首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
After spinal cord injury (SCI), the inability of supraspinal neurons to regenerate or reform functional connections is likely due to proteins in the surrounding microenvironment restricting regeneration. EphAs are a family of receptor tyrosine kinases that are involved in axonal guidance during development. These receptors and their ligands, the Ephrins, act via repulsive mechanisms to guide growing axons towards their appropriate targets and allow for the correct developmental connections to be made. In the present study, we investigated whether EphA receptor expression changed after a thoracic contusion SCI. Our results indicate that several EphA molecules are upregulated after SCI. Using semiquantitative RT-PCR to investigate mRNA expression after SCI, we found that EphA3, A4, and A7 mRNAs were upregulated. EphA3, A4, A6, and A8 receptor immunoreactivity increased in the ventrolateral white matter (VWM) at the injury epicenter. EphA7 had the highest level of immunoreactivity in both control and injured rat spinal cord. EphA receptor expression in the white matter originated from glial cells as coexpression in both astrocytes and oligodendrocytes was observed. In contrast, gray matter expression was localized to neurons of the ventral gray matter (motor neurons) and dorsal horn. After SCI, specific EphA receptor subtypes are upregulated and these increases may create an environment that is unfavorable for neurite outgrowth and functional regeneration.  相似文献   

3.
4.
The involvement of caspases in apoptosis after spinal cord injury (SCI) was investigated in adult mouse spinal cord after contusion. Sections of spinal cord were processed for staining 7 days after SCI with the fluorescent dye Hoechst 33342, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL), and immunostaining with an antibody (CM1) recognizing activated caspase-3. Caspase-3- and caspase-8-like enzyme activities were measured colorimetrically at 8 hours to 7 days after SCI using the specific substrates Asp-Glu-Val-Asp-p-nitroanilide and Ile-Glu-Thr-Asp-p-nitroanilide, respectively. Hoechst 33342 staining showed small, bright areas in fragmented nuclei. Double labeling with TUNEL plus immunostaining with cell type-specific markers identified TUNEL-positive neurons stained by anti-neuronal nuclear protein/neurons antibody, and TUNEL-positive oligodendrocytes stained by anti-cyclic nucleotide 3'-phosphohydrolase antibody. Double labeling with CM1 and cell-type specific markers similarly identified CM1-positive neurons and oligodendrocytes. Caspase-8-like enzyme activity was increased significantly on days 3 and 7 (p < 0.01), whereas caspase-3-like activity increased on day 7 (p < 0.01). Intraventricular injection of a nonspecific tetrapeptide caspase inhibitor or a specific tetrapeptide inhibitor of caspase-3 just after SCI reduced enzyme activity at 7 days. Apoptotic cells were identified with TUNEL staining in both neurons and oligodendrocytes in mice after SCI, which also showed activated caspase-3. Increased caspase-3- and caspase-8-like activity was detected in the injured spinal cord on days 3 and 7. Caspase protease activities may be involved in delayed neuronal and glial apoptosis after SCI.  相似文献   

5.
iNOS and nitrotyrosine expression after spinal cord injury   总被引:24,自引:0,他引:24  
  相似文献   

6.
Axonal remyelination by cord blood stem cells after spinal cord injury   总被引:4,自引:0,他引:4  
Human umbilical cord blood stem cells (hUCB) hold great promise for therapeutic repair after spinal cord injury (SCI). Here, we present our preliminary investigations on axonal remyelination of injured spinal cord by transplanted hUCB. Adult male rats were subjected to moderate SCI using NYU Impactor, and hUCB were grafted into the site of injury one week after SCI. Immunohistochemical data provides evidence of differentiation of hUCB into several neural phenotypes including neurons, oligodendrocytes and astrocytes. Ultrastructural analysis of axons reveals that hUCB form morphologically normal appearing myelin sheaths around axons in the injured areas of spinal cord. Colocalization studies prove that oligodendrocytes derived from hUCB secrete neurotrophic hormones neurotrophin-3 (NT3) and brain-derived neurotrophic factor (BDNF). Cord blood stem cells aid in the synthesis of myelin basic protein (MBP) and proteolipid protein (PLP) of myelin in the injured areas, thereby facilitating the process of remyelination. Elevated levels of mRNA expression were observed for NT3, BDNF, MBP and PLP in hUCB-treated rats as revealed by fluorescent in situ hybridization (FISH) analysis. Recovery of hind limb locomotor function was also significantly enhanced in the hUCB-treated rats based on Basso-Beattie-Bresnahan (BBB) scores assessed 14 days after transplantation. These findings demonstrate that hUCB, when transplanted into the spinal cord 7 days after weight-drop injury, survive for at least 2 weeks, differentiate into oligodendrocytes and neurons, and enable improved locomotor function. Therefore, hUCB facilitate functional recovery after moderate SCI and may prove to be a useful therapeutic strategy to repair the injured spinal cord.  相似文献   

7.
目的 探讨大鼠脊髓损伤后脊髓神经干细胞的分离培养方法及分化情况.方法 采用Allen法制作大鼠脊髓损伤模型,利用无血清培养和单细胞克隆技术在成年脊髓损伤7 d大鼠脊髓中分离具有单细胞克隆能力的神经干细胞,并进行培养鉴定.结果 从成年脊髓损伤7 d大鼠脊髓中成功分离出神经干细胞,该细胞具有连续克隆能力,可传代培养,表达神经巢蛋白抗原.分化后的细胞表达神经元细胞、星形胶质细胞和少突胶质细胞的特异性抗原.结论 致伤7 d的成年大鼠脊髓组织体外町培养出神经十细胞,并分化为神经无细胞、星形胶质细胞和少突胶质细胞,有可能参与脊髓损伤的修复过程.  相似文献   

8.
Previous studies have shown that a cellular inflammatory response is initiated, and inflammatory cytokines are synthesized, following experimental spinal cord injury (SCI). In the present study, we tested the hypothesis that the complement cascade, a major component of both the innate and adaptive immune response, is also activated following experimental SCI. We investigated the pathways, cellular localization, timecourse, and degree of complement activation in rat spinal cord following acute contusion-induced SCI using the New York University (NYU) weight drop impactor. Mild and severe injuries (12.5 and 50 mm drop heights) at 1, 7, and 42 days post injury time points were evaluated. Classical (C1q and C4), alternative (Factor B) and terminal (C5b-9) complement pathways were strongly activated within 1 day of SCI. Complement protein immunoreactivity was predominantly found in cell types vulnerable to degeneration, neurons and oligodendrocytes, and was not generally observed in inflammatory or astroglial cells. Surprisingly, immunoreactivity for complement proteins was also evident 6 weeks after injury, and complement activation was observed as far as 20 mm rostral to the site of injury. Axonal staining by C1q and Factor B was also observed, suggesting a potential role for the complement cascade in demyelination or axonal degeneration. These data support the hypothesis that complement activation plays a role in SCI.  相似文献   

9.
STUDY DESIGN: Immunohistochemical investigation in control and lesioned human spinal cords. OBJECTIVES: To assess the spatial and temporal expression patterns of transforming growth factor-beta1 and -beta2 (TGF-beta1 and TGF-beta2) in the human spinal cord after traumatic injury. SETTING: Germany, Aachen, Aachen University Hospital. METHODS: Sections from human spinal cords from 4 control patients and from 14 patients who died at different time points after traumatic spinal cord injury (SCI) were investigated immunohistochemically. RESULTS: In control cases, TGF-beta1 was confined to occasional blood vessels, intravascular monocytes and some motoneurons, whereas TGF-beta2 was only found in intravascular monocytes. After traumatic SCI, TGF-beta1 immunoreactivity was dramatically upregulated by 2 days after injury (the earliest survival time investigated) and was detected within neurons, astrocytes and invading macrophages. The staining was most intense over the first weeks after injury but gradually declined by 1 year. TGF-beta2 immunoreactivity was first detected 24 days after injury. It was located in macrophages and astrocytes and remained elevated for up to 1 year. In white matter tracts undergoing Wallerian degeneration, there was no induction of either isoform. CONCLUSION: The early induction of TGF-beta1 at the point of SCI suggests a role in the acute inflammatory response and formation of the glial scar, while the later induction of TGF-beta2 may indicate a role in the maintenance of the scar. Neither of these TGF-beta isoforms appears to contribute to the astrocytic scar formation in nerve fibre tracts undergoing Wallerian degeneration.  相似文献   

10.
Wu B  Sun L  Li P  Tian M  Luo Y  Ren X 《Injury》2012,43(6):794-801
Loss of oligodendrocytes and demyelination further impair neural function after spinal cord injury (SCI). Replacement of lost oligodendrocytes and improvement of myelination have a therapeutic significance in treatment of SCI. Here, we transplanted oligodendrocyte precursor cells (OPCs) to improve myelination in a rat model of contusive SCI. The labelled OPCs were transplanted to injured cord 7 days after injury. As a result, the implanted cells still survived in vivo 8 weeks after transplantation. They proliferated, integrated and differentiated in the injured cord. In the OPCs-treated rats, enhanced myelination in the lesioned area was observed and substantial improvement of motor function and nerve conduction was also recorded. Thus, this study provides strong evidence to support that transplantation of OPCs could improve myelination of injured cord and enhance functional recovery after contusive SCI.  相似文献   

11.
12.
Schwannosis (aberrant proliferation of Schwann cells and nerve fibers) has been reported following spinal cord injury (SCI). In this study, we examined the incidence of schwannosis following human SCI, and investigated its relationship to gliosis. We found evidence of schwannosis in 32 out of 65 cases (48%) of human SCI that survived 24 h to 24 years after injury; this incidence rose to 82% in those patients who survived for more than 4 months. Schwannosis was not observed in cases that survived less than 4 months after injury. In affected cases, it was generally noted in areas that had low immunoreactivity for glial fibrillary acidic protein (GFAP), suggesting that reduced gliosis might have contributed to the aberrant proliferation of Schwann cells following SCI. Since chondroitin sulfate proteoglycan (CSPG) has been proposed to play a role in Schwann cell/glial interaction, we performed immunohistochemical staining for CSPG to investigate its potential relationship with schwannosis. CSPG in the injured cord was generally associated with the blood vessel walls, but was also sometimes noted in reactive astrocytes. In SCI with schwannosis, CSPG staining was more prominent and confined largely to the extracellular matrix and basal lamina of proliferating Schwann cells. Our study suggests that Schwann cells, which may have been displaced from spinal roots and introduced into the injured cord through a break in the pial surface, are capable of proliferating and producing CSPG, particularly in the setting of reduced gliosis. Since CSPG has been associated with inhibition of neurite outgrowth, its increased production by aberrant Schwann cells may impair spinal cord regeneration after injury.  相似文献   

13.
Methylprednisolone (MPS) is the only therapeutic agent currently available for traumatic spinal cord injury (SCI). However, little is known about its therapeutic mechanisms. We have demonstrated that tumor necrosis factor-alpha (TNF-alpha) plays a critical role in posttraumatic SCI in rats. Since MPS has been shown to inhibit TNF-alpha production in vitro, it is possible that MPS can reduce SCI by inhibiting TNF-alpha production. To examine this possibility, we investigated the effect of MPS on TNF-alpha production in injured segments of rat spinal cord. Leukocytopenia and high-dose intravenous administration of MPS markedly reduced the motor disturbances observed following spinal cord trauma. Both treatments also reduced the intramedullary hemorrhages observed histologically 24 hr posttrauma. Leukocytopenia significantly reduced tissue levels of both TNF-alpha mRNA and TNF-alpha, 1 and 4 hr posttrauma, respectively, and it also inhibited the accumulation of leukocytes in the injured segments 3 hr posttrauma, while MPS had no effects. Lipid peroxidation and vascular permeability at the site of spinal cord lesion were both significantly increased over time after the induction of SCI, peaking 3 hr posttrauma. These events were significantly reduced in animals with leukocytopenia and in those given anti-P-selectin monoclonal antibody compared to sham-operated animals. Administration of MPS significantly inhibited both the increase in lipid peroxidation and the vascular permeability. These findings suggested that MPS reduces the severity of SCI, not by inhibiting the production of TNF-alpha at the site of spinal cord trauma, but by inhibiting activated leukocyte induced lipid peroxidation of the endothelial cell membrane. This suggests that MPS may attenuate spinal cord ischemia by inhibiting the increase in endothelial permeability at the site of spinal cord injury.  相似文献   

14.
Stem cell-based cell therapy for spinal cord injury   总被引:10,自引:0,他引:10  
Traumatic injuries to the spinal cord lead to severe and permanent neurological deficits. Although no effective therapeutic option is currently available, recent animal studies have shown that cellular transplantation strategies hold promise to enhance functional recovery after spinal cord injury (SCI). This review is to analyze the experiments where transplantation of stem/progenitor cells produced successful functional outcome in animal models of SCI. There is no consensus yet on what kind of stem/progenitor cells is an ideal source for cellular grafts. Three kinds of stem/progenitor cells have been utilized in cell therapy in animal models of SCI: embryonic stem cells, bone marrow mesenchymal stem cells, and neural stem cells. Neural stem cells or fate-restricted neuronal or glial progenitor cells were preferably used because they have clear capacity to become neurons or glial cells after transplantation into the injured spinal cord. At least a part of functional deficits after SCI is attributable to chronic progressive demyelination. Therefore, several studies transplanted glial-restricted progenitors or oligodendrocyte precursors to target the demyelination process. Directed differentiation of stem/progenitor cells to oligodendrocyte lineage prior to transplantation or modulation of microenvironment in the injured spinal cord to promote oligodendroglial differentiation seems to be an effective strategy to increase the extent of remyelination. Transplanted stem/progenitor cells can also contribute to promoting axonal regeneration by functioning as cellular scaffolds for growing axons. Combinatorial approaches using polymer scaffolds to fill the lesion cavity or introducing regeneration-promoting genes will greatly increase the efficacy of cellular transplantation strategies for SCI.  相似文献   

15.
Kim ES  Kim GM  Lu X  Hsu CY  Xu XM 《Journal of neurotrauma》2002,19(6):787-800
The distribution of retrogradely and transneuronally labeled neurons in the adult rat brain and spinal cord after contusive mid-thoracic spinal cord injury (SCI) was studied using Fast Blue (FB) and the Bartha strain of pseudorabies virus (PRV), respectively. When FB was injected into the distal spinal cord at 2 days after graded SCI at the 10th vertebral level, labeled neurons were consistently found 7 days later in supraspinal areas that normally project to the spinal cord. The number of FB-labeled neurons decreased as the injury severity increased. An inverse correlation between the number of FB-labeled neurons and injury severity was seen in most investigated brain nuclei with coefficient of correlations (r) ranging from -0.84 in the red nucleus to -0.92 in the raphe nuclei. The coefficient of correlation was relatively poor in the motor cortex (r = -0.63), where a mild injury (6.25 g.cm) resulted in a 99% damage of the corticospinal tract. Such a prominent difference between the corticospinal tract and other descending pathways can be related to the difference in location of these pathways within the adult rat spinal cord. When PRV was injected into the right sciatic nerve one month after the injury, labeled cells were consistently identified 5 days later in the spinal cord rostral to the injury and in certain supraspinal regions that regulate autonomic outflow. In these nuclei, the distribution and number of PRV-labeled neurons markedly decreased after SCI as compared to the control group. In contrast, PRV-labeled neurons were inconsistently found in the supraspinal nuclei that contribute to somatic motor outflow in normal controls and no labeling was observed in these nuclei after injury. These results demonstrate that (1) a proportion of neural network across the injured spinal cord has been spared after acute contusive SCI, (2) the proportion of spared axons of a particular pathway is closely correlated to the injury severity and the position of that pathway, and (3) the transneuronal labeling method using PRV may provide a unique approach to investigate multi-synaptic neural circuitry of the central autonomic control after SCI, but its application to the somatic motor system is limited.  相似文献   

16.
目的:探讨脊髓损伤后脊髓功能恢复的分子生物学基础。方法:在制作脊髓腹侧压迫损伤的基础上,应用免疫组织化学的方法观察几种神经营养素及其受体表达的变化规律。结果:脊髓腹侧压迫损伤后BDNF,GNDF,NT3,NGF以及TrkA,TrkB,TrkC在伤后3h表达开始增加,伤后72h达到高峰,在伤后2周内其表达维持在相对较高的水平,且以BDNF及TrkB表达最明显。结论:脊髓损伤后这些内源性神经营养素及其受体的大量表达对受损伤脊髓的功能恢复起重要作用。同时也反映了受试动物的脊髓功能受损较重的特点。  相似文献   

17.
Trauma to the spinal cord creates an initial physical injury damaging neurons, glia, and blood vessels, which then induces a prolonged inflammatory response, leading to secondary degeneration of spinal cord tissue, and further loss of neurons and glia surrounding the initial site of injury. Angiogenesis is a critical step in tissue repair, but in the injured spinal cord angiogenesis fails; blood vessels formed initially later regress. Stabilizing the angiogenic response is therefore a potential target to improve recovery after spinal cord injury (SCI). Vascular endothelial growth factor (VEGF) can initiate angiogenesis, but cannot sustain blood vessel maturation. Platelet-derived growth factor (PDGF) can promote blood vessel stability and maturation. We therefore investigated a combined application of VEGF and PDGF as treatment for traumatic spinal cord injury, with the aim to reduce secondary degeneration by promotion of angiogenesis. Immediately after hemisection of the spinal cord in the rat we delivered VEGF and PDGF and to the injury site. One and 3 months later the size of the lesion was significantly smaller in the treated group compared to controls, and there was significantly reduced gliosis surrounding the lesion. There was no significant effect of the treatment on blood vessel density, although there was a significant reduction in the numbers of macrophages/microglia surrounding the lesion, and a shift in the distribution of morphological and immunological phenotypes of these inflammatory cells. VEGF and PDGF delivered singly exacerbated secondary degeneration, increasing the size of the lesion cavity. These results demonstrate a novel therapeutic intervention for SCI, and reveal an unanticipated synergy for these growth factors whereby they modulated inflammatory processes and created a microenvironment conducive to axon preservation/sprouting.  相似文献   

18.
Numerous efforts have been made to maximize the efficacy of treatment for spinal cord injury (SCI). Recently, oligodendrocyte-type 2 astrocyte (O-2A) progenitor cells have been reported to remyelinate focal areas of demyelinated spinal cord in adult rats. We conducted a study to investigate the therapeutic potential of transplantation of O-2A cells in a rat model of acute SCI. SCI was induced with an NYU Impactor at T9 of rats. O-2A cells labeled with bromodeoxyuridine (BrdU) were transplanted into sites of SCI at 1 week after the induction of SCI. At 6 weeks after cell transplantation, a behavioral test showed significant functional improvement in animals that had received O-2A-cell transplants as compared to animals given cell-culture medium alone. An electrophysiological study revealed that the transplants did not improve the amplitude or latency of somatosensory evoked potentials, but a recording of motor evoked potentials showed that the latency of these potentials in the O-2A-cell-transplant group was significantly shorter than that in the group treated with cell-culture medium. Following transplantation of BrdU-labeled O-2A cells, cells positive for BrdU were detected at and near sites of SCI. Cells labeled for both BrdU and 2',3' -cyclic nucleotide-3-phosphodiesterase were also detected, showing that the transplanted O-2A cells differentiated into oligodendrocytes. By contrast, cells labeled for BrdU and glial fibrillary acidic protein, or for neuronal nuclei antigen, were not detected. Furthermore, a tract-tracing study showed that numbers of retrogradely labeled neurons increased in areas of the brain stem after O-2A-cell transplantation. The study data showed that after being transplanted into an animal with SCI, O-2A cells migrated to the area adjacent to the site of injury and differentiated into oligodendrocytes. The behavioral test and the electrophysiological and morphological studies showed that transplantation of O-2A cells may play an important role in functional recovery and the regeneration of axons after SCI.  相似文献   

19.
20.
目的探讨急性脊髓损伤后促红细胞生成素(EPO)及其受体(EPO-R)在脊髓内的表达。方法Wistar大鼠69只,随机分为三组:正常对照组(5只,不手术,作为后两组的对照)、假手术组(仅行椎板切除术)和脊髓损伤组。根据术后时间点不同后两组又分为1h、6h、12h、24h、3d、7d、14d和28d八个亚组(每组4只)。采用RT-PCR、Western blot免疫印迹法和免疫组织化学染色法检测EPO及EPO-R的表达。结果正常对照组、假手术组和脊髓损伤组在各时相点均未发现有EPO表达。正常对照组、假手术组未发现EPO-R的表达,脊髓损伤组在伤后1h未见EPO-R mRNA和蛋白的表达,6h开始有表达,12h有明显的表达,至24h达到高峰,3d和7d时仍维持在高表达水平,未见减弱,14d开始下降,至28d时仍有EPO-R蛋白的表达。免疫组化显示EPO-R阳性细胞主要位于神经元、少突胶质细胞、血管内皮细胞和脊髓中央管内室管膜细胞。结论大鼠急性脊髓损伤后脊髓内大量表达EPO-R,这是外源性EPO与EPO-R结合产生神经保护作用的分子基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号