首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PURPOSE: We investigated the effect of protein- and non protein-thiol oxidation on DNA double-strand-break (DSB) rejoining after irradiation and its relevance in the survival of CHO cells. MATERIALS AND METHODS: We used mutant cells null for glucose 6 phosphate dehydrogenase (G6PD) activity since reducing equivalents, required for reduction of oxidized thiols, are typically generated through G6PD regulated production of NADPH. Cellular thiols were oxidized by pre-incubating the cells with hydroxyethyldisulphide (HEDS), the oxidized form of mercaptoethanol (ME). The concentrations of the intracellular and extracellular non-protein thiols (NPSH), glutathione, cysteine and mercaptoethanol were quantitated by HPLC. Protein thiols (PSH) were estimated using Ellman's reagent. Cell survival was determined by clonogenic assay. The induction and rejoining of DSB in cells was quantitated by Pulse Field Gel Electrophoresis after exposure to ionizing radiation. RESULTS: Much lower bioreduction of HEDS was found in the G6PD deficient mutants (E89) than in the wild-type cells (K1). A 1 h treatment of E89 cells with HEDS produced almost complete depletion of non-protein thiol (NPSH) and a 26% decrease in protein thiols. Only minor changes were found under similar conditions with K1 cells. When exposed to gamma radiation in the presence of HEDS, the G6PD null mutants exhibited a higher cell killing and decreased rate and extent of rejoining of DSB than were observed in K1 cells. Moreover, when the G6PD deficient cells were transfected with the gene encoding wild-type G6PD (A1A), they recovered close to wild-type cellular thiol status, cell survival and DSB rejoining. CONCLUSIONS: These results suggest that a functioning oxidative pentose phosphate pathway is required for DSB rejoining in cells exposed to a mild thiol oxidant.  相似文献   

2.
PURPOSE: To assess the cell cycle-dependent influence of gemcitabine on ionizing radiation-induced DNA double-strand breakage (DSB) and rejoining measured by pulsed-field gel electrophoresis (PFGE). MATERIALS AND METHODS: WIDR cells (human colon carcinoma) were synchronized by serum starvation/stimulation providing populations with 7% (G1) or 50% S-phase cells, respectively. Following drug treatment (0.5 microg/ml for 2 hours) cells were irradiated (up to 90 Gy) or incubated for repair (up to 6 h after 40 Gy). Cell cycle changes were monitored by flow cytometry, DNA fragmentation was assessed by PFGE as fraction of electrophoretically mobile DNA. RESULTS: Without drug treatment, irradiated S-phase cells exhibited lower PFGE signals than the G1 cells due to the well known electrophoretic immobility of replicative DNA fragments, but DSB rejoining was not different. Gemcitabine pretreatment increased the apparent initial radiation-induced DNA fragmentation specifically for S-phase cells. This effect was rapidly reversed (1 h) during incubation for repair. CONCLUSIONS: The data indicate that gemcitabine causes the formation of additional radiation-induced DSB in S-phase cells or destabilizes the replicative structures that otherwise prevent DNA fragment migration during PFGE. The latter would be rapidly restituted superimposing DSB rejoining. This is discussed in relation to the recently proposed role of mismatch repair in gemcitabine radiosensitization.  相似文献   

3.
PURPOSE: To examine the role of DNA double-strand break (DSB) rejoining in cell survival and micronucleus yield after 60Co gamma-irradiation. MATERIALS AND METHOD: Thirteen human cell lines (six glioblastoma, five prostate, one melanoma, one squamous cell carcinoma) were irradiated with 60Co gamma-rays to doses of 0-10Gy for cell survival and micronucleus measurements and 0-100Gy for DSB rejoining. Measurements were performed using standard clonogenic, micronucleus and constant-field gel electrophoresis assays. RESULTS: Radioresistance and micronucleus yield were positively correlated (r=0.74, p=0.004). A significant cell type-dependent correlation was demonstrated between total (0-20 h) DSB rejoining and cell survival (r=0.86, p=0.03 for glioblastomas; r=0.79, p=0.04 for other cell lines), with more resistant cell lines showing higher levels of DSB rejoining. No relationship was apparent between fast (0-2 h) or slow (2-20 h) DSB rejoining and clonogenic survival. While there was no relationship between total or slow DSB rejoining and micronucleus yield, a significant and cell type-specific correlation emerged between fast rejoining and micronucleus yield for the glioblastomas (r=0.89, p=0.04) and other cell lines (r=0.76, p=0.04). Cell lines with higher levels of DSB rejoining within 2 h of irradiation showed higher yields of micronuclei. CONCLUSION: Fast DSB rejoining, possibly through interaction with slow DSB rejoining, appears to play an important role in the formation of micronuclei. However, total DSB rejoining reflects intrinsic radiosensitivity. Consideration of differences in DSB rejoining kinetics might contribute to a better understanding of the significance of cell survival and micronucleus data in the clinical and radiation protection setting.  相似文献   

4.
Purpose: To assess the cell cycle-dependent influence of gemcitabine on ionizing radiation-induced DNA double-strand breakage (DSB) and rejoining measured by pulsed-field gel electrophoresis (PFGE).

Materials and methods: WIDR cells (human colon carcinoma) were synchronized by serum starvation/stimulation providing populations with 7% (G1) or 50% S-phase cells, respectively. Following drug treatment (0.5 μg/ml for 2 hours) cells were irradiated (up to 90 Gy) or incubated for repair (up to 6 h after 40 Gy). Cell cycle changes were monitored by flow cytometry, DNA fragmentation was assessed by PFGE as fraction of electrophoretically mobile DNA.

Results: Without drug treatment, irradiated S-phase cells exhibited lower PFGE signals than the G1 cells due to the well known electrophoretic immobility of replicative DNA fragments, but DSB rejoining was not different. Gemcitabine pretreatment increased the apparent initial radiation-induced DNA fragmention specifically for S-phase cells. This effect was rapidly reversed (1 h) during incubation for repair.

Conclusions: The data indicate that gemcitabine causes the formation of additional radiation-induced DSB in S-phase cells or destabilizes the replicative structures that otherwise prevent DNA fragment migration during PFGE. The latter would be rapidly restituted superimposing DSB rejoining. This is discussed in relation to the recently proposed role of mismatch repair in gemcitabine radiosensitization.  相似文献   

5.
Purpose : Replication protein-A (RPA) is a heterotrimeric single-stranded DNA-binding protein playing essential roles in many aspects of nucleic acid metabolism, including DNA replication, nucleotide excision repair and homologous recombination. Here, the role of RPA in the rejoining of radiation-induced DNA double-strand breaks (DSB) by non-homologous end-joining (NHEJ) was investigated. Methods and materials : A previously described in vitro assay for DSB rejoining was employed. The assay used 'naked' genomic DNA prepared from agarose-embedded G 1 -phase A549 cells as a substrate and extracts prepared from HeLa cells as a source of enzymes. Rejoining of DSB in this assay is absolutely dependent on cell extract and proceeds, under optimal reaction conditions, to an extent similar to that observed in intact cells. For experiments, extracts were supplemented with excess purified recombinant RPA. Alternatively, RPA was removed from the extracts either by fractionation or immunodepletion. Results : Although the rejoining of DSB in vitro was not absolutely dependent on RPA, it proceeded faster and to higher levels of completion when recombinant protein was added to the extracts. Depletion of RPA from extracts reduced the rejoining half-times and addition of purified recombinant protein restored the kinetics of DSB rejoining. Extract fractionation indicated the operation of at least two pathways in DSB rejoining, only one of which was facilitated by RPA. Conclusions : The results suggest that in addition to its role in homologous recombination, RPA may also have a supportive role in some forms of non-homologous end-joining.  相似文献   

6.
PURPOSE: Replication protein-A (RPA) is a heterotrimeric single-stranded DNA-binding protein playing essential roles in many aspects of nucleic acid metabolism, including DNA replication, nucleotide excision repair and homologous recombination. Here, the role of RPA in the rejoining of radiation-induced DNA double-strand breaks (DSB) by non-homologous end-joining (NHEJ) was investigated. METHODS AND MATERIALS: A previously described in vitro assay for DSB rejoining was employed. The assay used 'naked' genomic DNA prepared from agarose-embedded G(1)-phase A549 cells as a substrate and extracts prepared from HeLa cells as a source of enzymes. Rejoining of DSB in this assay is absolutely dependent on cell extract and proceeds, under optimal reaction conditions, to an extent similar to that observed in intact cells. For experiments, extracts were supplemented with excess purified recombinant RPA. Alternatively, RPA was removed from the extracts either by fractionation or immunodepletion. RESULTS: Although the rejoining of DSB in vitro was not absolutely dependent on RPA, it proceeded faster and to higher levels of completion when recombinant protein was added to the extracts. Depletion of RPA from extracts reduced the rejoining half-times and addition of purified recombinant protein restored the kinetics of DSB rejoining. Extract fractionation indicated the operation of at least two pathways in DSB rejoining, only one of which was facilitated by RPA. CONCLUSIONS: The results suggest that in addition to its role in homologous recombination, RPA may also have a supportive role in some forms of non-homologous end-joining.  相似文献   

7.
Purpose : To assess the influence of trans -dominant inhibition of poly(ADP-ribosyl)ation on the rejoining kinetics of radiation-induced DNA double-strand breaks (DSB). Materials and methods : Stable transfectants of the SV40-transformed hamster cell line CO60 were used: COM3 cells contain a construct to overexpress the poly(ADP-ribose) polymerase (PARP-1) DNA-binding domain (DBD) when induced by dexamethasone, as well as a construct for the constitutive overexpression of the human glucocorticoid receptor (Hg0). COR3 are control cells containing only the Hg0 plasmid. DSB induction and rejoining in X-irradiated cells was assessed by DNA pulsed-field electrophoresis. Results : DSB induction was identical in both cell lines and independent of the presence of dexamethasone. DSB rejoining kinetics was independent of dexamethasone in COR3 cells and identical to COM3 cells without dexamethasone. However, in COM3 cells treated with dexamethasone to induce PARP-1 DBD overexpression, the fast component of the rejoining kinetic was largely reduced, and residual fragmentation increased concomitant with the increased damage fraction in slow rejoining. Conclusions : The results indicate that inhibition of cellular PARP-1 does not affect the rate-limiting step of either fast or slow DSB rejoining. Rather, it appears that absence of poly(ADP-ribosyl)ation due to dominant negative PARP-1 expression induces a shift from rapid to slow DSB rejoining and by this mechanism PARP inhibition may increase the risk of repair failures.  相似文献   

8.
PURPOSE: To assess the influence of trans-dominant inhibition of poly(ADP-ribosyl)ation on the rejoining kinetics of radiation-induced DNA double-strand breaks (DSB). MATERIALS AND METHODS: Stable transfectants of the SV40-transformed hamster cell line CO60 were used: COM3 cells contain a construct to overexpress the poly(ADP-ribose) polymerase (PARP-1) DNA-binding domain (DBD) when induced by dexamethasone, as well as a construct for the constitutive overexpression of the human glucocorticoid receptor (Hg0). COR3 are control cells containing only the Hg0 plasmid. DSB induction and rejoining in X-irradiated cells was assessed by DNA pulsed-field electrophoresis. RESULTS: DSB induction was identical in both cell lines and independent of the presence of dexamethasone. DSB rejoining kinetics was independent of dexamethasone in COR3 cells and identical to COM3 cells without dexamethasone. However, in COM3 cells treated with dexamethasone to induce PARP-1 DBD overexpression, the fast component of the rejoining kinetic was largely reduced, and residual fragmentation increased concomitant with the increased damage fraction in slow rejoining. CONCLUSIONS: The results indicate that inhibition of cellular PARP-1 does not affect the rate-limiting step of either fast or slow DSB rejoining. Rather, it appears that absence of poly(ADP-ribosyl)ation due to dominant negative PARP-1 expression induces a shift from rapid to slow DSB rejoining and by this mechanism PARP inhibition may increase the risk of repair failures.  相似文献   

9.
Purpose: To examine the role of DNA double‐strand break (DSB) rejoining in cell survival and micronucleus yield after 60Co γ‐irradiation.

Materials and methods: Thirteen human cell lines (six glioblastoma, five prostate, one melanoma, one squamous cell carcinoma) were irradiated with 60Co γ‐rays to doses of 0–10?Gy for cell survival and micronucleus measurements and 0–100?Gy for DSB rejoining. Measurements were performed using standard clonogenic, micronucleus and constant‐field gel electrophoresis assays.

Results: Radioresistance and micronucleus yield were positively correlated (r=0.74, p=0.004). A significant cell type‐dependent correlation was demonstrated between total (0–20?h) DSB rejoining and cell survival (r=0.86, p=0.03 for glioblastomas; r=0.79, p=0.04 for other cell lines), with more resistant cell lines showing higher levels of DSB rejoining. No relationship was apparent between fast (0–2?h) or slow (2–20?h) DSB rejoining and clonogenic survival. While there was no relationship between total or slow DSB rejoining and micronucleus yield, a significant and cell type‐specific correlation emerged between fast rejoining and micronucleus yield for the glioblastomas (r=0.89, p=0.04) and other cell lines (r=0.76, p=0.04). Cell lines with higher levels of DSB rejoining within 2?h of irradiation showed higher yields of micronuclei.

Conclusion: Fast DSB rejoining, possibly through interaction with slow DSB rejoining, appears to play an important role in the formation of micronuclei. However, total DSB rejoining reflects intrinsic radiosensitivity. Consideration of differences in DSB rejoining kinetics might contribute to a better understanding of the significance of cell survival and micronucleus data in the clinical and radiation protection setting.  相似文献   

10.
Purpose : To investigate the cytogenetic changes and DNA double-strand break (DSB) rejoining of transformed cell lines generated from human bronchial epithelial cells by α -particle exposure. Materials and methods : Transformed cell lines were derived from the HPV 18-immortalized human bronchial epithelial cell line BEP2D generated by 1.5 Gy of α -particles emitted by a 238 Pu source. Two cell lines, BERP35T1 and BERP35T4, were investigated. Karyotypes were analyzed by trypsin/Giemsa banding. Cell survival was estimated by colony assay. PFGE was used to detect the DNA DSB. mRNA expression was analyzed by RT-PCR. Results : Abnormal chromosomes 2 and 12 with elongated long arm and deletions of chromosomes 2, 12, 13 and 17 were observed in the transformed cell lines. BERP35T4 showed a much higher proportion of polyploid cells (40.5%) compared with parental BEP2D cells and the BERP35T1 cell line (5%). BERP35T1 and BERP35T4 showed a markedly lower capacity for rejoining of γ-ray-induced DNA DSB and increased radio-sensitivity compared with parental BEP2D cells. The analysis of mRNA levels revealed a 2.5- to 6.5-fold down-regulated expression of the DNA repair genes XRCC-2, XRCC-3 and Ku80 in BERP35T1 and BERP35T4 cells. Conclusion : The karyotypic changes of chromosomes 2, 12, 13 and 17 and the deficiency of DSB rejoining could be related to the malignant transformation processing of BEP2D cells initiated by α -particle exposure.  相似文献   

11.
Summary

The increase in the degree of radiosensitization of Escherichia coli cells following prolonged pre-irradiation incubation with nitroimidazoles is not correlated with the loss of intracellular non-protein thiols (NPSH) alone. The rates of reduction of the nitro compounds and the NPSH removal do not show strong dependencies on the lipophilicities of the nitroimidazoles whereas the highly lipophilic compound RGW-609 effects an increase in radiosensitization in a much shorter incubation time than the other nitroimidazoles. Exogenous dithiothreitol (DTT) increased the rate of reduction of misonidazole in the cells but did not alter the fraction converted to the amine. Added DTT (0·15 mmol dm?3) completely protected against the pre-irradiation incubation effect of misonidazole (2·5 mmol dm?3) when added at the start of the incubation but only partially protected when added before irradiation. It is suggested that NPSH can intercept metabolite(s) (or their precursors) of nitroimidazoles which can potentiate cell killing by radiation.  相似文献   

12.
PURPOSE: To determine the role of single (SSB) and double strand break (DSB) repair in the induction and propagation of radiation-induced instability. MATERIALS AND METHODS: Two defined hamster cell lines with known DNA repair deficiencies in DSB repair (XR-C1) and base excision repair (EM-C11) and the parental wild-type line (CHO-9) were used. The rate of micronucleus formation, apoptosis and survival were measured at 0, 7 and 14 days after X-ray radiation. RESULTS: An enhanced rate of production of damaged cells was observed in wild type and the repair deficient mutants after irradiation. This was cell type, dose and time-dependent. All cells demonstrated delayed death up to day 14 after irradiation along with an elevated apoptosis frequency. The yield of micronuclei was not significantly increased in the wild-type cells, but was in the mutant cells, over the dose and time range studied. For all three endpoints the increase in damage was most pronounced in the SSB deficient cell line. CONCLUSIONS: SSB and/or oxidized base damage play a major role, rather than DSB, in radiation induced instability.  相似文献   

13.
目的 了解不同组织来源癌细胞株和人体肿瘤组织原代细胞的DNA双链断裂损伤修复的个体差异性,探寻预测癌细胞辐射敏感性的生物指标。方法 60Co γ射线照射诱发DNA损伤,脉冲电场凝胶电泳检测DNA双链断裂损伤修复,细胞克隆形成能力法检测细胞辐射敏感性。结果 8个不同组织来源癌细胞株的辐射敏感性有较大的差异(D0为0.65~2.15 Gy),不同细胞株20 Gy γ射线照射诱发产生的DNA双链断裂原初损伤有一定的差别,但与细胞辐射抗性无相关性。辐射敏感细胞SX-10的DNA双链断裂修复缺陷发生在早期快速修复相,而A2780细胞的修复缺陷是发生在晚期慢速修复相。20 Gy照射修复2 h后DNA双链断裂残留量与细胞辐射敏感性指标D0SF2值有显著的相关性。不同个体患者脑肿瘤组织原代细胞之间,辐射诱发DNA双链断裂的修复反应存在明显差异,修复2 h后残留损伤的个体差异性分布类似于癌细胞株。结论 DNA双链断裂残留损伤与癌细胞辐射抗性有显著相关性,可作生物指标预测肿瘤组织细胞对放射治疗的反应性。  相似文献   

14.
PURPOSE: To investigate the cytogenetic changes and DNA double-strand break (DSB) rejoining of transformed cell lines generated from human bronchial epithelial cells by alpha-particle exposure. MATERIALS AND METHODS: Transformed cell lines were derived from the HPV 18-immortalized human bronchial epithelial cell line BEP2D generated by 1.5 Gy of alpha-particles emitted by a 238Pu source. Two cell lines, BERP35T1 and BERP35T4, were investigated. Karyotypes were analyzed by trypsin/Giemsa banding. Cell survival was estimated by colony assay. PFGE was used to detect the DNA DSB. mRNA expression was analyzed by RT-PCR. RESULTS: Abnormal chromosomes 2 and 12 with elongated long arm and deletions of chromosomes 2, 12, 13 and 17 were observed in the transformed cell lines. BERP35T4 showed a much higher proportion of polyploid cells (40.5%) compared with parental BEP2D cells and the BERP35TI cell line (5%). BERP35T1 and BERP35T4 showed a markedly lower capacity for rejoining of gamma-ray-induced DNA DSB and increased radiosensitivity compared with parental BEP2D cells. The analysis of mRNA levels revealed a 2.5- to 6.5-fold down-regulated expression of the DNA repair genes XRCC-2, XRCC-3 and Ku80 in BERP35T1 and BERP35T4 cells. CONCLUSION: The karyotypic changes of chromosomes 2, 12, 13 and 17 and the deficiency of DSB rejoining could be related to the malignant transformation processing of BEP2D cells initiated by alpha-particle exposure.  相似文献   

15.
PURPOSE: To determine whether cigarette smoke condensate (CSC) without metabolic activation induces direct DNA double strand breaks (DSB) in the G1 phase of various radiosensitive mutants of CHO cells and whether these breaks display collateral hypersensitivity to CSC with respect to cell killing. MATERIALS & METHODS: We treated the G1-phase cultures of wild-type and DNA repair deficient mutants of CHO cells with various concentrations of CSC and examined the cell survival by colony formation assay and the induction of DNA double strand breaks by constant field gel electrophoresis as well as the phophorylated histone H2-A variant X (gamma-H2AX) assay. RESULTS: Gel analysis and gamma-H2AX focus assay showed significantly fewer, but still detectable levels of DSB per cell after CSC treatment compared to ionizing radiation (IR) exposures, even when equitoxic radiation exposures were delivered at a low dose rate over the same 8-hour exposure used for CSC treatments. None of the three non-homologous end joining (NHEJ) deficient mutants were remarkably hypersensitive to CSC compared to wild-type cells. In contrast, UV-1 cells that are hypersensitive to several base damage and cross-linking agents showed a higher sensitivity to CSC compared to the other CHO cell lines. CONCLUSIONS: DNA DSB produced directly by CSC are not principally responsible for its cytotoxicity. Further, the present study does not rule out the possibility that some of these lesions may secondarily result in DSB, such as may occur during impeded DNA replication and whose repair may require systems other than NHEJ.  相似文献   

16.
Purpose : To investigate the effects of subphysiological irradiation temperature (2-28°C) and the influence of the radical scavenger DMSO on the induction of double-strand breaks (DSB) in chromosomal DNA from a human breast cancer cell line (MCF7) as well as in intact cells. The rejoining of DSB in cells irradiated at 2°C or 37°C was also investigated. Materials and methods : Agarose plugs with [ 14 C]thymidine labelled MCF-7 cells were lysed in EDTA-NLS-proteinase-K buffer. The plugs containing chromosomal DNA were irradiated with Xrays under different temperatures and scavenging conditions. Intact MCF-7 cells were irradiated in Petri dishes and plugs were made. The cells were then lysed in EDTA-NLS-proteinaseK buffer. The induction of DSB was studied by constant field gel electrophoresis and expressed as DSB/100Mbp, calculated from the fraction of activity released into the gel. Results : The induction of DSB in chromosomal DNA was reduced by a decrease in temperature. This protective effect of low temperature was inhibited when the DNA was irradiated in the presence of DMSO. No difference was found when intact cells were irradiated at different temperatures. However, the rapid phase of rejoining was slower in cells irradiated at 37°C than at 2°C. Conclusions : The induction of DSB in naked DNA was reduced by hypothermic irradiation. The temperature had no influence on the induction of DSB in the presence of a high concentration of DMSO, indicating that the temperature effect is mediated via the indirect effects of ionizing radiation. Results are difficult to interpret in intact cells. Rejoining during irradiation at the higher temperature may counteract an increased induction. The difference in rejoining may be interpreted in terms of qualitative differences between breaks induced at the two temperatures.  相似文献   

17.
PURPOSE: To investigate the effects of subphysiological irradiation temperature (2 28 degrees C) and the influence of the radical scavenger DMSO on the induction of double-strand breaks (DSB) in chromosomal DNA from a human breast cancer cell line (MCF-7) as well as in intact cells. The rejoining of DSB in cells irradiated at 2 degrees C or 37 degrees C was also investigated. MATERIALS AND METHODS: Agarose plugs with [14C]thymidine labelled MCF-7 cells were lysed in EDTA-NLS-proteinase-K buffer. The plugs containing chromosomal DNA were irradiated with X-rays under different temperatures and scavenging conditions. Intact MCF-7 cells were irradiated in Petri dishes and plugs were made. The cells were then lysed in EDTA-NLS-proteinase-K buffer. The induction of DSB was studied by constant field gel electrophoresis and expressed as DSB/100/Mbp, calculated from the fraction of activity released into the gel. RESULTS: The induction of DSB in chromosomal DNA was reduced by a decrease in temperature. This protective effect of low temperature was inhibited when the DNA was irradiated in the presence of DMSO. No difference was found when intact cells were irradiated at different temperatures. However, the rapid phase of rejoining was slower in cells irradiated at 37 degrees C than at 2 degrees C. CONCLUSIONS: The induction of DSB in naked DNA was reduced by hypothermic irradiation. The temperature had no influence on the induction of DSB in the presence of a high concentration of DMSO, indicating that the temperature effect is mediated via the indirect effects of ionizing radiation. Results are difficult to interpret in intact cells. Rejoining during irradiation at the higher temperature may counteract an increased induction. The difference in rejoining may be interpreted in terms of qualitative differences between breaks induced at the two temperatures.  相似文献   

18.
Abstract

Purpose: To evaluate the effect of NU7026, a specific inhibitor of DNA-PKcs, on DNA-double strand break (DSB) repair in a cell cycle specific manner, on the G2/M checkpoint, mitotic progression, apoptosis and clonogenic survival in non-small-cell lung carcinoma (NSCLC) cell lines with different p53 status.

Material and methods: Cell cycle progression, and hyperploidy were evaluated using flow cytometry. Polynucleation as a measure for mitotic catastrophe (MC) was evaluated by fluorescence microscopy. DSB induction and repair were measured by constant-gel electrophoresis and γH2AX assay. The efficiency of DSB rejoining during the cell cycle was assessed by distinguishing G1 and G2/M phase cells on the basis of the DNA content in flow cytometry. The overall effect on cell death was determined by apoptosis and the surviving fraction after irradiation with 2?Gy (SF2) assessed by clonogenic survival.

Results: DSB signaling upon treatment with NU7026, as measured by γH2AX signaling, was differently affected in G1 and G2/M cells. The background level of γH2AX was significantly higher in G2/M compared to G1 cells, whereas NU7026 had no effect on the background level. The steepness of the initial dose effect relation at 1?h after irradiation was less pronounced in G2/M compared to G1 cells. NU7026 had no significant effect on the initial dose-effect relation of γH2AX signaling. In comparison, NU7026 significantly slowed down the repair kinetics and increased the residual γH2AX signal at 24?h after irradiation in the G1 phase of all cell lines, but was less effective in G2/M cells. NU7026 significantly increased the fraction of G2/M phase cells upon irradiation. Moreover, NU7026 significantly increased mitotic catastrophe and hyperploidy, as a measure for mitotic failure after low irradiation doses of about 4?Gy, but decreased both at higher doses of 20?Gy. In addition, radiation induced apoptosis increased in A549, H520 and H460 but decreased in H661 upon NU7026 treatment, with a significant reduction of SF2 in all NSCLC cell lines.

Conclusion: Overall, NU7026 significantly influences the cell cycle progression through the G2- and M-phases and thereby determines the fate of cells. The impairment of DNA-PK upon treatment with NU7026 affects the efficiency of the NHEJ system in a cell cycle dependent manner, which may be of relevance for a clinical application of DNA-PK inhibitors in tumor therapy.  相似文献   

19.
Purpose: To determine the role of single (SSB) and double strand break (DSB) repair in the induction and propagation of radiation-induced instability.

Materials and methods: Two defined hamster cell lines with known DNA repair deficiencies in DSB repair (XR-C1) and base excision repair (EM-C11) and the parental wild-type line (CHO-9) were used. The rate of micronucleus formation, apoptosis and survival were measured at 0, 7 and 14 days after X-ray radiation.

Results: An enhanced rate of production of damaged cells was observed in wild type and the repair deficient mutants after irradiation. This was cell type, dose and time-dependent. All cells demonstrated delayed death up to day 14 after irradiation along with an elevated apoptosis frequency. The yield of micronuclei was not significantly increased in the wild-type cells, but was in the mutant cells, over the dose and time range studied. For all three endpoints the increase in damage was most pronounced in the SSB deficient cell line.

Conclusions: SSB and/or oxidized base damage play a major role, rather than DSB, in radiation induced instability.  相似文献   

20.
We examined the radioprotective effect of the aminothiol WR-255591 and its phosphorothioate derivative WR-3689 on aerated cultured Chinese hamster ovary cells. At concentrations up to 10 mmol dm-3, WR-3689 afforded little protection from the lethal effects of gamma-radiation. The free thiol WR-255591, on the other hand, efficiently protected these cells, giving a protection factor (PF) for cell survival of 2.3 at a concentration of 6 mmol dm-3. The effects of WR-255591 on the induction and rejoining of gamma-ray-induced DNA single-strand breaks (ssb) and double-strand breaks (dsb) were measured using alkaline (pH 12.1) and neutral (pH 7.0 or 9.6) elution, respectively. PFs calculated from these data were compared with the PFs measured for cell survival. WR-255591 (6 mmol dm-3) protected against the induction of both DNA ssb and dsb; however, the magnitude of the modification of both ssb (PF of 1.23) and dsb (PF of 1.83 at pH 7.0 and 1.70 at pH 9.6) was less than that for cell survival (PF of 2.3) measured under identical conditions (irradiation on ice). Treatment of cells with WR-255591 prior to irradiation retarded the subsequent rate of ssb rejoining but had no effect on dsb rejoining. Postirradiation treatment with the drug slightly retarded ssb rejoining but had no effect on cell survival. The observation of lower PFs for DNA strand breaks than for cell survival suggests that radioprotection by WR-255591 probably does not result from a uniform decrease in the induction of all types of DNA lesions. Rather, the drug may differentially protect against the induction of subclasses of DNA damage--which could also explain the effects on the kinetics of ssb rejoining--and/or enhance cellular recovery processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号