首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymeric Scaffolds for Bone Tissue Engineering   总被引:11,自引:0,他引:11  
Bone tissue engineering is a rapidly developing area. Engineering bone typically uses an artificial extracellular matrix (scaffold), osteoblasts or cells that can become osteoblasts, and regulating factors that promote cell attachment, differentiation, and mineralized bone formation. Among them, highly porous scaffolds play a critical role in cell seeding, proliferation, and new 3D-tissue formation. A variety of biodegradable polymer materials and scaffolding fabrication techniques for bone tissue engineering have been investigated over the past decade. This article reviews the polymer materials, scaffold design, and fabrication methods for bone tissue engineering. Advantages and limitations of these materials and methods are analyzed. Various architectural parameters of scaffolds important for bone tissue engineering (e.g. porosity, pore size, interconnectivity, and pore-wall microstructures) are discussed. Surface modification of scaffolds is also discussed based on the significant effect of surface chemistry on cells adhesion and function.  相似文献   

2.
Porous scaffold materials that can provide a framework for the cells to adhere, proliferate, and create extracellular matrix are considered to be suitable materials for bone regeneration. Interconnected porous chitosan scaffolds were prepared by freeze-drying method, and were mineralized by calcium and phosphate solution by double-diffusion method to form nanoapatite in chitosan matrix. The mineralized chitosan scaffold contains hydroxyapatite nanocrystals on the surface and also within the pore channels of the scaffold. To assess the effect of apatite and porosity of the scaffolds on cells, human osteoblast (SaOS-2) cells were cultured on unmineralized and mineralized chitosan scaffolds. The cell growth on the mineralized scaffolds and on the pure chitosan scaffold shows a similar growth trend. The total protein content and alkaline phosphatase enzyme activity of the cells grown on scaffolds were quantified, and were found to increase over time in mineralized scaffold after 1 and 3 weeks of culture. The electron microscopy of the cell-seeded scaffolds showed that most of the outer macropores became sealed off by a continuous layer of cells. The cells spanned around the pore wall and formed extra cellular matrix, consisting mainly of collagen in mineralized scaffolds. The hydroxyproline content also confirmed the formation of the collagen matrix by cells in mineralized scaffolds. This study demonstrated that the presence of apatite nanocrystals in chitosan scaffolds does not significantly influence the growth of cells, but does induce the formation of extracellular matrix and therefore has the potential to serve for bone tissue engineering.  相似文献   

3.
4.
Histological investigations of a new hydroxyapatite-collagen composite material were carried out to evaluate its possible suitability as a bone substitute. The three-dimensional scaffolds made from biomimetically mineralized collagen exhibit an interconnecting pore structure and elastic mechanical properties. They were implanted into the subcutaneous tissue and bone defects made in the femur of rats and harvested with the surrounding tissue at 1, 2, 4, 8, and 12 weeks after surgery. The materials implanted in the subcutaneous tissue were covered by fibrous connective tissue with a slight inflammatory response, and many foreign-body giant cells were observed on the surface of the scaffolds. Most of the material implanted in the subcutaneous tissue was resorbed at 8 weeks by phagocytosis. In the bone defects, new bone formation was observed on the surface of the material at 1 week. New bone increased with time, and osteoclasts were seen on the surface of the scaffolds at 2 weeks. Resorption and replacement by new bone of many parts of the materials implanted in the femur were observed by 12 weeks. These responses occurred faster than those of other hydroxyapatite-collagen composites. The results suggested that the new biomimetically mineralized collagen scaffolds were suitable as an implant material for bone-tissue reconstruction.  相似文献   

5.
Scaffolds for heart valve tissue engineering must function immediately after implantation but also need to tolerate cell infiltration and gradual remodeling. We hypothesized that moderately cross-linked collagen scaffolds would fulfill these requirements. To test our hypothesis, scaffolds prepared from decellularized porcine pericardium were treated with penta-galloyl glucose (PGG), a collagen-binding polyphenol, and tested for biodegradation, biaxial mechanical properties, and in vivo biocompatibility. For controls, we used un-cross-linked scaffolds and glutaraldehyde-treated scaffolds. Results confirmed complete pericardium decellularization and the ability of scaffolds to encourage fibroblast chemotaxis and to aid in creation of anatomically correct valve-shaped constructs. Glutaraldehyde cross-linking fully stabilized collagen but did not allow for tissue remodeling and calcified when implanted subdermally in rats. PGG-treated collagen was initially resistant to collagenase and then degraded gradually, indicating partial stabilization. Moreover, PGG-treated pericardium exhibited excellent biaxial mechanical properties, did not calcify in vivo, and supported infiltration by host fibroblasts and subsequent matrix remodeling. In conclusion, PGG-treated acellular pericardium is a promising scaffold for heart valve tissue engineering.  相似文献   

6.
Based on the successful use of silk scaffolds in bone tissue engineering, we examined their utility for mineralized dental tissue engineering. Four types of hexafluoroisopropanol (HFIP) silk scaffolds-(250 and 550 microm diameter pores, with or without arginine-glycine-aspartic acid (RGD) peptide) were seeded with cultured 4-day postnatal rat tooth bud cells and grown in the rat omentum for 20 weeks. Analyses of harvested implants revealed the formation of bioengineered mineralized tissue that was most robust in 550 microm pore RGD-containing scaffolds and least robust in 250 microm pore sized scaffolds without RGD. The size and shape of the silk scaffold pores appeared to guide mineralized tissue formation, as revealed using polarized light imaging of collagen fiber alignment along the scaffold surfaces. This study is the first to characterize bioengineered tissues generated from tooth bud cells seeded onto silk scaffolds and indicates that silk scaffolds may be useful in forming mineralized osteodentin of specified sizes and shapes.  相似文献   

7.
Effect of scaffold design on bone morphology in vitro   总被引:3,自引:0,他引:3  
Silk fibroin is an important polymer for scaffold designs, forming biocompatible and mechanically robust biomaterials for bone, cartilage, and ligament tissue engineering. In the present work, 3D biomaterial matrices were fabricated from silk fibroin with controlled pore diameter and pore interconnectivity, and utilized to engineer bone starting from human mesenchymal stem cells (hMSC). Osteogenic differentiation of hMSC seeded on these scaffolds resulted in extensive mineralization, alkaline phosphatase activity, and the formation of interconnected trabecular- or cortical-like mineralized networks as a function of the scaffold design utilized; allowing mineralized features of the tissue engineered bone to be dictated by the scaffold features used initially in the cell culture process. This approach to scaffold predictors of tissue structure expands the window of applications for silk fibroin-based biomaterials into the realm of directing the formation of complex tissue architecture. As a result of slow degradation inherent to silk fibroin, scaffolds preserved their initial morphology and provided a stable template during the mineralization phase of stem cells progressing through osteogenic differentiation and new extracellular matrix formation. The slow degradation feature also facilitated transport throughout the 3D scaffolds to foster improved homogeneity of new tissue, avoiding regions with decreased cellular density. The ability to direct bone morphology via scaffold design suggests new options in the use of biodegradable scaffolds to control in vitro engineered bone tissue outcomes.  相似文献   

8.
Tissue engineering has been proposed as an approach to alleviate the shortage of donor tissue and organs by combining cells and a biodegradable scaffold as a temporary extracellular matrix. While numerous scaffold fabrication methods have been proposed, tissue formation is typically limited to the surface of the scaffolds in bone tissue engineering applications due to early calcification on the surface. To improve tissue formation, a novel scaffold with a hierarchical interconnected pore structure on two distinct length scales has been developed. Here we present the fabrication process and the application of the scaffold to bone tissue engineering. Porous poly(lactide-co-glycolide) (PLGA) scaffolds were made by combining solvent casting/particulate leaching with heat fusion. Porcine bone marrow-derived mesenchymal stem cells (MSCs) were differentiated into osteoblasts and cultured on these scaffolds in vitro for 2, 4, and 6 weeks. Subsequently, the constructs were assessed using histology and scanning electron microscopy. The bone marrow-derived osteoblasts attached well on these scaffolds. Cells were observed throughout the scaffolds. These initial results show promise for this scaffold to aid in the regeneration of bone.  相似文献   

9.
Collagen/hydroxyapatite (HA) composite scaffolds are known to be suitable scaffolds for seeding with mesenchymal stem cells (MSCs) differentiated into osteoblasts and for the in vitro production of artificial bones. However, the optimal collagen/HA ratio remains unclear. Our study confirmed that a higher collagen content increased scaffold stiffness but that a greater stiffness was not sufficient for bone tissue formation, a complex process evidently also dependent on scaffold porosity. We found that the scaffold pore diameter was dependent on the concentration of collagen and HA and that it could play a key role in cell seeding. In conclusion, the optimal scaffold for new bone formation and cell proliferation was found to be a composite scaffold formed from 50 wt % HA in 0.5 wt % collagen I solution.  相似文献   

10.
The development of suitable scaffolds for bone tissue engineering requires an in-depth understanding of the interactions between osteoblasts and scaffolding biomaterials. Although there have been a large amount of knowledge accumulated on the cell-material interactions on two-dimensional (2D) planar substrates, our understanding of how osteoblasts respond to a biomimetic nanostructured three-dimensional (3D) scaffold is very limited. In this work, we developed an approach to use confocal microscopy as an effective tool for visualizing, analyzing, and quantifying osteoblast-matrix interactions and bone tissue formation on 3D nanofibrous gelatin scaffolds (3D-NF-GS). Integrin β1, phosphor-paxillin, and vinculin were used to detect osteoblasts responses to the nanofibrous architecture of 3D-NF-GS. Unlike osteoblasts cultured on 2D substrates, osteoblasts seeded on 3D-NF-GS showed less focal adhesions for phospho-paxillin and vinculin, and the integrin β1 was difficult to detect after the first 5 days. Bone sialoprotein (BSP) expression on the 3D-NF-GS was present mainly in the cell cytoplasm at 5 days and inside secretory vesicles at 2 weeks, whereas most of the BSP on the 2D gelatin substrates was concentrated either in cell interface toward the periphery or at focal adhesion sites. Confocal images showed that osteoblasts were able to migrate throughout the 3D matrix within 5 days. By 14 days, osteoblasts were organized as nodular aggregations inside the scaffold pores and a large amount of collagen and other cell secretions covered and remodeled the surfaces of the 3D-NF-GS. These nodules were mineralized and were uniformly distributed inside the entire 3D-NF-GS after being cultured for 2 weeks. Taken together, these results give insight into osteoblast-matrix interactions in biomimetic nanofibrous 3D scaffolds and will guide the development of optimal scaffolds for bone tissue engineering. ? 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 100A:3029-3041, 2012.  相似文献   

11.
Engineering new bone tissue with cells and a synthetic extracellular matrix (scaffolding) represents a new approach for the regeneration of mineralized tissues compared with the transplantation of bone (autografts or allografts). In the present work, highly porous poly(L-lactic acid) (PLLA) and PLLA/hydroxyapatite (HAP) composite scaffolds were prepared with a thermally induced phase separation technique. The scaffolds were seeded with osteoblastic cells and cultured in vitro. In the pure PLLA scaffolds, the osteoblasts attached primarily on the outer surface of the polymer. In contrast, the osteoblasts penetrated deep into the PLLA/HAP scaffolds and were uniformly distributed. The osteoblast survival percentage in the PLLA/HAP scaffolds was superior to that in the PLLA scaffolds. The osteoblasts proliferated in both types of the scaffolds, but the cell number was always higher in the PLLA/HAP composite scaffolds during 6 weeks of in vitro cultivation. Bone-specific markers (mRNAs encoding bone sialoprotein and osteocalcin) were expressed more abundantly in the PLLA/HAP composite scaffolds than in the PLLA scaffolds. The new tissue increased continuously in the PLLA/HAP composite scaffolds, whereas new tissue formed only near the surface of pure PLLA scaffolds. These results demonstrate that HAP imparts osteoconductivity and the highly porous PLLA/HAP composite scaffolds are superior to pure PLLA scaffolds for bone tissue engineering.  相似文献   

12.
Li WJ  Tuli R  Huang X  Laquerriere P  Tuan RS 《Biomaterials》2005,26(25):5158-5166
Functional engineering of musculoskeletal tissues generally involves the use of differentiated or progenitor cells seeded with specific growth factors in biomaterial scaffolds. Ideally, the scaffold should be a functional and structural biomimetic of the native extracellular matrix and support multiple tissue morphogenesis. We have previously shown that electrospun, three-dimensional nanofibrous scaffolds that morphologically resemble collagen fibrils are capable of promoting favorable biological responses from seeded cells, indicative of their potential application for tissue engineering. In this study, we tested a three-dimensional nanofibrous scaffold fabricated from poly(epsilon-caprolactone) (PCL) for its ability to support and maintain multilineage differentiation of bone marrow-derived human mesenchymal stem cells (hMSCs) in vitro. hMSCs were seeded onto pre-fabricated nanofibrous scaffolds, and were induced to differentiate along adipogenic, chondrogenic, or osteogenic lineages by culturing in specific differentiation media. Histological and scanning electron microscopy observations, gene expression analysis, and immunohistochemical detection of lineage-specific marker molecules confirmed the formation of three-dimensional constructs containing cells differentiated into the specified cell types. These results suggest that the PCL-based nanofibrous scaffold is a promising candidate scaffold for cell-based, multiphasic tissue engineering.  相似文献   

13.
Surgical therapy of cardiovascular disorders frequently requires replacement of diseased tissues with prosthetic devices or grafts. In typical tissue engineering approaches, scaffolds are utilized to serve as templates to support cell growth and remodeling. Decellularized vascular matrices have been previously investigated as scaffolds for tissue engineering. However, cell migration into these scaffolds was inadequate due to the very tight matrix organization specific to the aortic structure. To address this problem, we prepared two types of decellularized scaffolds from porcine vascular tissues. Pure elastin scaffolds and pure collagen scaffolds were prepared by selectively removing the collagen component or elastin, respectively. In the current study, we use a subdermal implantation model to demonstrate that arterial elastin and collagen scaffolds exhibit enhanced potential for repopulation by host cells in vivo. Notably, numerous new collagen fibers and bundles were found within the remodeled elastin scaffolds and new elastin fibers within collagen scaffolds, respectively, clearly indicating their ability to support de novo extracellular matrix synthesis. We also show that biological cues such as growth factors are required for efficient repopulation of elastin and collagen scaffolds. Finally, we bring evidence that these scaffolds can be endothelialized in vitro for thrombosis resistance and thus can serve as promising candidates for cardiovascular tissue engineering.  相似文献   

14.
Lee SJ  Lim GJ  Lee JW  Atala A  Yoo JJ 《Biomaterials》2006,27(18):3466-3472
Numerous materials have been proposed for bone tissue regeneration. However, none has been shown to be entirely satisfactory. In this study we fabricated a hybrid composite scaffold composed of poly(D,L-lactide-co-glycolide) (PLGA) and a naturally derived collagen matrix derived from porcine bladder submucosa matrix (BSM), and evaluated the biological activities and physical properties of the scaffold for use in bone tissue regeneration. The BSM-PLGA composite scaffolds are able to promote cellular interactions and possess uniformly interconnected pores with adequate structural integrity. The composite scaffolds were tested with both human embryonic stem (hES) cells and bovine osteoblasts (bOB). Cells seeded on the composite scaffolds readily attached, infiltrated and proliferated, as confirmed by cell viability and mitochondrial metabolic activity. Use of the composite scaffolding system with cells may enhance the formation of bone tissue for therapeutic regeneration.  相似文献   

15.
Bone regeneration was achieved in the 15-mm segmental defect model in the radius of rabbit by using the scaffold based on mineralized recombinant collagen for the first time. The recombinant collagen was recombinant human-like type I collagen, which was produced by cloning a partial cDNA that was reversed by mRNA from human collagen alpha1(I) and transferred to E. coli. The scaffold material nano-hydroxyapatite/recombinant human-like collagen/poly(lactic acid) (nHA/RHLC/PLA) was developed by biomimetic synthesis. Thermo gravimetric analysis, X-ray diffraction and scanning electron microscopy were applied to exhibit that the scaffold showed some features of natural bone both in main component and hierarchical microstructure. The percentages of organic phase and inorganic phase of nHA/RHLC were similar to that of natural bone. The three-dimensional porous scaffold materials mimic the microstructure of cancellous bone. In the implantation experiment, the segmental defect was healed 24 weeks after surgery, and the implanted composite was completely substituted by new bone tissue. The results of the implantation experiment were very comparable with that of the scaffold based on mineralized animal-sourced collagen. It is concluded that the scaffold based on mineralized recombinant collagen maintains the advantages of mineralized animal-sourced collagen, while avoids potential virus-dangers. The scaffold is a promising material for bone tissue engineering.  相似文献   

16.
Osteoclastogenesis on tissue-engineered bone   总被引:1,自引:0,他引:1  
Bone remodeling plays an important role in bone function. To date, bone tissue-engineering research has focused primarily on bone formation from osteoblasts. This study demonstrates that osteoclastogenesis can occur on a mineralized polymer scaffold. Porcine bone marrow-derived mesenchymal stem cells (pMSCs) and hematopoietic cells were isolated from the bone marrow of Yucatan minipigs (n = 3) and cultured separately. pMSCs were differentiated into osteoblasts, seeded on porous poly(D,L-lactic-co-glycolic acid) foams, and cultured in a rotating oxygen-permeable bioreactor system. Once the cell-polymer constructs had started to mineralize, the hematopoietic cells were added and cocultured to include osteoclastogenesis. The cultured constructs were evaluated by histochemical and microscopic examination. Our results show that osteoblasts and osteoclasts were successfully differentiated from bone marrow on the scaffolds. This is the first demonstration of osteoclast formation on mineralized polymer surfaces.  相似文献   

17.
目的依据仿生原理制备新型的胶原多糖基纳米羟基磷灰石(HA)复合骨支架材料,并与成骨细胞复合培养,检测其细胞相容性。方法以胶原分子与透明质酸钠的交联产物为模板,调制钙磷盐在液相中沉积其上,得到矿化胶原多糖基复合材料;采用液相分离法与少量聚乳酸复合进一步制备成为三维多孔支架,使用成骨细胞(Mc3T3-E1)接种于该支架上培养。用X—ray衍射、扫描电镜、万能材料测试机等对材料进行观察和测试分析;并用倒置相差显微镜、荧光显微镜、扫描电镜、CCK-8细胞计数试剂盒、碱性磷酸酶(ALP)活性测定等观察和分析细胞在支架材料中的生长、分化情况。结果胶原多糖基纳米HA仿生复合材料的晶粒度较低,晶体极为细小,与天然骨中羟基磷灰石的组装结构类似;该复合支架为多孔状,孔隙率约82%,孔径大小为200~650μm;抗压性能好,成骨细胞可在其上贴附、生长和繁殖,并表现出较高的成骨活性。结论所制备的胶原多糖基纳米HA仿生骨支架材料,无论从组分和结构上均与天然松质骨类似,与成骨细胞相容性好,可望成为较理想的骨组织工程支架材料。  相似文献   

18.
背景:选择合适的表面修饰材料,有针对性的对基质支架材料进行表面改性和表面修饰,提高材料表面的细胞黏附性以及促进细胞的增生是骨组织工程支架材料研究的重要内容。 目的:概述骨组织工程支架材料的运用情况,支架材料表面修饰材料的运用以及修饰方法或途径。 方法:由第一作者检索1995/2010 PubMed数据及万方数据库文章,选择与组织工程支架材料运用及表面修饰相关的文献。 结果与结论:成骨细胞与支架材料的作用依赖于材料的表面特性、局部形态、表面能或化学能等,这些表面特性决定了细胞怎样吸附到材料表面、细胞的定位以及细胞的功能行为等。因此生物材料的复杂性和细胞-生物材料表面的相互作用决定着进行生物支架材料表面修饰的重要性。理想的表面修饰应该兼顾表面拓扑结构、特异性识别、亲水与疏水平衡、蛋白质吸附等各个方面才能得到功能化的新生组织。目前,应用最多的表面修饰材料是Ⅰ型胶原,未来研究中将多种表面修饰材料进行复合发挥材料的互补作用,以及基因疗法和纳米材料的发展,将成为骨组织工程学领域研究的热点问题。  相似文献   

19.
Bone Marrow mesenchymal stem cells can be induced to differentiate into osteoblasts to regenerate damaged bone tissue using tissue engineering techniques. In this study, we examine the use of chitosan scaffolds with double pore structure prepared by an innovative method that combines freeze gelation (that produces micropores) and particle leaching out technique (that produces interconnected spherical macropores) seeking to enhance the osteogenic differentiation of goat bone marrow stromal cells (GBMSCs). The double pore architecture of the scaffold was characterized by scanning electron microscopy (SEM), microcomputed tomography and confocal laser scanning microscopy. The obtained hierarchical pore structure allowed very efficient seeding of GBMSCs that are able to occupy the whole volume of the scaffold, showing good adhesion and proliferation. GBMSCs were differentiated into osteoblasts as indicated by alkaline phosphatase activity and osteocalcin expression. The results of this study demonstrate that chitosan scaffold may be promising biomaterial for bone regeneration.  相似文献   

20.
Highly porous scaffolds of poly(lactide-co-glycolide) (PLGA) were prepared by solution-casting/salt-leaching method. The in vitro degradation behavior of PLGA scaffold was investigated by measuring the change of normalized weight, water absorption, pH, and molecular weight during degradation period. Mesenchymal stem cells (MSCs) were seeded and cultured in three-dimensional PLGA scaffolds to fabricate in vitro tissue engineering bone, which was investigated by cell morphology, cell number and deposition of mineralized matrix. The proliferation of seeded MSCs and their differentiated function were demonstrated by experimental results. To compare the reconstructive functions of different groups, mandibular defect repair of rabbit was made with PLGA/MSCs tissue engineering bone, control PLGA scaffold, and blank group without scaffold. Histopathologic methods were used to estimate the reconstructive functions. The result suggests that it is feasible to regenerate bone tissue in vitro using PLGA foams with pore size ranging from 100-250 microm as scaffolding for the transplantation of MSCs, and the PLGA/MSCs tissue engineering bone can greatly promote cell growth and have better healing functions for mandibular defect repair. The defect can be completely recuperated after 3 months with PLGA/MSCs tissue engineering bone, and the contrastive experiments show that the defects could not be repaired with blank PLGA scaffold. PLGA/MSCs tissue engineering bone has great potential as appropriate replacement for successful repair of bone defect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号