首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of teriparatide when given in combination with HRT were studied in postmenopausal women with low bone mass or osteoporosis. The data provide evidence that the adverse event profile for combination therapy with teriparatide + HRT together is consistent with that expected for each treatment alone and that the BMD response is greater than for HRT alone. INTRODUCTION: Teriparatide [rhPTH(1-34)], given as a once-daily injection, activates new bone formation in patients with osteoporosis. Hormone replacement therapy (HRT) prevents osteoporosis by reducing bone resorption and formation. Combination therapy with these two compounds, in small clinical trials, increased BMD and reduced vertebral fracture burden. The purpose of this study was to determine whether teriparatide provided additional effect on BMD when given in combination with HRT. MATERIALS AND METHODS: A randomized, double-blind, placebo-controlled study was conducted in postmenopausal women with either low bone mass or osteoporosis. Patients were randomized to placebo subcutaneous plus HRT (n = 125) or teriparatide 40 microg/day (SC) plus HRT (TPTD40 + HRT; n = 122) for a median treatment exposure of 13.8 months. Approximately one-half of the patients in each group were pretreated with HRT for at least 12 months before randomization. Patients received 1000 mg calcium and 400-1200 IU of vitamin D daily as oral supplementation. BMD was measured by DXA. RESULTS: Compared with HRT alone, TPTD40 + HRT produced significant (p < 0.001) increases in spine BMD (14% versus 3%), total hip (5.2% versus 1.6%), and femoral neck (5.2% versus 2%) at study endpoint. BMD, in whole body and ultradistal radius, was higher, and in the one-third distal radius was lower, in the combination therapy but not in the HRT group. Serum bone-specific alkaline phosphatase and urinary N-telopeptide/Cr were increased significantly (p < 0.01) in the women receiving TPTD40 + HRT compared with HRT. A similar profile of BMD and bone markers was evident in both randomized patients as well as in subgroups of patients not pretreated or pretreated with HRT. Patients tolerated both the treatments well. Nausea and leg cramps were more frequently reported in the TPTD40 + HRT group. CONCLUSIONS: Adding teriparatide, a bone formation agent, to HRT, an antiresorptive agent, provides additional increases in BMD beyond that provided by HRT alone. The adverse effects of teriparatide when added to HRT were similar to the adverse effects described for teriparatide administered alone. Whether teriparatide was initiated at the same time as HRT or after at least 1 year on HRT, the incremental increases over HRT alone were similar.  相似文献   

2.
Teriparatide is a drug currently approved for treating patients with osteoporosis who are at high risk for future fracture. In the treatment of osteoporosis, teriparatide works as an anabolic agent stimulating bone formation throughout the skeleton by principally enhancing osteoblast-derived bone formation relative to osteoclast-derived bone resorption. The net effect is increased bone mass. For patients with a fracture, a similar process of increased bone formation is required transiently at the fracture site for repair. Teriparatide has been investigated in animal models and in patients as a potential agent to enhance fracture repair. In addition, evidence that teriparatide enhances chondrogenesis has generated interest in using the agent for articular cartilage repair. Research is currently underway to understand the effects teriparatide may have on mesenchymal stem cells, and on other effects that have been reported anecdotally in patients using the drug for osteoporosis care, including the healing of fracture nonunions and a decreased incidence of back pain. We review the current animal and human reports available on the uses of teriparatide in musculoskeletal diseases beyond osteoporosis.  相似文献   

3.
Genant HK  Siris E  Crans GG  Desaiah D  Krege JH 《BONE》2005,37(2):170-174
Teriparatide is the first bone-building drug available for the treatment of osteoporosis. We investigated the efficacy of this compound as assessed by spinal deformity index (SDI) using data from the Fracture Prevention Trial (FPT). The FPT was a randomized, double blind trial of placebo versus teriparatide 20 microg (TPTD20) versus teriparatide 40 microg (TPTD40) administered by daily self-injection. Patients included in the current analyses were those patients from the placebo (n = 398) and TPTD20 (the approved dose, n = 403) groups with baseline and follow-up radiographs and at least one vertebral fracture at baseline. For each vertebra, a visual semiquantitative grade of 0, 1, 2, or 3 was assigned for no fracture or mild, moderate, or severe fracture, respectively; the SDI was calculated by summing the fracture grades of all T4 to L4 vertebrae. The mean SDI increased in the placebo and TPTD20 groups by 0.485 and 0.134, respectively (P < 0.001). The proportions of patients with SDI increases >1, >2, and >3 were reduced by 85%, 80%, and 80%, respectively. In the placebo group, increasing baseline SDI was correlated with the mean increase in SDI during the trial (r = 0.080, P = 0.01), consistent with the progressive natural history of osteoporosis. However, in the TPTD20 group, increasing baseline SDI was not correlated with the mean increase in SDI during the trial (P = 0.297) indicating that teriparatide mitigated or eliminated the increased risk associated with increasing fracture burden. Increases in SDI during the trial were associated with increasing proportions of patients with new or worsening back pain and greater mean height loss (P < 0.0001), demonstrating an association with important clinical consequences. The results indicate that teriparatide greatly reduced the increase in fracture burden in the FPT and mitigated or eliminated the risk for future fractures imparted by increasing baseline fracture burden.  相似文献   

4.
Teriparatide is a skeletal anabolic treatment for patients with osteoporosis at high risk for fracture. Because adequate clinical trials have not yet been conducted to assess the efficacy of teriparatide for reducing the risk of hip fracture, we review here the literature regarding how treatment with teriparatide affects the hip in patients with osteoporosis. Teriparatide increases cancellous bone volume, improves bone architecture, and – uniquely among osteoporosis treatments – increases cortical thickness and cortical porosity. By bone scan and positron emission tomography, teriparatide increases bone formation throughout the skeleton, including the hip. Consistent with these findings, studies using dual-energy X-ray absorptiometry and quantitative computed tomography for longitudinal assessment of changes at the hip have consistently shown increases in areal and volumetric bone mineral density, cortical thickness, and finite element-estimated hip strength in patients treated with teriparatide. Finally, in clinical fracture-outcome trials, treatment with teriparatide has been shown to reduce the risk of nonvertebral fracture, a composite endpoint that includes hip fracture. Taken together, this body of evidence suggests that teriparatide positively affects the hip in patients with osteoporosis.  相似文献   

5.
There is little information on the effects of combination therapy for osteoporosis at the tissue level. Using quadruple tetracycline‐labeled bone biopsies, we have compared the bone formation response to teriparatide (TPTD) in treatment‐naïve subjects (Rx‐Naïve) and in subjects on prior and ongoing alendronate (ALN) treatment (ALN‐Rx). Three bone envelopes were analyzed: cancellous, endocortical, and intracortical. TPTD was given as a standard, continuous daily injection or as a cyclic regimen (3 months on daily TPTD, 3 months off, 3 months on daily TPTD). Subjects were biopsied at 7 weeks and at 7 months to allow comparison of the bone formation response to the first and second cycles of TPTD. Baseline values for dynamic bone formation indices were lower in ALN‐Rx than Rx‐Naïve subjects. Both Rx‐Naïve and ALN‐RX subjects responded to TPTD with significant increases in bone formation indices at both time points. With cyclic TPTD treatment, the first and second cycles of TPTD stimulated bone formation rate in the cancellous and endocortical envelopes to a similar extent in ALN‐Rx and Rx‐Naïve subjects. However, in Rx‐Naïve patients, bone formation rate (BFR/BS) was higher in patients receiving daily treatment compared with those receiving cyclic TPTD treatment in all three envelopes in the 7‐month biopsies. This suggests that the cyclic approach does not provide a skeletal benefit in treatment‐naive patients. In the 7‐month biopsies, cortical porosity was higher in the Rx‐Naïve group receiving daily TPTD than in all other groups. These data provide supporting evidence at the tissue level for previous biochemical and densitometric data suggesting that addition of either cyclic or daily TPTD to ongoing ALN treatment may be an effective approach for patients with severe osteoporosis already treated with ALN who remain at high risk of fracture. © 2016 American Society for Bone and Mineral Research.  相似文献   

6.
Introduction

We herein describe a case of delayed union of a lumbar spine fracture in a 70-year-old patient with diffuse idiopathic skeletal hyperostosis (DISH).

Clinical Course and Result

Because he decided not to undergo surgical treatment, we provided conservative treatment with teriparatide (TPTD). Union was obtained in 2 months, and no adverse events were observed during treatment. Six months after starting the TPTD, further bone formation was observed and the lumbar instability had resolved.

Conclusion

This is the first report of successful use of TPTD to treat delayed union of a spine fracture in a patient with DISH without surgical intervention.

  相似文献   

7.
Introduction: We evaluated effects of teriparatide (rDNA origin) injection [teriparatide, rhPTH (1–34), TPTD] on hip structure among a subset 558 postmenopausal women enrolled in the Fracture Prevention Trial. Methods: Patients were randomized to once-daily, self-administered subcutaneous injections of placebo (N = 189), teriparatide 20 μg (TPTD20; N = 186), or 40 μg (TPTD40; N = 183) for a median of 20 months. Repeated dual energy X-ray absorptiometry (DXA) hip scans were analyzed with the Hip Structure Analysis (HSA) program to derive structural geometry. Results and conclusions: There were no significant differences in age or body size between groups at baseline, 1 year, or study termination. At the femoral neck, teriparatide increased bone mass and improved bone geometric strength in both treatment groups compared to the placebo group, with the response being dose-related. The mean difference (95% CI) in bone cross-sectional area (CSA) in the TPTD20 was 3.5% (1.8% to 5.3%), and 6.3% (4.5% to 8.2%) in TPTD40 at study termination, compared to placebo controls. Teriparatide treatment increased bending strength, with the mean difference in section modulus being 3.6% (1.4% to 5.8%) and 6.8% (4.6% to 9.1%) greater in the TPTD20 and TPTD40 groups, respectively. Compared to placebo, local cortical instability characterized by the buckling ratio decreased by 5.5% (3.5% to 7.5%) and 8.6% (6.6% to 10.5%) in the TPTD20 and TPTD40 groups, respectively, during the study period. The changes at the intertrochanteric region were comparable to those at the narrow neck although between-group differences were slightly smaller. Except for an inconsequential (1%) improvement in section modulus in TPTD20, teriparatide effects did not reach significance at the femoral shaft. In conclusion, teriparatide treatment improved axial and bending strength, and increased cortical thickness and stability at the femoral neck and intertrochanteric region. Teriparatide treatment effects were not apparent at the purely cortical femoral shaft.  相似文献   

8.
In this paper, we focus upon the use of anabolic skeletal therapy for the treatment of postmenopausal and other forms of osteoporosis. The only anabolic skeletal agent currently available is a recombinant bioactive fragment of parathyroid hormone, PTH(1-34), known as teriparatide. The full length molecule, human PTH(1-84) is being investigated at this time as are other PTH molecules. Teriparatide improves bone quality by actions on bone turnover, bone density, bone size, and microarchitecture. In postmenopausal women with osteoporosis, teriparatide reduces the incidence for vertebral and nonvertebral fractures. In individuals who have been treated previously with an antiresorptive agent, the subsequent actions of teriparatide on bone density are delayed transiently if bone turnover is markedly suppressed. Combination therapy with teriparatide or PTH(1-84) and an antiresorptive does not appear, at this time, to offer advantages over the use of PTH or an antiresorptive alone. To maintain the gains in bone density with PTH, it is important to follow its use with an antiresorptive agent.  相似文献   

9.
Until recently, the only therapeutic agents available for postmenopausal osteoporosis acted by inhibiting bone resorption and decreased the fracture risk by no more than 50%. Teriparatide, the recombinant 1-34 fragment of human parathyroid hormone, is a bone formation enhancer that has recently been licensed for use in established postmenopausal osteoporosis. Intermittent parathyroid hormone administration preferentially stimulates bone formation. The resultant increase in bone mass and improvement in bone architecture translate into a large decrease in the fracture risk that constitutes a major advance in the treatment of postmenopausal osteoporosis. Further work is needed to define the role for teriparatide in the therapeutic strategy for postmenopausal osteoporosis and to determine whether this agent is best used alone or in synchronous or sequential combination with bone resorption inhibitors.  相似文献   

10.
The Skeletal Histomorphometry in Patients on Teriparatide or Zoledronic Acid Therapy (SHOTZ) study assessed the progressive effects of teriparatide (TPTD) and zoledronic acid (ZOL) on bone remodeling and material properties in postmenopausal women with osteoporosis. Previously, we reported that biochemical and histomorphometric bone formation indices were significantly higher in patients receiving TPTD versus ZOL. Here we report bone mineralization density distribution (BMDD) results based on quantitative backscattered electron imaging (qBEI). The 12‐month primary study was randomized and double blind until the month 6 biopsy, then open label. Patients (TPTD, n = 28; ZOL, n = 31) were then eligible to enter a 12‐month open‐label extension with their original treatment: TPTD 20 μg/d (subcutaneous injection) or ZOL 5 mg/yr (intravenous infusion). A second biopsy was collected from the contralateral side at month 24 (TPTD, n = 10; ZOL, n = 10). In cancellous bone, ZOL treatment was associated at 6 and 24 months with significantly higher average degree of mineralization (CaMEAN, +2.2%, p = 0.018; +3.9%, p = 0.009, respectively) and with lower percentage of low mineralized areas (CaLOW, –34.6%, p = 0.029; –33.7%, p = 0.025, respectively) and heterogeneity of mineralization CaWIDTH (–12.3%, p = 0.003; –9.9%, p = 0.012, respectively), indicating higher mineralization density and more homogeneous mineral content versus TPTD. Within the ZOL group, significant changes were found in all parameters from month 6 to 24, indicating a progressive increase in mineralization density. In sharp contrast, mineralization density did not increase over time with TPTD, reflecting ongoing deposition of new bone. Similar results were observed in cortical bone. In this study, TPTD stimulated new bone formation, producing a mineralized bone matrix that remained relatively heterogeneous with a stable mean mineral content. ZOL slowed bone turnover and prolonged secondary mineralization, producing a progressively more homogeneous and highly mineralized bone matrix. Although both TPTD and ZOL increase clinical measures of bone mineral density (BMD), this study shows that the underlying mechanisms of the BMD increases are fundamentally different. © 2016 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

11.
Transiliac bone biopsies were obtained from 55 women treated with teriparatide or placebo for 12-24 months. We report direct evidence that modeling bone formation at quiescent surfaces was present only in teriparatide-treated patients and bone formation at remodeling sites was higher with teriparatide than placebo. INTRODUCTION: Recombinant teriparatide [human PTH(1-34)], a bone formation agent for the treatment of osteoporosis when given once daily subcutaneously, increases biochemical markers of bone turnover and activation frequency in histomorphometry studies. MATERIALS AND METHODS: We studied the mechanisms underlying this bone-forming action of teriparatide at the basic multicellular unit by the appearance of cement lines, a method used to directly classify surfaces as modeling or remodeling osteons, and by the immunolocalization of IGF-I and IGF-II. Transiliac bone biopsies were obtained from 55 postmenopausal women treated with teriparatide 20 or 40 microg or placebo for 12-24 months (median, 19.8 months) in the Fracture Prevention Trial. RESULTS: A dose-dependent relationship was observed in modeling and mixed remodeling/modeling trabecular hemiosteons. Trabecular and endosteal hemiosteon mean wall thicknesses were significantly higher in both teriparatide groups than in placebo. There was a dose-dependent relationship in IGF-II immunoreactive staining at all bone envelopes studied. The greater local IGF-II presence after treatment with teriparatide may play a key role in stimulating bone formation. CONCLUSIONS: Direct evidence is presented that 12-24 months of teriparatide treatment induced modeling bone formation at quiescent surfaces and resulted in greater bone formation at remodeling sites, relative to placebo.  相似文献   

12.
Antiresorptive agents for osteoporosis are a cornerstone of therapy, but anabolic drugs have recently increased our options. By stimulating bone formation, anabolic agents reduce fracture incidence by improving bone qualities in addition to increasing bone mass. The only anabolic agent currently approved for osteoporosis by the US Food and Drug Administration, teriparatide (recombinant human parathyroid hormone [1–34]), has emerged as a major approach to selected patients with osteoporosis. Recombinant human parathyroid hormone (1–84) is also available in Europe. Teriparatide increases bone density and bone turnover, improves microarchitecture, and changes bone size. The incidence of vertebral and nonvertebral fractures is reduced. A current concept in the mechanism of teriparatide action is related to its effect to stimulate processes associated with bone formation before it stimulates processes associated with bone resorption. This sequence of events has led to the concept of the anabolic window, the period of time when teriparatide is maximally anabolic. Newer approaches to the use of teriparatide alone and in combination with antiresorptive agents have led to ways in which the anabolic window can be expanded.  相似文献   

13.
Fracture consolidation is a crucial goal to achieve as early as possible, but pharmacological stimulation has been neglected so far. Teriparatide has been considered for this purpose for its anabolic properties. We set up a murine model of closed tibial fracture on which different doses of teriparatide were tested. Closed fracture treatment avoids any bias introduced by surgical manipulations. Teriparatide’s effect on callus formation was monitored during the first 4 weeks from fracture. Callus evolution was determined by histomorphometric and microhardness assessment. Daily administration of 40 μg/kg of teriparatide accelerated callus mineralization from day 9 onward without significant increase of sizes, and at day 15 the microhardness properties of treated callus were similar to those of bone tissue. Teriparatide considerably improved callus consolidation in the very early phases of bone healing.  相似文献   

14.
15.
This study investigated whether weekly teriparatide (TPTD) injections are as effective as daily teriparatide injections for the treatment of stage 3 bisphosphonate-related osteonecrosis of the jaws (BRONJ) and compared serum markers of bone turnover between the two treatment regimens. Daily TPTD treatment has recently been reported to be effective for BRONJ, but there are no reports describing the effectiveness of weekly TPTD injections. We report two patients with stage 3 BRONJ. One patient was successfully treated with weekly TPTD injections and the other with daily TPTD injections. Changes in the levels of serum N-telopeptide of type I collagen (s-NTX) and serum N-terminal propeptide of type I collagen (P1NP) were studied. Two patients with stage 3 BRONJ that was refractory to conservative treatment were treated with TPTD. Their medical records were reviewed and the patients were interviewed. There was complete mucosal coverage of the intraoral defects after 3 months of TPTD treatment in both patients. Progressive bone regeneration in an area of mandibular fracture was identified after 4 months of treatment. The s-NTX level increased slightly in both patients. This is the first report of successful treatment of stage 3 BRONJ with weekly TPTD injections. Either daily or weekly TPTD injections may effectively treat stage 3 BRONJ and should be considered before or perhaps even in lieu of undertaking major resection and reconstruction.  相似文献   

16.
INTRODUCTION: Teriparatide is a bone formation agent that increases bone turnover and mass, resulting in an increase in bone strength and a decrease in fracture risk. METHODS: The primary purpose of this analysis was to evaluate the association between pretreatment bone turnover marker (BTM) concentrations and the absolute and relative fracture risks after adjusting for baseline femoral neck BMD, number of prevalent vertebral fractures, and age. Because femoral neck BMD is commonly attained in the assessment of patients at risk for osteoporosis, we examined the ability of a multivariate assessment including pretreatment BTM concentration and femoral neck BMD to predict future fracture risk after adjusting for the number of prevalent vertebral fractures. We examined data from the Fracture Prevention Trial, a study designed to determine the effect of teriparatide 20 mcg/day and teriparatide 40 mcg/day on vertebral and nonvertebral fracture risk in postmenopausal women with osteoporosis. BTM were analyzed in two subsets of women within the Fracture Prevention Trial, and included serum bone-specific alkaline phosphatase (BSAP), serum carboxy-terminal extension peptide of procollagen type I (PICP), serum amino-terminal extension peptide of procollagen type I (PINP), urinary free deoxypyridinoline (DPD), and urinary N-terminal telopeptide (NTX). RESULTS: Teriparatide significantly reduced the risk of fracture [four BTM subset (n = 520), placebo = 14.3%, teriparatide = 5.8%, P < 0.05; PINP subset (n = 771), placebo = 17.7%, teriparatide = 5.5%, P < 0.05]. Subjects with the highest pretreatment BTM concentrations had the greatest fracture risk. Teriparatide-mediated absolute risk reduction was greatest for women with high pretreatment bone turnover; however, the relative fracture risk reduction was independent of pretreatment bone turnover. After adjusting for pretreatment BTM and number of prevalent vertebral fractures, baseline femoral neck BMD was not a significant predictor of fracture risk. CONCLUSION: Teriparatide-mediated relative fracture risk reduction was independent of pretreatment bone turnover, demonstrating that this therapy offers clinical benefit to patients across a range of disease severity.  相似文献   

17.
FE modeling was used to estimate the biomechanical effects of teriparatide and alendronate on lumbar vertebrae. Both treatments enhanced predicted vertebral strength by increasing average density. This effect was more pronounced for teriparatide, which further increased predicted vertebral strength by altering the distribution of density within the vertebra, preferentially increasing the strength of the trabecular compartment. INTRODUCTION: Teriparatide 20 microg/day (TPTD) and alendronate 10 mg/day (ALN) increase areal, measured by DXA, and volumetric, measured by QCT, lumbar spine BMD through opposite effects on bone remodeling. Using finite element (FE) modeling of QCT scans, we sought to compare the vertebral strength characteristics in TPTD- and ALN-treated patients. MATERIALS AND METHODS: A subset of patients (N = 28 TPTD; N = 25 ALN) from the Forteo Alendronate Comparator Trial who had QCT scans of the spine at baseline and postbaseline were analyzed. The QCT scans were analyzed for compressive strength of the L(3) vertebra using FE modeling. In addition, using controlled parameter studies of the FE models, the effects of changes in density, density distribution, and geometry on strength were calculated, a strength:density ratio was determined, and a response to bending was also quantified. RESULTS: Both treatments had positive effects on predicted vertebral strength characteristics. At least 75% of the patients in each treatment group had increased strength of the vertebra at 6 months compared with baseline. Patients in both treatment groups had increased average volumetric density and increased strength in the trabecular bone, but the median percentage increases for these parameters were 5- to 12-fold greater for TPTD. Larger increases in the strength:density ratio were also observed for TPTD, and these were primarily attributed to preferential increases in trabecular strength. CONCLUSIONS: These results provide new insight into the effects of these treatments on estimated biomechanical properties of the vertebra. Both treatments positively affected predicted vertebral strength through their effects on average BMD, but the magnitudes of the effects were quite different. Teriparatide also affected vertebral strength by altering the distribution of density within the vertebra, so that overall, teriparatide had a 5-fold greater percentage increase in the strength:density ratio.  相似文献   

18.
Teriparatide and bisphosphonates are osteoporosis medications that increase bone mineral density (BMD) and prevent fracture, but each has a different mechanism of action. Teriparatide promotes bone formation, while bisphosphonates suppress bone resorption. In the clinical setting, however, drug selection is not always tailored to the particular clinical condition of the patient or mechanism of action of the drug. We compared the effects of teriparatide and the bisphosphonate risedronate on bone metabolism using two ovariectomized rat models to elucidate the optimal use of these two drugs in the clinical setting. We first performed dose-finding experiments to determine the equivalent effective doses of each drug (5.6 and 3.0 µg/kg for teriparatide and risedronate, respectively). We then compared the effects of these doses on bone metabolism after subcutaneous administration three times weekly for 4 months starting either the day after ovariectomy (preventive study) or 12 months after ovariectomy (therapeutic study). The increase in proximal tibial BMD under the physical conditions that increased bone turnover at 1 to 2 months after ovariectomy was greater in the risedronate group than in the teriparatide group. In contrast, the increases in lumbar vertebral BMD and bone strength under the physical conditions that significantly decreased BMD and bone strength at 12 months after ovariectomy were greater in the teriparatide group than in the risedronate group. The present study provides important information on the selection of antiosteoporotic drugs, including teriparatide and risedronate, in treatment protocols tailored to the clinical conditions of patients and drug mechanisms.  相似文献   

19.
Previously, we reported the effects of teriparatide (TPTD) and zoledronic acid (ZOL) on bone formation based on biochemical markers and bone histomorphometry of the cancellous envelope at month 6 in postmenopausal women with osteoporosis who participated in the 12‐month primary Skeletal Histomorphometry in Subjects on Teriparatide or Zoledronic Acid Therapy (SHOTZ) study. Patients were eligible to enter a 12‐month extension on their original treatment regimen: TPTD 20 μg/day (s.c. injection) or ZOL 5 mg/year (i.v. infusion). A second biopsy was performed at month 24. Here we report longitudinal changes between and within each treatment group in the cancellous, endocortical, intracortical, and periosteal bone envelopes in patients with evaluable biopsies at months 6 and 24 (paired data set: TPTD, n = 10; ZOL, n = 9). Between‐group differences are also reported in the larger set of patients with evaluable biopsies at month 6 (TPTD, n = 28; ZOL, n = 30). Data from the cancellous envelope at month 6 or month 24 provided a reference to compare differences across envelopes within each treatment group. The 24‐month results extend our earlier report that TPTD and ZOL possess different tissue‐level mechanisms of action. Moreover, these differences persisted for at least 2 years in all four bone envelopes. Few longitudinal differences were observed within or across bone envelopes in ZOL‐treated patients, suggesting that the low bone formation indices at month 6 persisted to month 24. Conversely, the magnitude of the effect of TPTD on bone formation varied across individual envelopes: median values for mineralizing surface (MS/BS) and bone formation rate (BFR/BS) at month 6 were approximately 3‐fold to 5‐fold higher in the endocortical and intracortical envelopes compared to the cancellous envelope. Although MS/BS and BFR/BS declined in these envelopes at month 24, median values continued to exceed, or were not significantly different from, those in the cancellous envelope. This study demonstrates for the first time that bone formation indices are higher with TPTD treatment than with ZOL in all four bone envelopes and the difference persists for at least 2 years. Moreover, the magnitude of the effect of TPTD in cortical bone remains robust at 24 months. © 2016 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

20.

Summary

Patients with rheumatoid arthritis showed greater response to 18-month administration of daily teriparatide especially in the increase of bone formation markers at 1 month and femoral neck bone mineral density at 18 months compared to postmenopausal osteoporosis patients.

Introduction

The aim of this study was to evaluate the effects of 18-month administration of daily teriparatide (TPTD) in osteoporosis patients with rheumatoid arthritis (RA) by comparing that of postmenopausal osteoporosis patients (Porosis).

Methods

The effects of TPTD were examined between RA (n?=?70; age 68.4 years; disease activity score assessing 28 joints with CRP [DAS28-CRP] 2.8; rheumatoid factor [RF] positivity 75.5 %) with 77.1 % of prior bisphosphonate (BP), 84.3 % of oral prednisolone (PSL) (4.4 mg/day at baseline), 25.7 % of biologics, and Porosis (n?=?62; age 71.3 years) with 77.4 % of prior BP.

Results

Femoral neck (FN) bone mineral density (BMD) increase at 18 months was significantly greater in RA compared to Porosis (4.7 vs. 0.7 %, P?=?0.038), whereas it was 9.7 versus 7.9 % (P?=?0.736) in the lumbar spine (LS). The increase of bone formation markers (bone alkaline phosphatase [bone ALP] and N-terminal type I procollagen propeptide [PINP]) at 1 month were all significantly greater in RA compared to Porosis. A multivariate logistic regression analysis revealed that the significant indicator of 18-month BMD increase in RA was a 3-month increase of under-carboxylated osteocalcin (ucOC) for LS (β?=?0.446, P?=?0.005) and baseline ucOC for FN (β?=?0.554, P?=?0.001), in which both showed significant negative correlation with baseline PSL dose.

Conclusions

RA showed greater response to daily TPTD administration, especially in the increase of bone formation markers at 1 month and FN BMD increase at 18 months compared to Porosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号