首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li L  Ding J  Ren Z  Han Q  Hu G  Xiao M 《Brain research》2006,1114(1):41-52
To investigate whether neural nitric oxide synthase (nNOS) in the parabrachial nucleus (PB) is involved in processing visceral noxious stimulation, we mapped the distribution of histochemical staining for nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d), a marker for nNOS, and immunohistochemical staining for Fos, a neuronal activity marker, in the subnuclei of the PB following 2% formalin injection into the stomach of rats. NADPH-d and noxious-stimuli induced Fos staining were also examined in tissue containing PB cells labeled by the retrograde transport of fluogold (FG) injected into the central nucleus of the amygdala (CeA). We found that the number of Fos immunoreactive (Fos-IR) neurons was significantly increased in the dorsal lateral (dl), external lateral (el) and K?lliker-Fuse (KF) subnuclei of the PB. We observed that intensely labeled (type 1) NADPH-d positive neurons were mainly located in the rostral part of the PB; they extended long processes adjacent Fos-IR neurons, but no Fos/type 1 NADPH-d double-labeled neurons were seen. In contrast, lightly labeled (type 2) NADPH-d positive neurons were principally localized in the dl of the PB, in which a few Fos/type 2 NADPH-d double-labeled neurons were detected. Additionally, a large number of FG/Fos double-labeled neurons were observed to be surrounded closely by the intensive NADPH-d staining in the el of the PB. These results suggest that neurons in the el of the PB that project to the CeA are activated by visceral noxious stimulation and could be indirectly influenced by nitric oxide in the PB.  相似文献   

2.
Immune stimulation induces Fos expression in brainstem amygdala afferents   总被引:2,自引:0,他引:2  
Adaptation to infectious diseases or models of infectious diseases such as immune stimulation with exogenous administration of bacterial lipopolysaccharide (LPS) or cytokines involve complex autonomic, endocrine, and behavioral responses mediated by the central nervous system. The purpose of this study is to determine the neural pathways from the brainstem activating the central nucleus of the amygdala after LPS injections in rats. Fos immunohistochemistry was performed as a marker of neuronal activation in rats prepared with injections of the retrograde tracing agents Fluorogold or cholera toxin B subunit directed at the central nucleus of the amygdala, and subsequently treated with intravenous LPS. The dose of LPS was titrated to achieve behavioral suppression ("sickness behavior") and fever, while avoiding hypotension and shock. Low-dose LPS induced Fos in central amygdala afferent neurons in the periaqueductal gray, lateral parabrachial nucleus, and solitary nucleus, as indicated by neurons containing both Fos and retrograde tracing agent. The lateral parabrachial nucleus had approximately 10-fold higher numbers of double-labeled cells than the solitary nucleus and periaqueductal gray; 95% of the double-labeled neurons in the lateral parabrachial nucleus were located in the outer zone of the external lateral subnucleus. These results suggest that a prominent source of limbic activation from the brainstem after LPS involves a restricted subdivision of the lateral parabrachial nucleus.  相似文献   

3.
By using substance P receptor (SPR) immunofluorescence histochemistry combined with fluorescent retrograde labeling, SPR-like immunoreactive (SPR-LI) neurons sending their axons to the lateral parabrachial region were observed in the lumbar spinal cord of the rat. After injection of Fluoro-Gold into lateral parabrachial region, retrogradely labeled neurons with SPR-LI were seen frequently in lamina I and the lateral spinal nucleus, and occasionally in laminae IV and V, with a predominantly contralateral distribution. Some of these neurons, especially those in lamina I, may convey nociceptive information to the lateral parabrachial region.  相似文献   

4.
The bed nucleus of the stria terminalis (BST) sends a dense projection to the parabrachial nucleus (PB) in the pons. The BST contains many different types of neuropeptidelike immunoreactive cells and fibers, each of which exhibits its own characteristic distribution within cytoarchitecturally distinct BST subnuclei. Corticotropin releasing factor (CRF)-, neurotensin (NT)-, somatostatin (SS)-, and enkephalin (ENK)-like immunoreactive (ir) neurons are particularly numerous within areas of the BST that project to the PB. In this study, we use the combined retrograde fluorescence-immunofluorescence method to determine whether neurons in the BST that project to the PB contain these immunoreactivities. After Fast Blue injections into PB, retrogradely labeled neurons were numerous throughout the lateral part of the BST, particularly in the dorsal lateral (DL) and posterior lateral subnuclei. Retrogradely labeled neurons were also present in the preoptic, ventral lateral, and supracapsular BST subnuclei and in the parastrial nucleus. Many of the CRF-ir, NT-ir, and SS-ir neurons in DL were retrogradely labeled. A few double-labeled cells of each type were also found in the posterior lateral, ventral lateral and supracapsular BST subnuclei ENK-ir neurons were never retrogradely labeled. Our results show that BST neurons that project to the PB stain for the same neuropeptides as those in the central nucleus of the amygdala (CeA) that project to the PB, demonstrating further the close anatomical relations between these two structures.  相似文献   

5.
The parabrachial nucleus (PB) is the main relay for ascending visceral afferent information from the nucleus of the solitary tract (NTS) to the forebrain. We examined the chemical organization of solitary-parabrachial afferents by using combined retrograde transport of fluorescent tracers and immunohistochemistry for galanin (GAL), cholecystokinin (CCK), and corticotropin-releasing factor (CRF). Each peptide demonstrated a unique pattern of immunoreactive staining. GAL-like immunoreactive (-ir) fibers were most prominent in the "waist" area, the inner portion of external lateral PB, and the central and dorsal lateral PB subnuclei. Additional GAL-ir innervation was seen in the medial and external medial PB subnuclei. GAL-ir perikarya were observed mainly rostrally in the dorsal lateral, superior lateral, and extreme lateral PB. CCK-ir fibers and terminals were most prominent in the outer portion of the external lateral PB; some weaker labeling was also present in the central lateral PB. CCK-ir cell bodies were almost exclusively confined to the superior lateral PB and the "waist" area, although a few cells were seen in the K?lliker-Fuse nucleus. The distribution of CRF-ir terminal fibers in general resembled that of GAL, but showed considerably less terminal labeling in the lateral parts of the dorsal and central lateral PB, and the external medial and K?lliker-Fuse subnuclei. The CRF-ir cells were most numerous in the dorsal lateral PB and the outer portion of the external lateral PB; rostrally, scattered CRF-ir neurons were seen mainly in the central lateral PB. After injecting the fluorescent tracer Fast Blue into the PB, the distribution of double-labeled neurons in the NTS was mapped. GAL-ir cells were mainly located in the medial NTS subnucleus; 34% of GAL-ir cells were double-labeled ipsilaterally and 7% contralaterally. Conversely, 17% of the retrogradely labeled cells ipsilaterally and 16% contralaterally were GAL-ir. CCK-ir neurons were most numerous in the dorsomedial subnucleus of the NTS and the outer rim of the area postrema. Of the CCK-ir cells, 68% in the ipsilateral and 10% in the contralateral NTS were double-labeled, whereas 15% and 10%, respectively, of retrogradely labeled cells were CCK-ir. In the area postrema, 36% of the CCK-ir cells and 9% of the Fast Blue cells were double-labeled. CRF-ir neurons were more widely distributed in the medial, dorsomedial, and ventrolateral NTS subnuclei, but double-labeled cells were mainly seen in the medial NTS.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The hypothalamus is a major source of afferents to the parabrachial nucleus (PB), but the neurotransmitters in this pathway are largely unknown. In this study, we examine the neuropeptide immunoreactivities of neurons in the hypothalamus that project to the PB by using the combined retrograde fluorescence-immunofluorescence method. After injections of the fluorescent tracer fast blue into the PB, retrogradely labeled neurons were observed in the paraventricular, dorsomedial, ventromedial, median preoptic, and anteroventral periventricular hypothalamic nuclei; in the dorsal, retrochiasmatic, and lateral hypothalamic areas; and in the medial and lateral preoptic areas. Our results show that at least five distinct neuropeptide-immunoreactive cell populations in the hypothalamus project to the PB. In the perifornical lateral hypothalamus, many neurotensin (NT)-, corticotropin-releasing factor-, dynorphin (DYN)-, angiotensin II (AII)-, and galanin-like immunoreactive (-ir) neurons were retrogradely labeled. A cluster of retrogradely labeled neurons in the juxtacapsular lateral hypothalamus stained with an antiserum against alpha-melanocyte stimulating hormone (alpha MSH). Over 50% of the retrogradely labeled cells in the arcuate nucleus were adrenocorticotropin (ACTH)-or alpha MSH-ir. Many alpha MSH- and ACTH-ir, and a few DYN-, NT- and AII-ir neurons in the retrochiasmatic area were retrogradely labeled. Only small numbers of double-labeled neurons were found in the paraventricular nucleus, and, of these, enkephalin-ir and dynorphin-ir neurons were the most common. Somatostatin-ir cells in the hypothalamus were rarely double-labeled. The chemical coding of these hypothalamic projections to the PB may provide important clues to the functional organization of these descending pathways.  相似文献   

7.
The parabrachial nucleus consists of several subnuclei which contains autonomic, gustatory, visceral sensory, nociceptive, and respiratory related neurons. We have investigated the direct projections from the rat parabrachial region, including the Kölliker–Fuse nucleus, to the pharyngeal motoneurons with an anterograde and retrograde double-tracing technique. The cholera toxin subunit-B was injected into the lower pharynx or the esophagus after injection of biotinylated dextran amine into the ventrolateral parabrachial nuclear region, including the external medial, the external lateral, and the crescent area of the central lateral parabrachial nuclei and into the Kölliker–Fuse nucleus. The anterogradely dextran amine-labeled fibers from these nuclei projected to the semicompact, loose and external formations besides the compact formation of the nucleus ambiguus. Many anterogradely labeled fibers and terminals were found to contact retrogradely cholera toxin-labeled pharyngeal neuronal soma and dendrites in the semicompact formation of the nucleus ambiguus. The medial half of the parabrachial nucleus, including the medial and the medial part of the central lateral parabrachial nuclei, sent a few fibers to the reticular formation just dorsal to the esophageal motoneurons but no fibers to either the pharyngeal or to the esophageal motoneurons. These results suggested that the visceral sensory, gustatory, nociceptive or respiratory related neurons in the parabrachial nucleus project directly to the pharyngeal motoneurons, but there are no parabrachial projections to the esophageal motoneurons in the nucleus ambiguus.  相似文献   

8.
By combining the retrograde-labeling method of injecting Fluoro-Gold (FG) into the parabrachial nucleus (PB) and the immunocytochemical staining of the FOS-like immunoreactive neurons (FLNs) in the trigeminal spinal caudal subnucleus (TSCS) induced by s.c. formalin injection into the perioral region in the rat, it was demonstrated that there are FLNs, FG-labeled neurons and neurons containing both FOS-like immunoreactivity and FG fluorescence in the TSCS. The three kinds of labeled neurons are distributed mainly in laminae I, II and V of the TSCS and there are also some neurons containing both FOS-like immunoreactivity and FG distributed in the adjacent ventrolateral reticular formation. The retrograde-labeling of FG-and double-labeled neurons showed contralateral predominance. In addition, we found that there are retrogradely labeled neurons in bilateral nuclei of the solitary tract with a contralateral predominance. The results suggest that FOS-like immunoreactivity might serve as an indicator for the nociceptive response after formalin injection into the trigeminal region and that the PB might be an important relay station for the further processing of the nociceptive information relayed from the trigeminal afferents. As the PB is known as a relay structure for visceral sensory pathway, it is proposed that there might be viscero-somatic convergence in this nucleus.  相似文献   

9.
The parabrachial nucleus (PB) is a major relay of noxious and non-noxious visceral sensory information from the nucleus of the solitary tract, spinal cord, and spinal trigeminal nucleus to the forebrain. The nucleus of the solitary tract, spinal cord, and trigeminal dorsal horns contain many enkephalin- and dynorphin-immunoreactive neurons that project to the PB. To study the role of mu-opioid receptors in relaying these inputs, we examined the distribution of mu-opioid receptor immunoreactivity in the PB. The most intense staining was in the external lateral parabrachial subnucleus (PBel), including dendrites extending from the PBel into the lateral crescent subnucleus. Because the Pbel is a major source of projections to the amygdala, we combined retrograde tracing from the central nucleus of the amygdala with immunohistochemistry for mu-opioid receptors. These experiments showed that mu-opioid receptors are expressed by Pbel neurons that project to the amygdala, including those Pbel neurons whose dendrites extend into the lateral crescent subnucleus. These results indicate that mu-opioid receptors in the PB may mediate or modulate nociceptive information relayed to the amygdala from medullary or spinal cord neurons that terminate not only in the Pbel, but also in the adjacent lateral crescent parabrachial subnucleus.  相似文献   

10.
Injections of calcitonin gene-related peptide (CGRP) into the amygdala evoke fear-related behaviors and antinociceptive effects. In the present study we therefore characterized CGRP-containing amygdaloid afferents by injecting the retrograde tracer FluoroGold (FG) into subnuclei of the amygdala and adjacent divisions of the extended amygdala, namely, the lateral (LA) and central (CE) amygdaloid nuclei, interstitial nucleus of the posterior limb of the anterior commissure (IPAC), and the amygdalostriatal area (AStr). The distribution of retrogradely FG-labeled neurons and colocalization of CGRP-immunoreactivity with FG-labeling were mapped in the posterior paralaminar thalamic complex and parabrachial nuclei. The analysis of the posterior thalamus revealed that about 50% of CGRP-containing neurons projected to the AStr, the projections originating in the medial part of the medial geniculate body, posterior intralaminar nucleus, parvicellular subparafascicular nucleus, and peripeduncular nucleus. However, the percentage of CGRP-containing thalamic neurons projecting to the adjacent LA, medial part of the CE, and ventrocaudal part of the caudatoputamen rapidly dropped to 3-9%. There were no double-labeled cells after injections into the lateral and capsular parts of the CE and the IPAC. Thus, the AStr received the heaviest CGRP-containing projection from the posterior thalamus. CGRP-containing parabrachial neurons projected to the AStr and lateral, capsular, and medial parts of the CE, the projections originating in the external, crescent, and central parts of the lateral parabrachial nucleus and external part of the medial parabrachial nucleus. The results demonstrate a distinct projection pattern of CGRP-containing thalamic and parabrachial neurons to subnuclei of the amygdala and extended amygdala.  相似文献   

11.
We studied afferents to the parabrachial nucleus (PB) from the spinal cord and the spinal trigeminal nucleus pars caudalis (SNVc) in the rat by using the anterograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). Injections of WGA-HRP into medial PB retrogradely labeled neurons in the promontorium and in lamina I of the dorsal rostral SNVc, while injections into lateral PB and the K?lliker-Fuse nucleus retrogradely labeled neurons in these areas as well as in lamina I throughout the caudal SNVc and spinal dorsal horn. Injections of WGA-HRP into the caudal SNVc and dorsal horn of the spinal cord resulted in terminal labeling in the dorsal, central, and external lateral subnuclei of PB and the K?lliker-Fuse nucleus, all of which are known to receive cardiovascular and respiratory afferent information. Injections of WGA-HRP into the promontorium and dorsal rostral SNVc resulted in terminal labeling in the same PB subnuclei, as well as in the medial and the ventral lateral PB subnuclei, which are sites of relay for gustatory information ascending from the medulla to the forebrain. The spinal and trigeminal projection to PB may mediate the convergence of pain, chemosensory, and temperature sensibilities with gustatory and cardiorespiratory systems in PB.  相似文献   

12.
It has been proposed that calcitonin gene-related peptide (CGRP) may serve as a major neuromodulator in visceral sensory pathways, but its exact role in the visceral sensory thalamus and cortex has not been determined. We therefore examined the distribution of CGRP-like immunoreactive (CGRPir) innervation of the insular cortex and the parvicellular division of the ventroposterior nucleus of the thalamus (VPpc) in the rat by using immunohistochemistry for CGRP combined with retrograde transport of the fluorescent dye fluoro-gold. Modest numbers of CGRPir fibers were distributed in the dysgranular and agranular insular cortex, but few were observed in the granular insular cortex. The density of CGRPir innervation increased caudally along the rhinal fissue and was considerably greater in the perirhinal cortex. When fluoro-gold was injected into the insular cortex numerous retrogradely labeled neurons were seen in the VPpc, but few of these were CGRPir. Retrogradely labeled CGRPir neurons were, however, seen in the ventral lateral and medial parabrachial (PB) subnuclei. Injection of fluoro-gold into the perirhinal cortex (which is just caudal to the insular cortex along the rhinal fissure) resulted in many retrogradely labeled CGRPir neurons in the posterior thalamic region, including the subparafascicular, the lateral subparafascicular, and the posterior intralaminar nuclei. The VPpc was heavily innervated by CGRPir fibers but contained few CGRPir cell bodies. Injection of fluoro-gold into the VPpc resulted in many retrogradely labeled CGRPir neurons in the external medial PB subnucleus bilaterally, but with a contralateral predominance. Smaller numbers of retrogradely labeled CGRPir neurons were also observed in the ventrolateral PB subnucleus, bilaterally with an ipsilateral predominance. These results suggest that CGRP may be a neuromodulator in the ascending visceral sensory pathways from the PB to the VPpc and the insular cortex, but not between the latter two structures.  相似文献   

13.
Morphological features and functional implications of projections of the parabrachial nucleus to the central nucleus of the amygdala were investigated in the rat. The anatomical study was based on injections of the tracers horseradish peroxidase and biotinylated dextran amine. An extremely dense concentration of labeled fibers was found in the lateral and lateral capsular subdivisions of the central nucleus of the amygdala, originating mainly from the external lateral and ventral lateral subnuclei of the parabrachial nucleus. The parabrachial fibers exhibited the morphological characteristic of forming dense pericellular terminal arborizations. The functional implications of this pathway in cardiovascular functions were verified using Fos protein induction in response to hypotension induced by continuous intravenous administration of hydralazine-hydrochloride. In this paradigm, Fos immunoreactivity was found to be confined to the lateral and lateral capsular subdivisions of the central nucleus of the amygdala. Double immunostaining methods were used to visualize, at the electron microscopic level, terminals labeled by biotinylated dextran amine and Fos cell labeling. With this approach, we were able to confirm that Fos-immunoreactive neurons in the central nucleus of the amygdala receive axosomatic terminals from the parabrachial nucleus. The present findings point out that parabrachial inputs to the central nucleus of the amygdala play a relevant role in regulating cardiovascular function.  相似文献   

14.
The projection from the parabrachial nucleus (PB) to the cerbral cortex in the rat was studied in detail using the autoradiographic method for tracing anterograde axonal transport and the wheat germ agglutinin-horseradish peroxidase (WGA-HRP) method for both anterograde and retrograde tracing. PB innervates layers I, V and VI of a continuous sheet of cortex extending from the posterior insular cortex caudally, through the dorsal agranular and the granular anterior insular cortex and on rostrally into the lateral prefrontal cortex. Within the prefrontal area, PB fibers innervate primarily layer V of the ventrolateral cortex caudally, but more rostrally the innervated region includes progressively more dorsal portions of the prefrontal area, until by the frontal pole the entire lateral half of the hemisphere is innervated. This projection originates for the most part in a cluster of neurons in the caudal ventral part of the medial PB subdivision, although a few neurons in the adjacent parts of the PB, the Kolliker-Fuse nucleus and the subcoeruleus region also participate.After injection of WGA-HRP into the PB region, retrogradely labeled neurons were found in layer V of the same cortical areas which receive PB inputs. The importance of this monosynaptic reciprocal brainstem-cortical projection as a possible anatomical substrate for the regulation of cortical arousal is discussed.  相似文献   

15.
In order to study the expression of Fos protein in catecholaminergic neurons in the medullary visceral zone (MVZ), which project to the habenular nucleus (HB), a triple-labeling method combining wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) retrograde tracing with anti-Fos and anti-tyrosine hydroxylase (TH) immunohistochemical staining was used in the rat. WGA-HRP was stereotaxically injected into unilateral HB. Forty-eight hours later, 50 μl of 8% formalin was injected into the foot pad of the right front paw. Two hours after formalin injection, animals were anesthetized and perfused transaortically. Coronal sections (40 μm) were cut from the cervical segment of spinal cord, the medulla oblongata and WGA-HRP injected area with a cryostat. First, sections of the injected area and the medulla oblongata were histochemically processed to demonstrate the presence of retrogradely transported WGA-HRP using the chromogen tetramethylbenzidine (TMB). Then sections of the spinal cord and the medulla oblongata were immunostained with anti-Fos and anti-TH antibodies using the ABC method. Under the light microscope, seven types of variously labeled neurons could be identified in MVZ, namely Fos and TH-immunoreactive (Fos- or TH-IL) neurons, WGA-HRP labeled ones, Fos/HRP, Fos/TH and HRP/TH double-labeled and Fos/HRP/TH triple-labeled cells. The results suggest that some catecholaminergic neurons in MVZ could send projections to HB and this pathway may be involved to relay nociceptive information from spinal cord to brainstem and on to the forebrain.  相似文献   

16.
The HSD2 (11-beta-hydroxysteroid dehydrogenase type 2-expressing) neurons in the nucleus of the solitary tract (NTS) of the rat are aldosterone-sensitive and have been implicated in sodium appetite. The central nucleus of the amygdala (CeA) has been shown to modulate salt intake in response to aldosterone, so we investigated the connections between these two sites. A prior retrograde tracing study revealed only a minor projection from the HSD2 neurons directly to the CeA, but these experiments suggested that a more substantial projection may be relayed through the parabrachial nucleus. Small injections of cholera toxin beta subunit (CTb) into the external lateral parabrachial subnucleus (PBel) produced both retrograde cell body labeling in the HSD2 neurons and anterograde axonal labeling in the lateral subdivision of the CeA. Also, injections of either CTb or Phaseolus vulgaris leucoagglutinin into the medial subdivision of the CeA labeled a descending projection from the amygdala to the medial NTS. Axons from the medial CeA formed numerous varicosities and terminals enveloping the HSD2 neurons. Complementary CTb injections, centered in the HSD2 subregion of the NTS, retrogradely labeled neurons in the medial CeA. These bidirectional projections could form a functional circuit between the HSD2 neurons and the CeA. The HSD2 neurons may represent one of the functional inputs to the lateral CeA, and their activity may be modulated by a return projection from the medial CeA. This circuit could provide a neuroanatomical basis for the modulation of salt intake by the CeA.  相似文献   

17.
Recent evidence has shown that the serotonergic mechanism of the lateral parabrachial nucleus (LPBN) participates in the regulation of renal and hormonal responses to isotonic blood volume expansion (BVE). We investigated the BVE-induced Fos activation along forebrain and hindbrain nuclei and particularly within the serotonergic clusters of the raphé system that directly project to the LPBN. We also examined whether there are changes in the concentration of serotonin (5HT) within the raphé nucleus in response to the same stimulus. With this purpose, we analyzed the cells doubly labeled for Fos and Fluorogold (FG) following BVE (NaCl 0.15 M, 2 ml/100 g b.w., 1 min) 7 days after FG injection into the LPBN. Compared with the control group, blood volume-expanded rats showed a significant greater number of Fos-FG double-labeled cells along the nucleus of the solitary tract, locus coeruleus, hypothalamic paraventricular nucleus, central extended amygdala complex, and dorsal raphé nucleus (DRN) cells. Our study also showed an increase in the number of serotonergic DRN neurons activated in response to isotonic BVE. We also observed decreased levels of 5HT and its metabolite 5-hydroxyindoleacetic acid (measured by high-pressure liquid chromatography) within the raphé nucleus 15 min after BVE. Given our previous evidence on the role of the serotonergic system in the LPBN after BVE, the present morphofunctional findings suggest the existence of a key pathway (DRN-LPBN) that may control BVE response through the modulation of 5HT release.  相似文献   

18.
This study in cat examines the synaptic relationship of vagal afferents to parabrachial projecting neurons in the area postrema (AP) using anterograde and retrograde transport of horseradish peroxidase (HRP). Wheat germ agglutinin-HRP injected into the parabrachial nucleus (PBN) produced retrograde neuronal labeling in the AP and in the nucleus of the tractus solitarius bilaterally, but with an ipsilateral predominance. Labeled neurons were confined mainly to the caudal 2/3's of the AP. Following injection of WGA-HRP into the PBN and HRP into the nodose ganglion in the same animal, examination of sections of the AP with the electron microscope revealed anterogradely labeled axon terminals in apposition to retrogradely labeled somata and dendrites. In some instances, labeled terminals were observed to form synaptic contacts with retrogradely labeled neurons. We conclude that in the cat a vagal input to neurons in the AP is monosynaptically relayed to the PBN.  相似文献   

19.
Direct cortical projections to the parabrachial nucleus in the cat   总被引:2,自引:0,他引:2  
Direct projections from the cerebral cortex to the parabrachial nucleus in the cat were examined by the horseradish peroxidase (HRP)method. When HRP was injected into the parabrachial nucleus, retrogradely labeled neuronal cell bodies were seen, bilaterally with an ipsilateral predominance, mainly in the orbital gyrus, the lateral bank of the presylvian sulcus, and a restricted region in the infralimbic cortex on the medial surface of the frontal lobe (stereotaxic coordinates; Fr: 22, L: 1, H: -1); all labeled neurons were in deep pyramidal cell layer. After injecting HRP conjugated to wheat germ agglutinin (WGA-HRP) into the cortical regions where retrogradely labeled neurons were found after injecting HRP into the parabrachial nucleus, anterogradely labeled cortical fibers were traced to the parabrachial nucleus. Corticoparabrachial fibers originating from the orbital gyrus and the lateral bank of the presylvian sulcus ran ipsilaterally through the internal capsule and the cerebral peduncle down to the lower brainstem, whereas those from the infralimbic cortex coursed down ipsilaterally through the medial forebrain bundle. These cortical fibers to the parabrachial nucleus were distributed bilaterally with an ipsilateral predominance. Cortical fiber terminals in the parabrachial nucleus were topographically arranged: Corticoparabrachial fibers from the lateral bank of the presylvian sulcus ended most massively in the dorsal part of the lateral parabrachial nucleus. Corticoparabrachial fibers from the orbital gyrus ended most heavily in the medial parabrachial nucleus and less heavily in the lateral parabrachial nucleus. Corticoparabrachial fibers from the infralimbic cortex ended mostly in the parabrachial regions surrounding the brachium conjunctivum.  相似文献   

20.
Ma WL  Zhang WB  Feng G  Cai YL 《Brain research》2005,1038(2):132-140
The paratrigeminal nucleus (PTN) receives orofacial somatic and visceral afferent fibers and contains many calbindin-D28k neurons (CB-containing neurons) that project to nucleus of the solitary tract (NTS). In the present study, retrograde and transganglionic tracing methods combined with immunofluorescence histochemistry and confocal laser scanning microscopy were used. After Fluoro-gold (FG) injection into the unilateral NTS, 74.4% FG-labeled neurons of ipsilateral PTN were double-labeled with CB. Furthermore, 41.0% and 32.5% FG/CB double-labeled neurons co-existed with Fos induced by nociceptive stimulation of the lips and the upper alimentary tract, respectively. In the PTN unilateral to FG injection site, 26.6% CB-LI neurons were double-labeled with PAG, 61.5% and 79.0% CB/PAG double-labeled neurons were triple-labeled with FG and Fos, and 22.9% FG/CB double-labeled neurons were triple-labeled with PAG, 84.3% FG/PAG double-labeled neurons expressed Fos induced by the upper alimentary tract stimulation. In the intact animals, 62.8% CB-LI neurons and 88.3% PAG-LI neurons co-existed with GABA(B)R, respectively. In addition, some terminals from the inferior alveolar nerve (IAN) were closely apposed to CB/Fos double-labeled or CB single-labeled neurons. These results suggested that CB-containing neurons in the PTN receive the nociceptive information converge from the orofacial area and visceral organs, and comprising the glutamatergic excitatory transmission pathway from the PTN to the NTS. This pathway might be modulated by GABA via the GABA(B) receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号