首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present experiment investigated the control of bipedal posture following localised muscle fatigue of the plantar-flexors and finger-flexors. Twelve young healthy adults voluntarily participated in this study. They were asked to stand upright as still as possible with their eyes closed in two randomly ordered experimental sessions. Each session consisted of pre- and post-fatigue bipedal static postural control measurements immediately before and after a designated fatiguing protocol for plantar-flexor and finger-flexor muscles. Centre of foot pressure (CoP) displacements were recorded using a force platform. The results showed that the postural effects of localised muscle fatigue differed between the muscles targeted by the fatiguing procedures. Indeed, localised muscle fatigue of the plantar-flexors yielded increased CoP displacements, whereas localised muscle fatigue of the finger-flexors had no significant effect on the CoP displacements. In other words, fatigue localised to muscles which are involved in the performance of the postural task (plantar-flexors) degraded postural control, whereas fatigue localised to muscles which are not involved in the performance of the postural task did not. Taken together, the present findings support the recent conclusions that the effects of localised muscle fatigue on upright postural control is joint- and/or muscle-specific, and suggest that localised muscles fatigue of the plantar-flexors could mainly affect bipedal postural control via sensorimotor rather than cognitive processes.  相似文献   

2.
This study tested the hypothesis that postural complexity increases as the coupling across the axes of motion decreases as children get older. Children aged 6 and 10 years and young adults (18-23 years) were seated on a wooden box placed atop a force platform that recorded their mediolateral and anteroposterior center of pressure (COP) motion with their feet supported and unsupported. The COP path length and complexity decreased with age, and this was paralleled by an increase in relative phase entropy across the axes of sway motion. The postural sway of the younger children was dominated by slower fluctuations that were more tightly coupled across the axes of motion than the adults. The findings support the postulation that the development of children's sitting posture is characterized by increased freedom in postural coordination that realizes a more loosely coupled but adaptive postural motion with a reduced amount of sway.  相似文献   

3.
The purposes of this study were to investigate the effects of fatigue location and age on changes in postural control induced by localized muscle fatigue, as well as the patterns of recovery post-fatigue. Groups of 16 younger (18–25 years) and 16 older (55–65 years) participants performed submaximal isotonic fatiguing exercises involving the unilateral ankle plantar flexors, knee extensors, and shoulder flexors, and bilateral lumbar extensors. Postural control was assessed during quiet upright stance, from center-of-pressure and center-of-mass time series obtained before and after the fatiguing exercises. Acute effects of fatigue differed between joints, with the most substantial effects evident at the lower back, followed by the ankle. Neither knee nor shoulder fatigue resulted in significant effects on postural control. Significant acute effects of fatigue were found only among the younger group. Recovery of postural control post-fatigue was influenced by age, being more rapid in the younger group, but not by fatigue location. Along with existing evidence, these results may facilitate the development of strategies to prevent occupational falls.  相似文献   

4.
Aim: To examine the effect of unweighting as a possible contributory factor to a reduced calf muscle volume on postural sway during quiet standing, changes in postural sway following bed rest with or without strength training were investigated. Methods: Twelve young men participated in a 20‐day bed‐rest study. Subjects were divided into a non‐training group (BR‐Con) and a strength training group (BR‐Tr). For the BR‐Tr group, training was comprised of dynamic calf‐raise and leg‐press exercises to maintain the muscle volume of the plantar flexors. Before and after bed rest, subjects maintained quiet standing in a barefoot position on a force platform with their eyes open or closed. During the quiet stance, foot centre‐of‐pressure (CoP) and the mean velocity of CoP was calculated. Muscle volume of the plantar flexors was computed using axial magnetic resonance images of the leg. Results: After the bed‐rest period, the muscle volume decreased in the BR‐Con group but not in the BR‐Tr group. The mean velocity of CoP as an assessment of postural sway, however, increased in both groups. These results indicate that the strength training during bed rest cannot counteract the increase in postural sway. Conclusion: We concluded that postural sway increases following 20 days of bed rest despite maintenance of the muscle volume of plantar flexors as the main working muscles for the human postural standing.  相似文献   

5.
The reduction in the quality and integration of sensory information with aging could increase the alterations in postural control associated with muscle fatigue observed in younger adults. This study aimed to compare changes in postural control and attentional demands due to ankle muscle fatigue, with intact and reduced proprioceptive information at the ankle, between young and older adults. Eleven young (24 ± 4 years) and 13 older (65 ± 4 years) men stood quietly on a force platform (blindfolded) under four experimental conditions (combinations of firm (FS)/compliant (CS) surfaces and single/dual tasks), before and immediately after a fatiguing exercise. The fatiguing exercise, performed on a dynamometer, consisted of maintaining an isometric contraction of the plantarflexors at 50 % of maximum until exhaustion. Both COP sway area and COP sway velocity were greater on the CS compared to FS and increased with fatigue for both groups in all conditions. COP sway area showed a greater increase with fatigue in older adults when standing on the CS. Reaction time (secondary task) increased significantly after fatigue, but only for older adults when standing on the CS. The effects of fatigue on postural control are more important when proprioceptive information at the ankle is altered. In particular, older adults had more difficulty and may have needed more attention to stand quietly, compared with young adults.  相似文献   

6.
Stance and sensory feedback influence on postural dynamics   总被引:2,自引:0,他引:2  
Hong SL  Manor B  Li L 《Neuroscience letters》2007,423(2):104-108
This study examined the effects of ice-induced plantar desensitization and the withdrawal of visual feedback on the magnitude and time-dependent structure of postural sway variability. The magnitude of variability was quantified as the area of an ellipse enclosing 95% of the center of pressure (COP) time-series during normal and tandem stances. The same time-series were also analyzed using Approximate Entropy (ApEn) and Cross-Approximate Entropy (CrossApEn) as indices of irregularity and asynchrony between the mediolateral and anteroposterior COP motions. Variability increased during tandem stance and this increase was compounded by both visual feedback withdrawal and cutaneous desensitization. Both ApEn (mediolateral and anteroposterior COP motion) and CrossApEn increased with the withdrawal of visual feedback during the tandem stance, but decreased significantly during normal stance. The results of the study demonstrate that plantar desensitization only affected the magnitude of sway variability but did not alter its time-dependent structure. Contrasting effects on the structure of postural sway variability with visual feedback withdrawal were observed during the different stances, highlighting the role of task demands in postural dynamics.  相似文献   

7.
The present study examined, in children aged 4–11 and in adults, the postural control modifications when attention was oriented voluntary on postural sway. Since (1) there are less attentional resources in children than in adults, (2) the selective attention processing improves with age, i.e., children use a different strategy to focus their attention than adults, and (3) adults’ postural stability decreases when attention is focused on postural sway, we hypothesized that postural stability was less affected in children than in adults when attention was focused on postural sway. Fourty four children aged 4- to 11-year-old and 11 adults participated in the experiments. The postural control task was executed in a Romberg position. Two experimental conditions were presented to the subjects, (1) to look at a video on a TV screen without instruction about the posture, and (2) to fixate a cross placed at the center of the TV screen with the instruction to remain as stable as possible. Postural performance was measured by means of a force platform. Results from this study (1) confirmed a non-monotonic improvement of postural stability during the ontogenetic period without reaching the adults’ level at the age of 11, (2) suggested that children, aged 4–11, are able to focus their attention on the control of posture, and (3) showed that the automatic control of posture increases postural stability since the age of 4.  相似文献   

8.
The purpose of this study was to investigate the effects of unilateral muscle fatigue induced on the hip flexors/extensors or the ankle plantar/dorsiflexors on unipedal postural stability under different visual conditions. Twenty-four healthy young women completed 2 testing sessions 1?week apart with a randomized order assigned according to the muscles tested. During each session, one set of muscle groups was fatigued using isokinetic contractions: ankle plantar/dorsi flexors or hip flexor/extensors. Postural stability was assessed during trials of unilateral stance on a force plate before and after the fatigue protocol. 10?s into the trial, subjects were asked to close their eyes. Mean velocity, the area of the 95% confidence ellipse, and standard deviation of velocity in anteroposterior and mediolateral directions of center of pressure displacements were calculated for two periods of 5?s, immediately before and 1?s after the eyes closure. The results of the repeated measures ANOVAs showed a significant fatigue-by-fatigue segment by visual condition interaction for the CoP parameters. When the vision was removed, the interaction between fatigue and fatigue segment was significant for the CoP parameters. In conclusion, fatigue in both proximal and distal musculature of the lower extremity yielded decreased postural stability during unipedal quiet standing in healthy young women. This effect was more accentuated when visual information was eliminated. Withdrawing vision following fatigue to the proximal musculature, led to a significantly greater impairment of postural stability compared to the fatigue of more distal muscles.  相似文献   

9.
The first aim of this paper was to investigate if expertise in rhythmic gymnastics influences postural performance even in an easy non-specific task such as bipedal posture. Rhythmic gymnastics is a unique female sport which encompasses aspects of both artistic gymnastics and ballet and includes the use of a small apparatus (rope, hoop, ball, clubs and ribbon). Most previous studies have shown that expertise achieved by artistic gymnasts and dancers improves postural steadiness only in the situations for which those athletes are trained. Literature has not yet compared rhythmic gymnasts to other athletes in terms of their postural strategies. Hence, the study presented herein tested a group of high level rhythmic gymnasts and a group of female university students, trained in other sports, in the bipedal posture under eyes open and closed conditions. A force platform was used to record body sway. (1) Distance from the centre of sway, (2) lateral and (3) antero-posterior displacements were analyzed in time and frequency domains. Comparing the two groups, it was found that rhythmic gymnasts had better strategies than students in simple postural tasks, especially in lateral directions and in the period from 0.05 to 2 s. The most interesting finding in this study is that rhythmic gymnastics training seems to have a direct effect on the ability to maintain bipedal posture, which may confirm the “transfer” hypothesis of rhythmic gymnastics expertise to bipedal postural sway, especially in medio-lateral displacements. This finding has never been reported in previous studies on artistic gymnasts and ballet dancers. Furthermore, the present study confirmed the visual dependence of all the athletes, irrespective of their disciplines, in their postural trials.  相似文献   

10.
Postural instability is one of the most disabling features of idiopathic Parkinson’s disease (PD). In this study, we focused on postural instability as the main factor predisposing parkinsonians to falls. For this purpose, changes in sway characteristics during quiet stance due to visual feedback exclusion were studied. We searched for postural sway measures that could be potential discriminators for an increased fall risk. A group of 110 subjects: 55 parkinsonians (Hoehn and Yahr: 1–3), and 55 age-matched healthy volunteers participated in the experiment. Their spontaneous sway characteristics while standing quiet with eyes open and eyes closed were analyzed. We found that an increased mediolateral sway and sway area while standing with eyes closed are characteristic of parkinsonian postural instability and may serve to quantify well a tendency to fall. These sway indices significantly correlated with disease severity rated both by the Hoehn and Yahr scale as well as by the Motor Section of the UPDRS. A forward shift of a mean COP position in parkinsonians which reflects their flexed posture was also significantly greater to compare with the elderly subjects and exhibited a high sensitivity to visual conditions. Both groups of postural sway abnormalities identified here may be used as accessible and reliable measures which allow for quantitative assessment of postural instability in Parkinson’s disease.  相似文献   

11.
We investigated co-varied changes in muscle activity during voluntary sway tasks that required a quick shift of the center of pressure (COP). We hypothesized that multi-muscle synergies (defined as task-specific covariation of elemental variables, muscle modes) stabilize a COP location in the anterior–posterior direction prior to a voluntary COP shift and that during the shift the synergies would weaken. Standing subjects performed two tasks, a cyclic COP shift over a range corresponding to 80% of the maximal amplitude of voluntary COP shift at 1 Hz and a unidirectional quick COP shift over the same nominal amplitude. The cyclic sway task was used to define muscle modes (M-modes, leg and trunk muscle groups with parallel scaling of muscle activation level within a group) and the relations between small changes in the magnitudes of M-modes [in the principal component analysis (PCA), the M-mode magnitudes are equivalent to PC scores] and COP shifts. A novel approach was used involving PCA applied to indices of muscle integrated activity measured both within a trial and across trials. The unidirectional sway task was performed in a self-paced (SP) manner and under a typical simple reaction time (RT) instruction. M-modes were also defined along trials at those tasks; they have been shown to be similar across tasks. Integrated indices of muscle activity in the SP-sway and RT-sway tasks were transformed into the M-modes. Variance in the M-mode space was partitioned into two components, one that did not affect the average value of COP shift (V UCM) and the other that did (V ORT). An index (ΔV) corresponding to the normalized difference between V UCM and V ORT was computed. During steady-state posture, ΔV was positive corresponding to most M-mode variance lying in a sub-space corresponding to a stable COP location across trials. Positive ΔV values have been interpreted as reflecting a multi-M-mode synergy stabilizing the COP location. The magnitude of ΔV was larger in SP trials than in RT trials. During voluntary COP shifts, the ΔV magnitude dropped to zero or even became negative. We conclude that M-mode synergies stabilize COP location during quiet standing, while these synergies weaken or disappear during fast voluntary COP shifts. Under RT conditions, the COP stabilizing synergies were weaker supposedly to facilitate a quick COP shift without time for preparation. The suggested method of M-mode identification may potentially be applied to analysis of postural synergies in persons with impaired postural control such as elderly persons, persons with atypical development, or in the course of rehabilitation after an injury.  相似文献   

12.
Following recent advances in the analysis of centre-of-pressure (COP) recordings, we examined the structure of COP trajectories in ten children (nine in the analyses) with cerebral palsy (CP) and nine typically developing (TD) children while standing quietly with eyes open (EO) and eyes closed (EC) and with concurrent visual COP feedback (FB). In particular, we quantified COP trajectories in terms of both the amount and regularity of sway. We hypothesised that: (1) compared to TD children, CP children exhibit a greater amount of sway and more regular sway and (2) concurrent visual feedback (creating an external functional context for postural control, inducing a more external focus of attention) decreases both the amount of sway and sway regularity in TD and CP children alike, while closing the eyes has opposite effects. The data were largely in agreement with both hypotheses. Compared to TD children, the amount of sway tended to be larger in CP children, while sway was more regular. Furthermore, the presence of concurrent visual feedback resulted in less regular sway compared to the EO and EC conditions. This effect was less pronounced in the CP group where posturograms were most regular in the EO condition rather than in the EC condition, as in the control group. Nonetheless, we concluded that CP children might benefit from therapies involving postural tasks with an external functional context for postural control.
Annick Ledebt (Corresponding author)Email:
  相似文献   

13.
The aim of this work was to compare the effects of fatigue of the quadriceps femoris after fatiguing voluntary contractions (VOL) and fatiguing neuromuscular electrical stimulation (ES) on bipedal postural control. Nineteen active male subjects (22.2 ± 1.7 years) completed these two fatiguing exercises. Isometric maximal voluntary contraction (MVC) and postural control were recorded using an ergometer and a force platform that registered the center of foot pressure (COP). We analyzed the COP surface, the mean COP velocity and the spectral power density given by the wavelet transform. Recordings were performed before (PRE condition) and after the completion of each fatiguing task (immediately POST condition, after a 5 min recovery POST 5 condition). In POST condition, the ES exercise affected MVC more than the VOL exercise. However, bipedal postural control was similarly deteriorated for both exercises. In POST 5 condition, for both fatiguing exercises, muscle strength and postural control did not recover their initial level. These results suggest that the postural control disturbance could not be distinguished for the two fatiguing exercises in the bipedal stance. In addition, the recovery speeds of postural control and muscle strength abilities did not differ for the ES exercise and the VOL exercise.  相似文献   

14.
The influence of attention on the dynamical structure of postural sway was examined in 30 healthy young adults by manipulating the focus of attention. In line with the proposed direct relation between the amount of attention invested in postural control and regularity of center-of-pressure (COP) time series, we hypothesized that: (1) increasing cognitive involvement in postural control (i.e., creating an internal focus by increasing task difficulty through visual deprivation) increases COP regularity, and (2) withdrawing attention from postural control (i.e., creating an external focus by performing a cognitive dual task) decreases COP regularity. We quantified COP dynamics in terms of sample entropy (regularity), standard deviation (variability), sway-path length of the normalized posturogram (curviness), largest Lyapunov exponent (local stability), correlation dimension (dimensionality) and scaling exponent (scaling behavior). Consistent with hypothesis 1, standing with eyes closed significantly increased COP regularity. Furthermore, variability increased and local stability decreased, implying ineffective postural control. Conversely, and in line with hypothesis 2, performing a cognitive dual task while standing with eyes closed led to greater irregularity and smaller variability, suggesting an increase in the "efficiency, or "automaticity" of postural control". In conclusion, these findings not only indicate that regularity of COP trajectories is positively related to the amount of attention invested in postural control, but also substantiate that in certain situations an increased internal focus may in fact be detrimental to postural control.  相似文献   

15.
Falls from heights resulting from a loss of balance are a major concern in the occupational setting. Previous studies have documented a deleterious effect of lower extremity fatigue on balance. The purpose of this study was to investigate the effect of lumbar extensor fatigue on balance during quiet standing. Additionally, the effects of fatigue rate on balance and balance recovery rate were assessed. Eight center-of-pressure-based measures of postural sway were collected from 13 participants, both before and after a protocol that fatigued the lumbar extensors to 60% of their unfatigued maximum voluntary exertion force. In addition, postural sway was measured for 30 min after the fatiguing protocol, at 5-min intervals, to quantify balance recovery rate during recovery from fatigue. Two different fatigue rates were achieved by fatiguing participants over either 10 min or 90 min. Results show an increase up to 58% in time-domain postural sway measures with lumbar extensor fatigue, but no change in frequency-domain measures. Fatigue rate did not affect the magnitude of these postural sway increases, nor did it affect the rate of balance recovery following fatigue. Statistical power for the latter result, however, was low. These results show that lumbar extensor fatigue increases postural sway and may contribute to fall-from-height accidents.  相似文献   

16.
The role of plantar cutaneous sensation in unperturbed stance   总被引:9,自引:0,他引:9  
Considerable evidence shows that sensation from the feet and ankles is important for standing balance control. It remains unclear, however, to what extent specific foot and ankle sensory systems are involved. This study focused on the role of plantar cutaneous sensation in quasi-static balance control. Iontophoretic delivery of anesthesia was used to reduce the sensitivity of the forefoot soles. In a follow-up experiment, subjects received intradermal injections of local anesthetic into the entire weight-bearing surface of the foot soles. Properties of the center-of-foot-pressure (COP) trajectories and ground reaction shear forces were analyzed using stabilogram-diffusion analysis and summary statistics. Effects of foot-sole anesthesia were generally small and mostly manifested as increases in COP velocity. Magnitude of COP displacement was unaffected by foot-sole anesthesia. Forefoot anesthesia mainly influenced mediolateral posture control, whereas complete foot-sole anesthesia had an impact on anteroposterior control. During bipedal stance, statistically significant effects of foot-sole anesthesia on COP were present only under eyes-closed conditions and included increases in COP velocity (11-12%) and shear force root-mean-square (13%), the latter indicating increases in body center-of-mass accelerations due to the foot-sole anesthesia. Similar effects were seen for unipedal stance in addition to an increase in anteroposterior COP median frequency (36%). Changes in stabilogram-diffusion parameters were confined to the short-term region suggesting that sensory information from the foot soles is mainly used to set a relevant background muscle activity for a given posture and support surface characteristic, and consequently is of little importance for feedback control during unperturbed stance. In general, this study demonstrates that plantar sensation is of moderate importance for the maintenance of normal standing balance when the postural control system is challenged by unipedal stance or by closing of the eyes. The impact of reduced plantar sensitivity on postural control is expected to increase with the loss of additional sensory modalities such as the concomitant proprioceptive deficits commonly associated with peripheral neuropathies.  相似文献   

17.
Context: Muscle fatigue is generally categorized in 2 ways: that caused by peripheral weakness (peripheral fatigue) and that caused by a progressive failure of voluntary neural drive (central fatigue). Numerous variables have been studied in conjunction with fatigue protocols, including postural stability, maximum voluntary contraction force, and reaction time. When torque recordings fall below 50% of a maximum voluntary contraction, the muscle is described as fatigued, but whether this value is a good indicator of fatigue has not been studied.Objective: To compare the effects of 2 ankle musculature fatigue protocols (30% and 50%) on the duration of postural stability dysfunction.Design: To assess differences between the 30% and 50% fatigue protocols, we calculated a 1 between-groups factor (subjects) and 2 within-groups factors (fatigue, test) analysis of variance.Setting: E.J. Nutter Athletic Training Facility.Patients or Other Participants: Twenty subjects (10 men, 10 women; age = 21.15 ± 2.23 years; height = 172.97 ± 9.86 cm; mass = 70.62 ± 14.60 kg) volunteered for this study. Subjects had no history of lower extremity injury, vestibular or balance disorders, functional ankle instability, or head injury in the past 6 months.Intervention(s): On separate days, subjects performed isokinetic fatiguing contractions of the plantar flexors and dorsiflexors in a 30% protocol (70% decrease in strength) and a 50% protocol (50% decrease in strength).Main Outcome Measure(s): Baseline and postfatigue postural stability scores were determined before and after the isokinetic fatiguing contractions. Plantar-flexion peak-torque measurements were obtained for the 2 fatiguing protocols. Three prefatigue and 12 postfatigue postural stability trials were recorded. Velocities for testing were 60°/s for plantar flexion and 120°/s for dorsiflexion.Results: Sway velocity was significantly greater when the ankle was fatigued to 30% (1.56°/s) than in the 50% condition (1.36°/s). For the 30% protocol, sway was significantly impaired when the pretest condition (1.19°/s) was compared with posttest trial 1 (2.34°/s), trial 2 (2.37°/s), and trial 3 (1.71°/s). For the 50% protocol, sway was significantly impaired when the pretest condition (1.27°/s) was compared with posttest trial 1 (2.02°/s).Conclusions: The 30% fatigue protocol resulted in significantly longer impairment of postural stability than the 50% protocol. Because the 30% protocol resulted in a greater effect but was relatively short-lived (approximately 75 to 90 s), it is more useful for research purposes.  相似文献   

18.
 Galvanic vestibular stimulation serves to modulate the continuous firing level of the peripheral vestibular afferents. It has been shown that the application of sinusoidally varying, bipolar galvanic currents to the vestibular system can lead to sinusoidally varying postural sway. Our objective was to test the hypothesis that stochastic galvanic vestibular stimulation can lead to coherent stochastic postural sway. Bipolar binaural stochastic galvanic vestibular stimulation was applied to nine healthy young subjects. Three different stochastic vestibular stimulation signals, each with a different frequency content (0–1 Hz, 1–2 Hz, and 0–2 Hz), were used. The stimulation level (range 0.4–1.5 mA, peak to peak) was determined on an individual basis. Twenty 60-s trials were conducted on each subject – 15 stimulation trials (5 trials with each stimulation signal) and 5 control (no stimulation) trials. During the trials, subjects stood in a relaxed, upright position with their head facing forward. Postural sway was evaluated by using a force platform to measure the displacements of the center of pressure (COP) under each subject’s feet. Cross-spectral measures were used to quantify the relationship between the applied stimulus and the resulting COP time series. We found significant coherency between the stochastic vestibular stimulation signal and the resulting mediolateral COP time series in the majority of trials in 8 of the 9 subjects tested. The coherency results for each stimulation signal were reproducible from trial to trial, and the highest degree of coherency was found for the 1- to 2-Hz stochastic vestibular stimulation signal. In general, for the nine subjects tested, we did not find consistent significant coherency between the stochastic vestibular stimulation signals and the anteroposterior COP time series. This work demonstrates that, in subjects who are facing forward, bipolar binaural stochastic galvanic stimulation of the vestibular system leads to coherent stochastic mediolateral postural sway, but it does not lead to coherent stochastic anteroposterior postural sway. Our finding that the coherency was highest for the 1- to 2-Hz stochastic vestibular stimulation signal may be due to the intrinsic dynamics of the quasi-static postural control system. In particular, it may result from the effects of the vestibular stimulus simply being superimposed upon the quiet-standing COP displacements. By utilizing stochastic stimulation signals, we ensured that the subjects could not predict a change in the vestibular stimulus. Thus, our findings indicate that subjects can act as ”responders” to galvanic vestibular stimulation. Received: 13 March 1998 / Accepted: 8 October 1998  相似文献   

19.
The aim of this study was to investigate the postural center of pressure (COP) and surface muscle (EMG) dynamics of young adult participants under conditions where they were required to voluntarily produce random and regular sway motions in contrast to that of standing still. Frequency, amplitude and regularity measures of the COP excursion and EMG activity were assessed, as were measures of the coupling relations between the COP and EMG outputs. The results demonstrated that, even when standing still, there was a high degree of regularity in the COP output, with little difference in the modal frequency dynamics between standing still and preferred motion. Only during random conditions was a significantly greater degree of irregularity observed in the COP measures. The random-like movements were also characterized by a decrease in the level of synchrony between COP motion on the anterior-posterior (AP) and medio-lateral (ML) axes. In contrast, at muscle level, the random task resulted in the highest level of regularity (decreased ApEn) for the EMG output for soleus and tibialis anterior. The ability of individuals to produce a random motion was achieved through the decoupling of the COP motion in each dimension. This decoupling strategy was reflected by increased regularity of the EMG output as opposed to any significant change in the synchrony in the firing patterns of the muscles examined. Increased regularity across the individual muscles was accompanied by increased irregularity in COP dynamics, which can be characterized as a complexity tradeoff. Collectively, these findings support the view that the dynamics of muscle firing patterns does not necessarily map directly to the dynamics at the movement task level and vice versa.  相似文献   

20.
 It has previously been shown that light contact with the finger tip on a fixed surface reduces centre of pressure (CoP) fluctuations in the frontal plane when standing in an unstable posture with the feet in line (tandem Romberg stance). Positive cross-correlations between horizontal finger forces and CoP fluctuations with finger forces exhibiting a phase lead suggest the hand provides sensory input for postural stability. The present study investigates whether this is the case for normal posture. We report reduced CoP fluctuations in the sagittal plane when light touch is permitted during normal bipedal stance. Moreover, we find positive crosscorrelations between finger tip forces and CoP fluctuations which are of similar magnitude and phase lag to those observed in tandem Romberg stance. This shows the utility of hand touch input for regulation of normal upright posture as well as inherently unstable postures such as tandem Romberg. Received: 24 November 1997 / Accepted: 20 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号