Ca(2+) channel. The activity of the reverse mode of NCX was found significantly higher at the initial time of reperfusion, and KB-R7943, a selective inhibitor of the reverse mode of NCX, administered at first 10 min of reperfusion rather than at the time of ischemia significantly attenuated myocardial stunning. In addition, NCX inhibition also attenuated the Ca(2+) oscillation and cardiac dysfunction when field stimulus was stopped at first 10 min of reperfusion. These data suggest that one of the important mechanisms of triggering myocardial stunning is diastolic Ca(2+) overload caused by activation of the reverse mode of NCX of cardiomyocytes during the initial period of reperfusion following brief ischemia. 相似文献
14.
Wang GJ Wu XC Lin YL Ren J Shum AY Wu YY Chen CF 《European journal of pharmacology》2002,445(3):239-245
The purpose of the present study was to examine the mechanisms underlying the putative hypotensive actions of iso-S-petasin, a sesquiterpene extract of Petasites formosanus through both in vivo and in vitro experiments. Intravenous administration of iso-S-petasin elicited dose-dependent (0.1-1.5 mg/kg) hypotensive and bradycardiac responses in anesthetized rats. Isometric tension recording in isolated thoracic aorta revealed that iso-S-petasin (0.01-100 microM) inhibited KCl- or Bay K 8644 (1,4-dihydro-2,6-dimethyl-5-nitro-4-[2'-(trifluoromethyl)phenyl]-3-pyridinecarboxylic acid methyl ester)-induced vasoconstriction independent of endothelium. Iso-S-Petasin also attenuated Ca(2+)-induced vasoconstriction in a concentration-dependent manner in Ca(2+)-depleted/high K(+)-depolarized ring segments, indicating that iso-S-petasin inhibited Ca(2+) influx into vascular smooth muscle cells. This was confirmed by whole-cell patch-clamp recording in cultured vascular smooth muscle cells where iso-S-petasin (10-100 microM) appeared to directly inhibit the L-type voltage-dependent Ca(2+) channel (VDCC) activity. Intracellular Ca(2+) concentration ([Ca(2+)](i)) measurements using the fluorescent probe fura-2/AM (1-[2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy]-2-(2'-amino-5'-methylphenoxy)-ethane-N,N,N',N'-tetraacetic acid pentaacetoxymethyl ester) showed suppression of the KCl-stimulated increase in [Ca(2+)](i) by iso-S-petasin (10, 100 microM). In conclusion, these results suggest that Ca(2+) antagonism of the L-type VDCC in vascular smooth muscle cells might largely account for the hypotensive action of iso-S-petasin. 相似文献
15.
We have previously shown the involvement of Na(+) channel as well as N-type and P/Q-type Ca(2+) channels in the oxygen and glucose deprivation-induced injury in rat cerebrocortical slices. In the present study, we investigated the influence of halothane on the cerebroprotective effects of a variety of Na(+) and Ca(2+) channel blockers in rat cerebrocortical slices. The hypoxic injury was attenuated by Na(+) channel blockers including tetrodotoxin, lidocaine and dibucaine, and Ca(2+) channel blockers, such as verapamil, omega-agatoxin IVA and omega-conotoxin GVIA. Halothane abolished the protective effects of lidocaine, dibucaine and verapamil, all of which block the respective cation channels in a voltage-dependent manner, without affecting the actions of tetrodotoxin, omega-agatoxin IVA and omega-conotoxin GVIA, which reveal voltage-independent blockade. On the other hand, the nitric oxide synthesis estimated from the extracellular cyclic GMP formation was elevated during exposure to hypoxia. All channel blockers tested here attenuated hypoxia-evoked nitric oxide synthesis. Halothane blocked almost completely these actions of lidocaine and verapamil. Moreover, the Na(+) and Ca(2+) channel blockade by these compounds, as determined by veratridine- and KCl-stimulated nitric oxide synthesis, respectively, was also reversed by halothane. These findings suggest that an anesthetic agent halothane reversed the Na(+) and Ca(2+) channel blockade of several voltage-dependent ion channel blockers, leading to the attenuation of their cerebroprotective actions. Therefore, the influence of halothane anesthesia should be taken into consideration for the evaluation of neuroprotective action of Na(+) and Ca(2+) channel blockers. 相似文献
16.
Toshio Yamagishi Teruyuki Yanagisawa Norio Taira 《Naunyn-Schmiedeberg's archives of pharmacology》1992,346(6):691-700
Summary The effects of K+ channel openers, cromakalim and an acetoxyl derivative of KRN 2391 (Ki 4032), were studied on force of contraction, increases in intracellular calcium concentration ([Ca2+]i) measured by fura-2 and inositol 1,4,5-trisphosphate (IP3) production induced by the thromboxane A2 analogue, U46619, in canine coronary arteries. Upon single dose applications of U46619 at 300 nmol/l, phasic and tonic increases in [Ca2+]i and force were seen, which were almost abolished by cromakalim (10 mol/l) and Ki4032 (100 mol/l).In the absence of extracellular Ca2+, U46619 induced a transient increase in [Ca2+]i with a contraction. Cromakalim (0.01–10 mol/l) and Ki4032 (0.1–100 mol/l) concentration-dependently inhibited the increases in [Ca2+]i and contraction. The inhibitory effects of cromakalim and Ki4032 were blocked by the K+ channel blocker tetrabutylammonium (TBA) and counteracted by 20 mmol/l KCl-induced depolarization. Cromakalim and Ki4032 did not affect caffeine-induced Ca2+ release. Cromakalim reduced U46619-induced IP3 production significantly and TBA blocked this inhibitory effect. These results suggest that the hyperpolarization of the plasma membrane by K+ channel openers inhibits the production of IP3 and Ca 2+ release from intracellular stores related to stimulation of the thromboxane A2 receptor.Correspondence to T. Yanagisawa at the above address 相似文献
17.
Effects of SEA0400, a Na+/Ca2+ exchange inhibitor, on ventricular arrhythmias in the in vivo dogs 总被引:3,自引:0,他引:3
Nagasawa Y Zhu BM Chen J Kamiya K Miyamoto S Hashimoto K 《European journal of pharmacology》2005,506(3):249-255
SEA0400 (2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline), a novel and selective inhibitor of Na+/Ca2+ exchanger, was investigated for its possible antiarrhythmic effects on arrhythmias of Ca2+ overload induced by coronary ligation/reperfusion and by digitalis in the dog. SEA0400 (1.0 mg/kg) did not change the hemodynamics but slightly prolonged the QRS duration (P<0.05). Pre-ischemic administration (10 min before coronary occlusion) of SEA0400 (1.0 mg/kg) and post-ischemic administration (1 min before reperfusion) of SEA0400 (0.3, 1.0 and 3.0 mg/kg) had no effects on the incidence of ventricular fibrillation induced by coronary ligation/reperfusion. On the other hand, SEA0400 (3.0 mg/kg) decreased the arrhythmic ratio in the digitalis arrhythmias (P<0.01). However, atrioventricular block and cardiac standstill were induced in two digitalized dogs. In conclusion, SEA0400 has no significant antiarrhythmic effect on arrhythmias induced by coronary ligation/reperfusion, but has an obvious suppressing effect on tachyarrhythmias induced by digitalis in in vivo canine models. 相似文献
18.
We studied the effects of carmustine (1,3-bis(2-chloroethyl)-1-nitrosourea) on the intracellular Ca(2+) concentration ([Ca(2+)](i)) in PC12 cells using fura-2 fluorescence imaging. Carmustine (100 microM) caused a delayed increase in [Ca(2+)](i) that developed within approximately 3 h. This effect was enhanced in cells that were pretreated with an inhibitor of glutathione (GSH) synthesis, buthionine sulfoximine (BSO, 200 microM, 24 h), and was suppressed in cells that were treated with an antioxidant deferoxamine (50 microM). The carmustine-induced increase in [Ca(2+)](i) was absolutely dependent on the presence of extracellular Ca(2+) and could be inhibited by dihydropyridine blockers of L-type voltage-gated Ca(2+) channels (nimodipine or nitrendipine, 10 microM). The increase in [Ca(2+)](i) was also suppressed in Cl(-)-free solution and in the presence of the Cl(-) channel blockers, indanyloxyacetic acid 94 (IAA-94, 100 microM) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, 100 microM). The inhibition was complete when the blockers were applied simultaneously with carmustine and was partial when the blockers were applied after the initial increase in [Ca(2+)](i). We conclude that carmustine induces an influx of extracellular Ca(2+) through L-type Ca(2+) channels and that this effect is mediated by oxidative stress that results from the depletion of GSH following the inhibition by carmustine of glutathione reductase. 相似文献
19.
Wang JL Lin KL Chen JS Lu YC Jiann BP Chang HT Hsu SS Chen WC Huang JK Ho CM Jan CR 《Biochemical pharmacology》2004,67(6):1123-1130
In human osteoblasts, the effect of the widely prescribed cyclooxygenase-2 inhibitor celecoxib on intracellular Ca(2+) concentrations ([Ca(2+)](i)) and cell proliferation was explored by using fura-2 and the tetrazolium assay, respectively. Celecoxib at concentrations greater than 1microM caused a rapid rise in [Ca(2+)](i) in a concentration-dependent manner ( EC 50= 10 microM). Celecoxib-induced [Ca(2+)](i) rise was reduced by 90% by removal of extracellular Ca(2+), and by 30% by l-type Ca(2+) channel blockers. Celecoxib-induced Mn(2+)-associated quench of intracellular fura-2 fluorescence also suggests that celecoxib-induced extracellular Ca(2+) influx. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca(2+)](i) rise, after which the increasing effect of celecoxib on [Ca(2+)](i) was greatly inhibited. Conversely, pretreatment with celecoxib to deplete intracellular Ca(2+) stores totally prevented thapsigargin from releasing more Ca(2+). U73122, an inhibitor of phoispholipase C, abolished histamine (an inositol 1,4,5-trisphosphate-dependent Ca(2+) mobilizer)-induced, but not celecoxib-induced, [Ca(2+)](i) rise. Pretreatment with phorbol 12-myristate 13-acetate and forskolin to activate protein kinase C and adenylate cyclase, respectively, partly inhibited celecoxib-induced [Ca(2+)](i) rise in Ca(2+)-containing medium. Separately, overnight treatment with 1-100microM celecoxib inhibited cell proliferation in a concentration-dependent manner. These findings suggest that in human osteoblasts, celecoxib increases [Ca(2+)](i) by stimulating extracellular Ca(2+) influx and also by causing intracellular Ca(2+) release from the endoplasmic reticulum via a phospholiase C-independent manner. Celecoxib may be cytotoxic at higher concentrations. 相似文献
20.
Ito S Kume H Honjo H Kodama I Katoh H Hayashi H Shimokata K 《European journal of pharmacology》2004,486(3):325-333
We investigated the effects of ML-9 [1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine], a myosin light chain kinase (MLCK) inhibitor, on intracellular Ca2+ concentration ([Ca2+]i), contraction induced by high K+ and an agonist, and capacitative Ca2+ entry in fura-2-loaded guinea pig tracheal smooth muscle. ML-9 inhibited both the increase in [Ca2+]i and the contraction induced by 60 mM K+, 1 microM methacholine or 1 microM thapsigargin, an inhibitor of the sarcoplasmic reticulum Ca2+-ATPase. However, another MLCK inhibitor, wortmannin (3 microM), inhibited the contraction elicited by these stimuli without affecting [Ca2+]i. Under the condition that the thapsigargin-induced contraction was fully suppressed by 3 microM wortmannin, 30 microM ML-9 caused a further decrease in [Ca2+]i. The inhibitory effects of ML-9 on [Ca2+]i and the contraction elicited by methacholine were similar to those of SKF-96365 (1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride), a Ca2+ channel blocker. These results indicate that ML-9 acts as a potent inhibitor of Ca2+-permeable channels independently of MLCK inhibition in tracheal smooth muscle. 相似文献