首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: The study consisted of two treatment arms comparing the effects of CLDR (continuous low dose rate) and PDR (pulsed dose rate) brachytherapy on cell cycle progression in a radioresistant rat prostate tumour model. MATERIALS AND METHODS: Interstitial PDR and CLDR brachytherapy (both 192-Ir, 0.75 Gy/h) were administered to Dunning prostate R3327-AT1 carcinomas transplanted subcutaneously into the thigh of Copenhagen rats. Increasing doses of up to 20 as well as up to 40 Gy were applied. Cell cycle distributions of the aneuploid tumour cell subpopulations were determined at 4 h (3 Gy), 24 h (18 Gy), 48 h (20 and 36 Gy), as well as during the subsequent redistribution period (20 and 40 Gy) at 72, 96, and 120 h. Tumours either implemented with an empty tubing system (n=5) or under undisturbed growth (n=5) served as controls. Three animals were irradiated per time point and exposure condition. At least two flow cytometrical analyses were carried out per animal. RESULTS: The aneuploid cells possessed a constant DNA-Index of 1.9+/-0.06. In contrast to sham-treated controls, the aneuploid cell fraction with G2/M DNA content was significantly increased (p<0.05) after initiation of both, CLDR and PDR brachytherapy. However, CLDR resulted in an earlier accumulation of tumour cells in G2/M (24 h: 28% CLDR vs. 19% PDR, p<0.05) with a concomitant reduction of cells in G1, whereas PDR yielded delayed, but then more pronounced cell cycle changes, particularly expressed during the redistribution period after both 20 and 40 Gy. CONCLUSION: CLDR and PDR brachytherapy showed differential effects on cell cycle progression. The induction of a significantly earlier but also less persistent G2/M cell cycle arrest after CLDR compared to PDR brachytherapy implies that a substantially higher fraction of tumour cells are irradiated in G2/M after CLDR.  相似文献   

2.

Background

Calculations on the basis on the LQ-model have been focussed on the possible radiobiological equivalence between common continuous low dose rate irradiation (CLDR) and a superfractionated irradiation (PDR=pulsed dose rate) provided that the same total dose will be prescribed in the same overall time as with the low doserate. A clinically usable fractionation scheme for brachytherapy was recommended by Brenner and Hall and should replace the classical CLDR brachytherapy with line sources with an afterloading technique using a stepping source. The hypothesis that LDR equivalency can be achieved by superfractionation was tested by means of in vitro experiments on V79 cells in monolayer and spheroid cultures as well as on HeLa monolayers.

Materials and Methods

Simulating the clinical situation in PDR brachytherapy, fractionation experiments were carried out in the dose rate gradient of afterloading sources. Different dose levels were produced with the same number of fractions in the same overall incubation time. The fractionation schedules which were to be compared with a CLDR reference curve were: 40×0.47 Gy, 20×0.94 Gy, 10×1.88 Gy, 5×3.76 Gy, 2×9.4 Gy given in a period of 20 h and 1×18.8 Gy as a “single dose” exposition. As measured by flow cytometry, the influence of the dose rate in the pulse on cell survival and on cell cycle distribution under superfractionation was examined on V79 cells.

Results

V79 spheroids as a model for a slowly growing tumor, reacted according to the radiobiological calculations, as a CLDR equivalency was achieved with increasing fractionation. Rapidly growing V79 monolayer cells showed an inverse fractionation effect. A superfractionated irradiation with pulses of 0.94 Gy/h respectively 0.47 Gy/0.5 h was significantly more effective than the CLDR irradiation. This inverse fractionation effect in log-phase V79 cells could be attributed to the accumulation of cycling cells in the radiosensitive G2/M phase (G2 block) during protected exposure which was drastically more pronounced for the pulsed scheme. HeLa cells were rather insensitive to changes of fractionation. Superfractionation as well as hypofractionation yielded CLDR equivalent survival curves.

Conclusions

The fractionation scheme, derived from the PDR theory to achieve CLDR equivalent effects, is valid for many cell lines, however not for all. Proliferation and dose rate dependend cell cycle effects modify predictions derived from the sublethal damage recovery model and can influence acute irradiation effects significantly. Dose rate sensitivity and rapid proliferation favour cell cycle effects and substantiate, applied to the clinical situation, the possibility of a higher effectiveness of the pulsed irradiation on rapidly growing tumors.  相似文献   

3.
Purpose : To study the response of the Dunning prostate carcinoma (R3327-AT1 subline) to continuous low dose-rate (CLDR) and pulsed dose-rate (PDR) brachytherapy. Materials and methods : After subcutaneous tumour transplantation into the thigh of the Copenhagen rat, doses of 0, 20, 30, 40 and 50 Gy were applied to the tumour surface (tumour diameter 9 ±1mm). Eight animals were irradiated per dose group and exposure condition. Interstitial PDR (192 Ir source, 37 GBq) and CLDR (192 Ir seed, 150 MBq) brachytherapy were carried out with 0.75 Gy/pulse h -1 and a dose-rate of 0.75Gyh -1, respectively. Treatment response was assessed in terms of growth delay expressed as the time (T 5) required for each tumour to reach five times the initial tumour volume. Results : The median T 5 times for the CLDR groups (in the order: control, 20, 30, 40, 50 Gy) were 12 (12), 54.5 (21), 64.5 (31), 85.5 (51), and 65 (47.5) days. Values after PDR brachytherapy are given in parentheses and resulted in a significantly impaired tumour growth delay (log-rank test) in the 20Gy (p =0.006) and 30 Gy (p =0.036) groups. No significant difference was found in the 40-50 Gy dose range. Conclusions : In contrast to previous results and predictions of biological models we observed dose-dependent differential effects of PDR and CLDR brachytherapy with reduced efficacy of PDR in the lower dose range.  相似文献   

4.
PURPOSE: To study the response of the Dunning prostate carcinoma (R3327-AT1 subline) to continuous low dose-rate (CLDR) and pulsed dose-rate (PDR) brachytherapy. MATERIALS AND METHODS: After subcutaneous tumour transplantation into the thigh of the Copenhagen rat, doses of 0, 20, 30, 40 and 50 Gy were applied to the tumour surface (tumour diameter 9+/-1mm). Eight animals were irradiated per dose group and exposure condition. Interstitial PDR ((192)Ir source, 37 GBq) and CLDR ((192)Ir seed, 150 MBq) brachytherapy were carried out with 0.75 Gy/pulse h(-1) and a dose-rate of 0.75Gyh(-1), respectively. Treatment response was assessed in terms of growth delay expressed as the time (T(5)) required for each tumour to reach five times the initial tumour volume. RESULTS: The median T(5) times for the CLDR groups (in the order: control, 20, 30, 40, 50 Gy) were 12 (12), 54.5 (21), 64.5 (31), 85.5 (51), and 65 (47.5) days. Values after PDR brachytherapy are given in parentheses and resulted in a significantly impaired tumour growth delay (log-rank test) in the 20Gy (p =0.006) and 30 Gy (p =0.036) groups. No significant difference was found in the 40-50 Gy dose range. CONCLUSIONS: In contrast to previous results and predictions of biological models we observed dose-dependent differential effects of PDR and CLDR brachytherapy with reduced efficacy of PDR in the lower dose range.  相似文献   

5.
PURPOSE: The aim of this study was to evaluate effect, toxicity, and cosmesis of a prospectively applied pulsed dose rate (PDR) brachytherapy boost schedule in patients with stage I/II/IIIa invasive breast cancer. PATIENTS AND METHODS: A total of 113 patients were treated after breast-conserving surgery (BCS) and external beam radiotherapy (median 50 Gy, range 46-52). The boost dose was graded in accordance to the pathologic tumor characteristics: 20-25 Gy: incomplete resection (n = 34), vascular invasion (n = 27), close margin resection (n = 41); 15 Gy: T2G3 stage (n = 11). PDR brachytherapy (37 GBq, (192)Ir source) was carried out after geometric volume optimization with 1 Gy/pulse/h. The implantation and dose specification were performed similar to the rules of the Paris system. RESULTS: The overall local failure rate after a median follow-up of 61 months was 4.4% (5/113). The actuarial 5- and 8-year local recurrence-free survival rates were 95% and 93%, respectively. Cosmesis was rated by 90% of the patients as excellent or good. 14/113 patients experienced grade III (all caused by planar telangiectasia) and none of the patients grade IV late toxicity of the skin (RTOG/EORTC). A boost dose of 25 Gy resulted in a significantly higher rate of late toxicity (Fisher's exact test, p < 0.01). CONCLUSIONS: PDR brachytherapy is safe, effective, and provides good cosmesis. A CLDR breast boost can be replaced by PDR brachytherapy without significant loss of therapeutic ratio.  相似文献   

6.
《Brachytherapy》2014,13(2):187-195
PurposeTo assess the long-term results of protocol-based interstitial pulsed-dose-rate (PDR) brachytherapy combined with simultaneous chemotherapy in selected patients with recurrent head and neck tumors not amenable to salvage surgery.Methods and MaterialsA total of 51 patients with recurrent head and neck cancer were treated with interstitial PDR brachytherapy. Forty patients (78%) had salvage brachytherapy alone using a median total dose of 60 Gy. Salvage brachytherapy in combination with external beam therapy was performed in 11 patients (22%) using a median total dose of DREF = 27 Gy. Simultaneously with the PDR brachytherapy, a concomitant chemotherapy was administered in 35/51 (69%) of patients. The analysis was performed after a median followup of 58 months.ResultsLocal control rates calculated according to Kaplan–Meier after 2 and 5 years were 71% and 57%, respectively. Comparing results of salvage PDR brachytherapy with or without simultaneous chemotherapy, the 5-year local recurrence-free survival rates were 78.9% vs. 38.5% (p = 0.01), respectively. No other patient or treatment-related parameters had a significant influence on treatment results. A total of 9/51 (17.7%) and 6/51 (11.8%) patients developed soft-tissue necrosis or bone necrosis, respectively, but only 2% of patients required surgical treatment.ConclusionsPDR interstitial brachytherapy with pulse doses between 0.4 and 0.7 Gy/h/24 h with simultaneous chemotherapy is an effective and safe option for curative therapy in selected patients with head and neck cancer in previously irradiated areas, which are not suitable for salvage surgery.  相似文献   

7.

Purpose

Present radiobiological studies for different cell lines in vitro demonstrate the equivalence and efficacy of continuous low-dose-rate brachytherapy (LDR-BT) and pulsed dose rate brachytherapy (PDR-BT) when using small and frequent dose pulses. The aim of this study was to examine monolayer fibroblast cultures in vitro to examine the biological effects of different pulse doses and dose rates under clinically conditiones.

Material and Methods

B14 cells, Hy B14 FAF 28, peritoneal fibroblasts, were cultured in multi-well plates and exposed to a PDR radiation source at a distance of 9 mm. The following PDR-schemes were compared: dose per pulse: 1 Gy, 2.5 Gy and 5 Gy to a total dose of 5 Gy/5 h (overall time). 10 Gy/10 h, 20 Gy/20 h and 30 Gy/30 h. The pulse duration for the examination of dose rate effects was 20 min, 30 min or 52 min corresponding to a pulse dose rate of 300 cGy/h, 200 cGy/h or 115 cGy/h. Treatment endpoints were cell survival measured by dye exclusion test and clonogenic cell survival.

Results

Cell survival decreased for pulse doses of 5 Gy compared to 2.5 Gy or 1 Gy per pulse (mean dose rate 200 to 300 cGy/h). No differences were observed with dose rates during irradiation of 300 cGy/h, 200 cGy/h or 115 cGy/h (20 Gy/l Gy).

Conclusion

Radiobiological effects of PDR-BT are dependent on the dose per pulse, with differences in biological effects only with a dose per pulse of more than 2.5 Gy, considering the described in-vitro conditiones. More examinations with a more pronounced difference in dose rate will be continued for evaluation of dose rate effects.  相似文献   

8.

Purpose

The present work reports effects of source step sizes on dose distribution in patients treated with cobalt-60 (Co-60) high-dose-rate afterloading brachytherapy in carcinoma cervix (Ca-cx).

Methods and Materials

The retrospective study is based on data of 15 patients of Ca-cx treated with Co-60 high-dose-rate intracavitary brachytherapy with dose of 21 Gy in three fractions with source step size of 2.5 mm after external beam radiotherapy of 46 Gy. The effect of source step size on overall treatment procedure was evaluated from prescribed dose volume, dose to organ at risks, and treatment time for source step sizes of 1 mm, 2.5 mm, 5 mm, and 10 mm for each patient.

Results

The mean dose to bladder point for 1 mm, 2.5 mm, 5 mm, and 10 mm source step sizes was found to be 3.37 Gy (SD: 1.36), 3.44 Gy (SD: 1.38), 3.54 Gy (SD: 1.41), and 3.74 Gy (SD: 1.46), respectively. Similarly, the mean dose received by rectum point for these source step sizes were 2.86 Gy (SD: 0.64), 3.02 Gy (SD: 0.67), 3.25 Gy (SD: 0.71), and 3.63 Gy (SD: 0.73), respectively. The treatment time and prescribed dose coverage volume were both found to be gradually increasing with increase in step size.

Conclusions

Our results on Ca-cx brachytherapy using Co-60 source indicate that the prescribed dose volume gradually increases from smaller source step to larger source step size. This results in increase of dose to the bladder and rectum and may lead to increase in toxicity and reduces quality of life. The study recommends that step size more than 5 mm should not be used for uterine cervix intracavitary application using Co-60 source.  相似文献   

9.
Purpose: Although the significance of cell cycle checkpoints in overcoming low-dose hyper-radiosensitivity (HRS) has been proposed, the underlying mechanism of HRS in human hepatocellular cells remains unclear. Therefore, the aim of this study was to characterize HRS inhuman hepatocellular HepG2 cells and to explore the molecular mechanism(s) mediating this response.

Materials and methods: HepG2 cells were exposed to various single doses of γ radiation (from 0?Gy to 4?Gy), and then were assayed at subsequent time-points. Survival curves were then generated using a linear-quadratic (LQ) equation and a modified induced repair model (MIRM). The percentage of cells in the G1, G2/M, and S phases of the cell cycle were also examined using propidium iodide (PI) staining and flow cytometry. Levels of total cell division cyclin 25C (Cdc25C) and phosphorylated Cdc25C were examined by Western blotting.

Results: Low-dose γ radiation (<0.3?Gy) induced HRS in HepG2 cells, while doses of 0.3, 0.5, and 2.0?Gy γ radiation significantly arrested HepG2 cells in the G2/M phase. While total Cdc25C levels remained unchanged after irradiation, levels of phosphorylated Cdc25C markedly increased 6, 16, and 24?h after treatment with 0.5 or 2.0?Gy radiation, and they peaked after 16?h. The latter observation is consistent with the G2/M arrest that was detected following irradiation.

Conclusions: These findings indicate that low-dose HRS in HepG2 cells may be associated with Cdc25C-mediated G2/M cell cycle checkpoint control.  相似文献   

10.
Purpose: The aim of this study was to evaluate effect, toxicity, and cosmesis of a prospectively applied pulsed dose rate (PDR) brachytherapy boost schedule in patients with stage I/II/IIIa invasive breast cancer. Patients and Methods: A total of 113 patients were treated after breast-conserving surgery (BCS) and external beam radiotherapy (median 50 Gy, range 46-52). The boost dose was graded in accordance to the pathologic tumor characteristics: 20-25 Gy: incomplete resection (n = 34), vascular invasion (n = 27), close margin resection (n = 41); 15 Gy: T2G3 stage (n = 11). PDR brachytherapy (37 GBq, 192Ir source) was carried out after geometric volume optimization with 1 Gy/pulse/h. The implantation and dose specification were performed similar to the rules of the Paris system. Results: The overall local failure rate after a median follow-up of 61 months was 4.4% (5/113). The actuarial 5- and 8-year local recurrence-free survival rates were 95% and 93%, respectively. Cosmesis was rated by 90% of the patients as excellent or good. 14/113 patients experienced grade III (all caused by planar telangiectasia) and none of the patients grade IV late toxicity of the skin (RTOG/EORTC). A boost dose of 25 Gy resulted in a significantly higher rate of late toxicity (Fisher's exact test, p < 0.01). Conclusions: PDR brachytherapy is safe, effective, and provides good cosmesis. A CLDR breast boost can be replaced by PDR brachytherapy without significant loss of therapeutic ratio. Ziel: Diese Studie diente der Evaluierung von Effektivität, Toxizität und kosmetischen Ergebnissen eines prospektiv applizierten PDR- (pulsed dose-rate-)Brachytherapieboostkonzeptes bei Patienten mit invasivem Mammakarzinom im Stadium I/II/IIIa. Patienten und Methoden: Insgesamt wurden 113 Patienten nach brusterhaltender Therapie (BET) und externer Bestrahlung (Median 50 Gy, Range 46-52) behandelt. Die Boostdosis wurde anhand histopathologischer Tumorcharakteristika graduiert (Tabelle 1): 20-25 Gy: inkomplette Resektion (n = 34), Lymphgefäß- oder Gefäßinvasion (n = 27), "close-margin"-Resektion (n = 41); 15 Gy: T2G3 Stadium (n = 11). Die gepulste Brachytherapie (37 GBq, 192Ir-Quelle) wurde nach geometrischer Volumenoptimierung mit 1 Gy/Puls/h durchgeführt. Applikation und Dosisspezifikation erfolgten in Anlehnung an das Pariser System. Ergebnisse: Die Lokalrezidivrate betrug nach einer medianen Nachbeobachtungszeit von 61 Monaten 4,4% (5/113). Das aktuarische lokalrezidivfreie 5- und 8-Jahres-Überleben betrug 95% bzw. 93% (Abbildungen 1 und 2). 90% der Patienten beurteilten ihre kosmetischen Ergebnisse als gut oder exzellent (Tablle 3). Bedingt durch flächige Teleangiektasien im Boostareal entwickelten 14/113 Patienten eine Grad-III-Spättoxizität (0/113 Grad IV) der haut (RTOG/EORTC, Tabelle 2). Eine Boostdosis von 25 Gy resultierte in einer signifikant erhöhten Spättoxizitätsrate (Fishers Exakt-Test, p < 0,01, Abbildung 3). Schlussfolgerung: Die gepulste Brachytherapie ist sicher und effektiv. Die kosmetischen Ergebnisse sind gut. Der interstitielle CLDR-Mammaboost kann durch die PDR-Brachytherapie ohne signifikanten Verlust an therapeutischer Breite ersetzt werden.  相似文献   

11.
Abstract

Purpose: To evaluate the effect of NU7026, a specific inhibitor of DNA-PKcs, on DNA-double strand break (DSB) repair in a cell cycle specific manner, on the G2/M checkpoint, mitotic progression, apoptosis and clonogenic survival in non-small-cell lung carcinoma (NSCLC) cell lines with different p53 status.

Material and methods: Cell cycle progression, and hyperploidy were evaluated using flow cytometry. Polynucleation as a measure for mitotic catastrophe (MC) was evaluated by fluorescence microscopy. DSB induction and repair were measured by constant-gel electrophoresis and γH2AX assay. The efficiency of DSB rejoining during the cell cycle was assessed by distinguishing G1 and G2/M phase cells on the basis of the DNA content in flow cytometry. The overall effect on cell death was determined by apoptosis and the surviving fraction after irradiation with 2?Gy (SF2) assessed by clonogenic survival.

Results: DSB signaling upon treatment with NU7026, as measured by γH2AX signaling, was differently affected in G1 and G2/M cells. The background level of γH2AX was significantly higher in G2/M compared to G1 cells, whereas NU7026 had no effect on the background level. The steepness of the initial dose effect relation at 1?h after irradiation was less pronounced in G2/M compared to G1 cells. NU7026 had no significant effect on the initial dose-effect relation of γH2AX signaling. In comparison, NU7026 significantly slowed down the repair kinetics and increased the residual γH2AX signal at 24?h after irradiation in the G1 phase of all cell lines, but was less effective in G2/M cells. NU7026 significantly increased the fraction of G2/M phase cells upon irradiation. Moreover, NU7026 significantly increased mitotic catastrophe and hyperploidy, as a measure for mitotic failure after low irradiation doses of about 4?Gy, but decreased both at higher doses of 20?Gy. In addition, radiation induced apoptosis increased in A549, H520 and H460 but decreased in H661 upon NU7026 treatment, with a significant reduction of SF2 in all NSCLC cell lines.

Conclusion: Overall, NU7026 significantly influences the cell cycle progression through the G2- and M-phases and thereby determines the fate of cells. The impairment of DNA-PK upon treatment with NU7026 affects the efficiency of the NHEJ system in a cell cycle dependent manner, which may be of relevance for a clinical application of DNA-PK inhibitors in tumor therapy.  相似文献   

12.
Purpose: Lepidopteran insect cells are known to exhibit very high radioresistance. Although very effective DNA excision–repair has been proposed as a contributing factor, a detailed understanding of insect cell radiation responses has not yet been obtained. Therefore, the study was carried out to understand the in vitro radiation responses of Sf9 lepidopteran cells.

Materials and methods: Exponentially growing asynchronous Sf9 cells (derived from ovaries of Spodoptera frugiperda) were exposed to gamma‐radiation doses of 2–200?Gy. Cell survival, growth inhibition, cell cycle progression delay, alterations in cell morphology as well as induction of DNA damage, micronuclei and apoptosis were studied at various post‐irradiation time intervals.

Results: Biphasic survival response curves were obtained with D0 rising from 20?Gy (at doses ≤60?Gy) to 85?Gy (between 60 and 200?Gy), corroborating earlier reports on lepidopteran cells. An additional downward deviation at 2?Gy indicated a hypersensitive response. Dose‐dependent growth inhibition with a transient G2 delay starting 12?h and extending up to 48–96?h was observed at doses of 10–200?Gy, while a brief G1/S transition delay was observed only at higher doses (≥100?Gy). Significant DNA damage was detected only at 20?Gy and higher doses, in contrast with human cells that showed similar damage at 2?Gy. Interestingly, micronuclei were not induced at any of the doses tested, although spontaneous micronucleation was evident in <1% of cells. Lack of micronucleus induction even at doses that induced significant DNA damage and a transient G2 block (20–50?Gy) strongly indicated a role of holocentric lepidopteran chromosomes. Apoptosis was detected only in a small proportion of cells (3%) exposed to 200?Gy, and cell/nucleus size and granularity increased by 72–96?h post‐irradiation in a dose‐dependent manner. Sf9 nucleoids extracted at 2?M NaCl showed higher compactness than the nucleoids prepared from human cells.

Conclusions: It is clearly shown that lepidopteran cells are highly resistant to the induction of DNA damage and micronuclei, and display very low induction of apoptosis at doses up to 200?Gy. While the lack of micronucleus induction seems to be primarily due to the holocentric nature of their chromosomes, certain unique signalling pathways might be responsible for the low induction of apoptosis. Factors causing protection of Sf9 cellular DNA from radiation‐induced damage are presently being investigated.  相似文献   

13.
Purpose: Molecular mechanisms by which balloon angioplasty injury-induced neointimal hyperplasia can be reduced by intravascular brachytherapy are unclear. We investigated the role of nuclear factor-kappaB (NF-κB) in neointimal hyperplasia following intracoronary irradiation.

Materials and methods: Fifty-four coronary arteries from 30 pigs were divided into 6 groups: sham control, balloon angioplasty injury alone, β-irradiation at doses of 14 or 20 Gy, and 14 or 20 Gy beta-irradiation immediately followed by balloon injury. Coronary arteries were injured by overstretch balloon angioplasty and then the arteries were irradiated using a Rhenium-188 (188Re) β-emitting solution-filled balloon. Pigs were scarified one day or one week after coronary interventions for molecular detection and six weeks after the procedures for histological examination.

Results: Six weeks after coronary interventions, the histological results show that balloon angioplasty injury had induced intimal hyperplasia in coronary artery but the response was significantly reduced by 28% and 60% when the injury was immediately treated by 14 and 20 Gy 188Re β-irradiation, respectively. The expression of arterial NF-κB p65, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) were detected at one day and one week after the procedures. The treatment of balloon injury could significantly induce the NF-κB p65 expression in both gene and protein levels, and such induction could be significantly reduced by 188Re β-irradiation at dose of 20 Gy. However, the similar result on the regulation of gene expression affected by the β-irradiation could not be observed in ICAM-1 and VCAM-1.

Conclusion: The inhibitory effect of intracoronary brachytherapy on neointimal formation following overstretch balloon angioplasty could involve inhibition of NF-κB p65.  相似文献   

14.
15.
Purpose The aim of the study was to explore the cause of the difference in the maximal rectal dose between the first and second high dose rate (HDR) brachytherapy applications by comparing the thickness of the anterior rectal wall. Materials and methods The rectal dose and the thickness of the anterior rectal wall were analyzed in 26 patients with prostate cancer. After undergoing external beam radiation treatment with a total isocenter dose of 50 Gy, they were treated with HDR brachytherapy of 7.5 Gy/fraction, two fractions daily. The interval between the first HDR brachytherapy session and the second was 5 h. The rectal doses were directly surveyed during irradiation of the HDR brachytherapy. Thickening of the anterior rectal wall was measured at the same level by axial computed tomography scans obtained before the first and second HDR brachytherapy applications. Results The maximal surveyed rectal doses during the first and second HDR brachytherapy applications were 188 ± 51 cGy and 220 ± 35 cGy, respectively (P < 0.01). The fluctuation ratio exceeded 1 in each case. The thickness of the anterior rectal wall before the first and second HDR brachytherapy applications was 18.78 ± 4.34 mm and 14.95 ± 4.09 mm (P < 0.01), respectively. The fluctuation difference exceeded 0 in each case. Conclusion The different rectal dose is attributable to thinning of the anterior rectal wall. The total rectal dose is within the range of doses at risk of exerting a toxic effect on the rectum.  相似文献   

16.
Purpose: To investigate the effects of high dose rate (HDR) brachytherapy on cellular progression of a radioresistant human squamous cell carcinoma in vitro, based on clinical parameters.

Materials and methods: An acrylic platform was designed to attach tissue culture flasks and assure source positioning during irradiation. At exponential phase, A431cells, a human squamous cell carcinoma, were irradiated twice up to 1100 cGy. Cellular proliferation was assessed by Trypan blue exclusion assay and survival fraction was calculated by clonogenic assay. DNA content analysis and cell cycle phases were assessed by flow cytometry and gel electrophoresis, respectively. Cellular death patterns were measured by HOPI double-staining method.

Results: Significant decreasing cellular proliferation rate (p?<?0.05) as well as reduced survival fraction (p?<?0.001) in irradiated cells were observed. Moreover, increased percentage of cells arrested in the G2/M phase (32.3?±?1.5%) in the irradiated group as compared with untreated cells (8.22?±?1.2%) was detected. Also, a significant (p?<?0.0001) nuclei shrinking in irradiated cells without evidence of necrosis or apoptosis was found.

Conclusion: HDR brachytherapy led to a decreased proliferation rate and cell survival and also hampered cellular progression to mitosis suggesting that tumor cell death mainly occurred due to mitotic death and G2/M cell cycle arrest.  相似文献   


17.
Abstract

Purpose: The aim of this study was to compare levels of apoptosis, necrosis, mitotic cell death and senescence after treatment with both direct radiation and irradiated cell conditioned medium.

Materials and methods: Human keratinocytes (HaCaT cell line) were irradiated (0.005, 0.05 and 0.5 Gy) using a cobalt 60 teletherapy unit. For bystander experiments, the medium was harvested from donor HaCaT cells 1 hour after irradiation and transferred to recipient HaCaT cells. Clonogenic assay, apoptosis, necrosis, mitotic cell death, senescence and cell cycle analysis were measured in both directly irradiated cells and bystander cells

Results: A reduction in cell survival was observed for both directly irradiated cells and irradiated cell conditioned medium (ICCM)-treated cells. Early apoptosis and necrosis was observed predominantly after direct irradiation. An increase in the number of cells in G2/M phase was observed at 6 and 12 h which led to mitotic cell death after 72 h following direct irradiation and ICCM treatment. No senescence was observed in the HaCaT cell line following either direct irradiation or treatment with ICCM.

Conclusion: This study has shown that directly irradiated cells undergo apoptosis, necrosis and mitotic cell death whereas ICCM-treated cells predominantly undergo mitotic cell death.  相似文献   

18.
目的 研究单次、分次和125Ⅰ粒子持续低剂量率照射对结直肠癌CL187细胞生物学效应的影响.方法 实验分高剂量率单次照射组(400 cGy/min,单次组)、分次照射组(2 Gy/次/d,400 cGy/min,分次组)和125Ⅰ粒子持续低剂量率照射组(2.77 cGy/h,125Ⅰ组).3组细胞照射0、2、4和8 Gy后,24和48 h进行细胞计数和锥虫蓝染色,比较细胞总数和细胞存活率的差异.利用克隆形成实验比较3组细胞增殖能力的差异.通过流式细胞仪检测细胞凋亡.蛋白免疫印迹法分析PHLPP2、PTEN和Bax蛋白表达的变化.结果 与单次组和分次组相比,125Ⅰ组细胞总数减少(t=34.28和29.48,P<0.05)、存活细胞比例减少(t=-12.38和-14.61,P<0.05),细胞克隆形成能力下降,相对生物学效应是1.41.照射后48 h细胞凋亡检测发现125Ⅰ组细胞凋亡比例增加(t=-15.08和-11.99,P<0.05).蛋白免疫印迹法检测发现125Ⅰ组Bax表达量升高,PHLPP2和PTEN的表达量3组间差异无统计学意义.结论 单次、分次和持续低剂量率照射后细胞PHLPP2蛋白表达水平均升高,但剂量率的高低并不影响其表达水平.不同方式照射后,凋亡相关蛋白Bax的表达水平上升,125Ⅰ组升高更加明显,125Ⅰ持续低剂量粒子照射可能通过影响凋亡相关蛋白Bax的表达水平实现对结直肠癌CL187细胞的杀伤作用.  相似文献   

19.
20.
Purpose: To investigate two long-held beliefs in radiation cytogenetics that were seemingly contradicted by reports that: (a) protracting γ-ray exposures over 0.5 h halves the induced aberration yield compared with acute exposure, and (b) that induced aberration yields in guaranteed first in vitro division metaphases (M1) vary with culture time.

Materials and methods: Replicate blood samples were exposed for 3 min to 3.0 Gy γ-rays and standard phytohaemagglutinin stimulated lymphocyte cultures were harvested at 10 times ranging from 45 – 72 h. Forty-eight hour cultures were also made from blood exposed to 3.0 Gy for 30 min. Slides were differentially stained, combining the harlequin method with fluorescent in-situ hybridization (FISH) painting of chromosomes 2, 3 and 5. M1 metaphases were scored for 1- and 2-way translocations involving the painted chromosomes and all unstable aberrations in the full genomes.

Results: Dicentric and translocation yields from the 30 min exposure were approximately 10% lower than in 48 h cultures from cells exposed for 3 min, although this reduction is not significant. Dicentric aberration yields from the 3 min exposed cells cultured over the range 45 – 72 h remained constant up to 51 h then rose to a different constant value beyond 60 h. The increase at 60 – 70 h compared with the yield at 48 h was about 50%. A marginal increase at later times was also observed for translocations.

Conclusion: The protracted exposure experiment produced results consistent with the G-function hypothesis that models the dose rate effect. Therefore the previous report of a marked departure from this model was not confirmed. The reports of aberration yields increasing with time of arrival at metaphase were confirmed. Possible explanations are discussed; the intercellular distributions of aberrations, or of doses to the cells or heterogeneous radiosensitivity of lymphocyte sub-populations. None alone seems sufficient quantitatively to explain the magnitude of the effect. The implications for biological dosimetry, which employs cultures times of approximately 48 h, are considered to be minor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号