首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T-cell molecular mimicry between streptococcal and heart proteins has been proposed as the triggering factor leading to autoimmunity in rheumatic heart disease (RHD). We searched for immunodominant T-cell M5 epitopes among RHD patients with defined clinical outcomes and compared the T-cell reactivities of peripheral blood and intralesional T cells from patients with severe RHD. The role of HLA class II molecules in the presentation of M5 peptides was also evaluated. We studied the T-cell reactivity against M5 peptides and heart proteins on peripheral blood mononuclear cells (PBMC) from 74 RHD patients grouped according to the severity of disease, along with intralesional and peripheral T-cell clones from RHD patients. Peptides encompassing residues 1 to 25, 81 to 103, 125 to 139, and 163 to 177 were more frequently recognized by PBMC from RHD patients than by those from controls. The M5 peptide encompassing residues 81 to 96 [M5(81-96) peptide] was most frequently recognized by PBMC from HLA-DR7+ DR53+ patients with severe RHD, and 46.9% (15 of 32) and 43% (3 of 7) of heart-infiltrating and PBMC-derived peptide-reactive T-cell clones, respectively, recognized the M5(81-103) region. Heart proteins were recognized more frequently by PBMC from patients with severe RHD than by those from patients with mild RHD. The similar pattern of T-cell reactivity found with both peripheral blood and heart-infiltrating T cells is consistent with the migration of M-protein-sensitized T cells to the heart tissue. Conversely, the presence of heart-reactive T cells in the PBMC of patients with severe RHD also suggests a spillover of sensitized T cells from the heart lesion.  相似文献   

2.
Molecular mimicry between microbial antigens and host tissue is suggested as a mechanism for post-infectious autoimmune disease. In the present work we describe the autoimmune reactions of two severe rheumatic heart disease (RHD) patients, through an analysis of heart-infiltrating T-cell repertoire, antigen recognition, and cytokine production induced by specific antigens. T-cell clones derived from oligoclonally expanded T cells in the heart cross-recognized M5 peptides, heart tissue-derived proteins, and myosin peptides. We show, using binding affinity assays, that an immunodominant streptococcal peptide (M5(81-96)) is capable of binding to the HLA-DR53 molecule. The same peptide was recognized by an infiltrating T-cell clone from a patient carrying HLA-DR15, DR7, and DR53 molecules. This suggests that this peptide is probably presented to T cells in the context of the HLA-DR53 molecule. Cross-reactive heart-infiltrating T cells activated by the M5 protein and its peptides and by heart tissue-derived proteins produced predominantly inflammatory cytokines. Interleukin (IL)-4 was produced in small amounts by mitral valve intralesional T-cell lines and clones. Altogether, these results suggest that mimicry between streptococcal antigens and heart-tissue proteins, combined with high inflammatory cytokine and low IL-4 production, leads to the development of autoimmune reactions and cardiac tissue damage in RHD patients.  相似文献   

3.
Heart-directed autoimmunity: the case of rheumatic fever   总被引:6,自引:0,他引:6  
Molecular mimicry was proposed as a potential mechanism for streptococcal sequelae leading to rheumatic fever (RF) and rheumatic heart disease (RHD). CD4(+)infiltrating T cells are able to recognize streptococcal M peptides and heart tissue proteins. We analyzed the M5 peptide- and heart-specific responses, cytokine profile and T cell receptor (TCR) BV usage from peripheral and heart-infiltrating T cell lines and clones from patients across the clinical spectrum of ARF/RHD. The patient with ARF displayed a higher frequency of mitral valve infiltrating T cell clones reactive against M5: 1-25, 81-103 and 163-177 regions and several valve-derived proteins than the post-RF and chronic RHD patient (67%; 20% and 27%, respectively). The presence of oligoclonal BV families indicative of oligoclonal T cell expansion among mitral valve-derived T cell lines was increased in the chronic RHD patient. Furthermore, mitral valve T cell lines from all patients produced significant amounts of inflammatory cytokines interferon-gamma (IFN-gamma) and tumour necrosis factor-alpha (TNFalpha) in response to M5(81-96) peptide, with the highest production attained by the chronic RHD patient. These data are consistent with an important role for M5 peptide and host antigen-driven, T1-type CD4(+)T cells in the pathogenesis of RHD and heart lesion progression after recurrence of the streptococcal infection.  相似文献   

4.
Rheumatic heart disease (RHD) is a sequel of post-streptococcal throat infection. Molecular mimicry between streptococcal and heart components has been proposed as the triggering factor of the disease, and CD4(+) T cells have been found predominantly at pathological sites in the heart of RHD patients. These infiltrating T cells are able to recognize streptococcal M protein peptides, involving mainly 1-25, 81-103 and 163-177 N-terminal amino acids residues. In the present work we focused on the TCR beta chain family (TCR BV) usage and the degree of clonality assessed by beta chain complementarity-determining region (CDR)-3 length analysis. We have shown that in chronic RHD patients, TCR BV usage in peripheral blood mononuclear cells (PBMC) paired with heart-infiltrating T cell lines (HIL) is not suggestive of a superantigen effect. Oligoclonal T cell expansions were more frequently observed in HIL than in PBMC. Some major BV expansions were shared between the mitral valve (Miv) and left atrium (LA) T cell lines, but an in-depth analysis of BJ segments usage in these shared expansions as well as nucleotide sequencing of the CDR3 regions suggested that different antigenic peptides could be predominantly recognized in the Miv and the myocardium. Since different antigenic proteins probably are constitutively represented in myocardium and valvular tissue, these findings could suggest a differential epitope recognition at the two lesional heart sites after a common initial bacterial challenge.  相似文献   

5.
Molecular mimicry between streptococcal and human proteins is considered as the triggering factor leading to autoimmunity in rheumatic fever (RF) and rheumatic heart disease (RHD). Here, we present a review of the genetic susceptibility markers involved in the development of RF/RHD and the major immunopathological events underlying the pathogenesis of RF and RHD. Several human leucocyte antigen (HLA) class II alleles are associated with the disease. Among these alleles, HLA-DR7 is predominantly observed in different ethnicities and is associated with the development of valvular lesions in RHD patients. Cardiac myosin is one of the major autoantigens involved in rheumatic heart lesions and several peptides from the LMM (light meromyosin) region were recognized by peripheral and intralesional T-cell clones from RF and RHD patients. The production of TNF-alpha and IFN-gamma from heart-infiltrating mononuclear cells suggests that Th-1 type cytokines are the mediators of RHD heart lesions while the presence of few interleukin-4 producing cells in the valve tissue contributes to the maintenance and progression of the valvular lesions.  相似文献   

6.
Molecular mimicry between streptococci and heart components has been proposed as the triggering factor leading to autoimmunity in rheumatic heart disease (RHD). In this review, we present data from cellular autoimmune responses, focusing on the interactions between HLA class II molecules, streptococcal peptides and heart tissue proteins and T-cell receptor (TCR) usage. HLA-DR7DR53 associated with DQ molecules seem to be related with the development of valvular lesions in severe RHD patients. DR7DR53 molecules were also involved in the recognition of an immunodominant M5 peptide in these patients. T cells infiltrating RHD hearts displayed several oligoclonal expansions. Intralesional T-cell clones presenting identical TCR-BVBJ AVAJ and -CDR3 sequences were able to recognize several antigens with little or low homology, showing an intramolecular degenerate pattern of antigen recognition. Peripheral blood mononuclear cells of rheumatic fever (RF) patients produced proinflammatory cytokines, and intralesional mononuclear cells from severe RHD patients produced predominantly Th1-type cytokines. These results illustrate the complex mechanisms leading to heart tissue damage in RF/RHD patients.  相似文献   

7.
We have previously demonstrated that the Mycobacterium leprae 18-kD heat shock protein (HSP18) is represented among the antigenic targets of human T cell responses induced by M. leprae immunization and that the peptide 38-50 serves as an immunodominant epitope recognized by CD4+ T cell clones. By using peripheral blood mononuclear cells and T cell lines from the same donor group, we have in this study shown that the M. leprae HSP18 and peptide 38-50 were recognized by memory T cells 8 years after immunization with M. leprae. The finding that M. bovis BCG-induced T cell lines responded to M. leprae HSP18, but not to the peptide 38-50, suggested the existence of additional T cell epitopes of a cross-reactive nature. Consistent with this, testing of the T cell lines for proliferative responses to the complete HSP18 molecule, truncated HSP18 (amino acid (aa) residues 38-148) and overlapping synthetic peptides, made it possible to identify two cross-reactive epitope regions defined by aa residues 1-38 and 41-55. While peptide 38-50-reactive T cell clones showed limited cross-reactivity by responding to M. leprae, M. avium and M. scrofulaceum, the T cell lines specific to the epitopes 1-38 and 41-55 were broadly cross-reactive, as demonstrated by their response to M. leprae, M. tuberculosis complex, M. avium and other mycobacteria. MHC restriction analysis of the HSP18-responding T cell lines showed that the epitopes 1-38 and 38-50 were presented by one of the two HLA-DR molecules expressed from self HLA-DRB1 genes, whereas the epitope 41-55 was recognized in the presence of autologous as well as HLA-DR and HLA-DQ mismatched allogeneic antigen-presenting cells. The results obtained in this study made it possible to identify cross-reactive T cell epitopes of the M. leprae HSP18, and provide an explanation for T cell recognition of this antigen in individuals infected with species of the M. tuberculosis complex or environmental mycobacteria.  相似文献   

8.
In order to detect epitope-specific CD4+ T cells in mycobacterial or viral infections in the context of human class II major histocompatibility complex protein human leukocyte antigen (HLA)-DR3, two HLA-DR3 tetrameric molecules were successfully produced. One contained an immunodominant HLA-DR3-restricted T-cell epitope derived from the 65-kDa heat-shock protein of Mycobacterium tuberculosis, peptide 1-13. For the other tetramer, we used an HLA-DR3-restricted T-cell epitope derived from cytomegalovirus (CMV) pp65 lower matrix protein, peptide 510-522, which induced high levels of interferon (IFN)-gamma-producing CD4+ T cells in three of four HLA-DR3-positive CMV-seropositive individuals up to 0.84% of CD4+ T cells by intracellular cytokine staining. In peripheral blood mononuclear cells from M. tuberculosis-exposed, Mycobacterium bovis bacille Calmette-Guérin (BCG)-vaccinated, or CMV-seropositive individuals, we were able to directly detect with both tetramers epitope-specific T cells up to 0.62% and 0.45% of the CD4+ T-cell population reactive to M. tuberculosis and CMV, respectively. After a 6-day culture with peptide p510-522, the frequency of CMV-specific tetramer-binding T cells was expanded up to 9.90% tetramer+ CFSElow (5,6-carboxyfluorescein diacetate succinimidyl ester) cells within the CD4+ T-cell population, further confirming the specificity of the tetrameric molecules. Thus, HLA-DR3/peptide tetrameric molecules can be used to investigate HLA-DR3-restricted antigen-specific CD4+ T cells in clinical disease or after vaccination.  相似文献   

9.
M proteins are coiled-coil dimers expressed on group A streptococcal cell surfaces. They have an importantrole in host antistreptococcal immunity and in poststreptococcal autoimmune sequelae. Controversy has arisen regardingwhether type 5 M proteins are superantigenic for human T cells. To investigate this, we have produced and tested M5 inthe form of two novel recombinant proteins. We found no evidence of superantigenicity using either recombinant whole M5protein (rM5) or recombinant pep M5 protein (rpepM5) to activate peripheral blood mononuclear cells (PBMC) from healthyadult volunteers. Short-term, rM5-specific T-cell lines from different subjects were uniformly self-APC restricted andshowed no consistent pattern of TCR Vβ usage. A synthetic peptide of M5 residues 217–237 was found tocontain epitope(s) recognized by some rM5-specific human T cells. PBMC responses to rM5 and rpepM5 in 3- and 7-dayproliferation assays were characteristic of antigenic rather than superantigenic stimulation. We conclude that type5 M protein activates human T cells as a conventional antigen.  相似文献   

10.
Distinct but overlapping T helper epitopes in the 37-58 region of SSX-2   总被引:2,自引:0,他引:2  
Because of their specific expression in tumors of different histological types, the products of the SSX genes are important candidate targets for development of cancer vaccines. We have previously identified two immunodominant SSX-2-derived T cell epitopes recognized by HLA-A2-restricted CD8+ T cells (SSX-2 41-49) and HLA-DR11-restricted CD4+ T cells (SSX-2 45-59), respectively. In this study, we report the identification of an HLA-DR3-restricted epitope mapping to the 37-51 region of SSX-2, overlapping both previously identified epitopes. As about one fifth of individuals from several major ethnic groups express HLA-DR3, the identification of this epitope significantly increases the percent of patients that are expected to mount specific CD4+ T cell responses following vaccination with peptides in this region of SSX-2. Retrieval of multiple overlapping epitopes in a defined region of SSX-2 protein suggests the presence of a "hot spot" for T cell recognition that may prove sufficient for the induction of immune responses.  相似文献   

11.
The highly conserved C-terminus of the M protein of group A streptococcus (GAS) is a promising vaccine candidate. An epitope within the conserved C-terminus of the M protein, peptide 145 (a 20-mer with the sequence: LRRDLDASREAKKQVEKALE), has been defined which is the target of opsonic antibodies in both humans and mice, and is recognized by the sera of most adults living in areas of high streptococcal exposure. However, due to potential cross-reactivity between T cells stimulated by this region of the M protein and host cardiac myosin, it is critical to define precisely the minimal protective epitopes within p145. Studies have shown that the immunodominant epitope expressed by p145 is conformational, occurring as an alpha-helical coiled-coil. To enable us to map the murine minimal B cell and T cell epitopes within p145, we have used a novel strategy that allowed us to present shorter sequences of p145 in a native-like conformation. The minimal B cell epitope was found to be contained within residues 7-20 of the p145 sequence, and we have shown that mice immunized with this region are able to generate antibodies that bind to and also opsonize the organism GAS. The T cell epitope is located at the N-terminal region of the p145 sequence, residues 3-14. We have managed, therefore, to define a vaccine candidate--a minimal opsonic B cell epitope within the p145 sequence--that does not incorporate a potentially deleterious T cell epitope.   相似文献   

12.
Although systemic lupus erythematosus (SLE) is a multigenic autoimmune disorder, HLA-D is the most dominant genetic susceptibility locus. This study was undertaken to investigate the hypothesis that microbial peptides bind HLA-DR3 and activate T cells reactive with lupus autoantigens. Using HLA-DR3 transgenic mice and lupus-associated autoantigen SmD protein, SmD79-93 was identified to contain a dominant HLA-DR3 restricted T cell epitope. This T cell epitope was characterized by using a T-T hybridoma, C1P2, generated from SmD immunized HLA-DR3 transgenic mouse. By pattern search analysis, 20 putative mimicry peptides (P2-P21) of SmD79-93, from microbial and human origin were identified. C1P2 cells responded to SmD, SmD79-93 and a peptide (P20) from Vibro cholerae. Immunization of HLA-DR3 mice with P20 induced T cell responses and IgG antibodies to SmD that were not cross-reactive with the immunogen. A T-T hybridoma, P20P1, generated from P20 immunized mice, not only responded to P20 and SmD79-93, but also to peptides from Streptococcus agalactiae (P17) and human-La related protein (P11). These three T cell mimics (P20, P11 and P17) induced diverse and different autoantibody response profiles. Our data demonstrates for the first time molecular mimicry at T cell epitope level between lupus-associated autoantigen SmD and microbial peptides. Considering that distinct autoreactive T cell clones were activated by different microbial peptides, molecular mimicry at T cell epitope level can be an important pathway for the activation of autoreactive T cells resulting in the production of autoantibodies. In addition, the novel findings reported herein may have significant implications in the pathogenesis of SLE.  相似文献   

13.
T cell mimicry in inflammatory heart disease   总被引:9,自引:0,他引:9  
Cunningham MW 《Molecular immunology》2004,40(14-15):1121-1127
Inflammatory heart diseases such as myocarditis and rheumatic heart disease result from the infiltration of the myocardium or valve with T cells and macrophages that result in scarring of the myocardium or valve and alteration in cardiac function. Our studies of T cells from these diseases have identified cardiac myosin in both rheumatic carditis and myocarditis as an important autoantigen. In rheumatic heart disease, streptococcal M protein specific T cells migrate to valves. By investigating streptococcal M protein and cardiac myosin in the Lewis rat model of myocarditis and valvulitis, T cell mimicry is supported as a potential mechanism in disease. Structural and immunological mimicry between the streptococcal M protein and cardiac myosin is shown directly in the Lewis rat model. Rat T cell lines demonstrate mimicry between cardiac myosin and M protein, and T cells isolated directly from inflammatory lesions in myocarditis respond to streptococcal M protein peptides. Studies in BALB/c mice also support the immunological crossreactivity of T cells primed against cardiac myosin with streptococcal M protein peptides containing cardiac myosin homologies. T cell lines produced from the Lewis rat specific to the cardiac myosin like sequences of streptococcal M protein migrated to the valves after passive transfer of the M protein specific T cell lines. In coxsackieviral myocarditis in the MRL mouse strain, cardiac myosin mimicking M protein peptide NT4 was found to induce tolerance and prevent coxsackieviral induced myocarditis, suggesting T cell mimicry between coxsackievirus and streptococcal M protein, both of which are associated with inflammatory heart disease. T cell mimicry between cardiac myosin and microbial antigens such as the streptococcal M protein may prime the immune system for inflammatory heart disease.  相似文献   

14.
Heart lesions of rheumatic heart disease (RHD) patients contain T-cell clones that recognize heart proteins and streptococcal M peptides. To functionally characterize heart-infiltrating T lymphocytes, we evaluated their cytokine profile, both directly in situ and in T-cell lines derived from the heart (HIL). Interferon (IFN)-gamma, tumor necrosis factor (TNF)-alpha, interleukin (IL)-4, and IL-10 expressions were characterized in 20 heart tissue infiltrates from 14 RHD patients by immunohistochemistry. IFN-gamma-, TNF-alpha-, and IL-10-positive cells were consistently predominant, whereas IL-4 was scarce in the valves. In agreement with these data, the in vitro experiments, in which 13 HILs derived from heart samples of eight patients were stimulated with M5 protein and the immunodominant M5 (81-96) peptide, IL-4 was detected in HIL derived from the atrium (three of six) but not from the valve (zero of seven). IFN-gamma and IL-10 production were detected in culture supernatants in 11 of 13 and 6 of 12 HILs, respectively. The predominant IFN-gamma and TNF-alpha expression in the heart suggests that Th1-type cytokines could mediate RHD. Unlike in reversible myocardium inflammation, the significantly lower IL-4 expression in the valvular tissue (P = 0.02) may contribute to the progression of the RHD leading to permanent valvular damage (relative risk, 4.3; odds ratio, 15.8). The lack of IL-4 in vitro production by valve-derived HIL also emphasizes the more severe tissue destruction in valves observed in RHD.  相似文献   

15.
Adjuvant arthritis (AA) is a T cell mediated disease which can be induced in genetically susceptible rats by immunization with heat-killed Mycobacterium tuberculosis ( Mt ) suspended in incomplete Freund's adjuvant. The critical mycobacterial T cell epitope for the induction of AA was previously identified as residues 178-186 of the mycobacterial 65 kDa heat shock protein ( Mt. hsp65 178-186 ). It was suggested that the development of AA was due to molecular mimicry between a mycobacterial epitope and a cartilage-associated self-antigen. However, until now such cartilage-associated mimicry epitope has not been identified. In this study we designed a computer search profile to predict mimicry self-epitopes, and investigated whether one or more of these self-epitopes could serve as mimicry epitopes in AA. Although several of these self-epitopes were recognized by arthritogenic T cells, no cross-reactivity was found between T cells specific for these self-epitopes and Mt. hsp65 178-186 specific T cells.  相似文献   

16.
Molecular mimicry is a hallmark of the pathogenesis of rheumatic fever where the streptococcal group A carbohydrate epitope, N-acetyl glucosamine, and the α-helical coiled-coil streptococcal M protein structurally mimic cardiac myosin in the human disease, rheumatic carditis, and in animal models immunized with streptococcal M protein and cardiac myosin. Recent studies have unraveled the potential pathogenic mechanisms by which the immune response against the group A streptococcus attacks the rheumatic valve leading to chronic rheumatic heart disease. Both B- and T-cell responses are involved in the process, and evidence for the hypotheses of molecular mimicry and epitope spreading are reviewed.  相似文献   

17.
Molecular mimicry is a hallmark of the pathogenesis of rheumatic fever where the streptococcal group A carbohydrate epitope, N-acetyl glucosamine, and the a-helical coiled-coil streptococcal M protein structurally mimic cardiac myosin in the human disease, rheumatic carditis, and in animal models immunized with streptococcal M protein and cardiac myosin. Recent studies have unraveled the potential pathogenic mechanisms by which the immune response against the group A streptococcus attacks the rheumatic valve leading to chronic rheumatic heart disease. Both B- and T-cell responses are involved in the process, and evidence for the hypotheses of molecular mimicry and epitope spreading are reviewed.  相似文献   

18.
Adjuvant arthritis (AA) is a T cell mediated disease which can be induced in genetically susceptible rats by immunization with heat-killed Mycobacterium tuberculosis (Mt) suspended in incomplete Freund's adjuvant. The critical mycobacterial T cell epitope for the induction of AA was previously identified as residues 178-186 of the mycobacterial 65 kDa heat shock protein (Mt. hsp65(178-186)). It was suggested that the development of AA was due to molecular mimicry between a mycobacterial epitope and a cartilage-associated self-antigen. However, until now such cartilage-associated mimicry epitope has not been identified. In this study we designed a computer search profile to predict mimicry self-epitopes, and investigated whether one or more of these self-epitopes could serve as mimicry epitopes in AA. Although several of these self-epitopes were recognized by arthritogenic T cells, no cross-reactivity was found between T cells specific for these self-epitopes and Mt. hsp65(178-186) specific T cells.  相似文献   

19.
The protective efficacy of the influenza matrix protein epitope 58-66 (called M1), recognized in the context of human HLA-A2 molecules, was evaluated in a HLA-A2/K(b) transgenic mouse model of lethal influenza infection. Repeated subcutaneous immunizations with M1 increased the percentage of survival. This effect was mediated by T cells since protection was abolished following in vivo depletion of all T lymphocytes, CD8(+), or CD4(+) T cells. The survival correlated with the detection of memory CD8(+) splenocytes able to proliferate in vitro upon stimulation with M1 and to bind M1-loaded HLA-A2 dimers, as well as with M1-specific T cells in the lungs, which were directly cytotoxic to influenza-infected cells following influenza challenge. These results demonstrated for the first time that HLA-A2-restricted cytotoxic T cells specific for the major immunodominant influenza matrix epitope are protective against the infection. They encourage further in vivo evaluation of T cell epitopes recognized in the context of human MHC molecules.  相似文献   

20.
The Mycobacterium leprae and M. tuberculosis 10,000 MW heat-shock protein homologues of GroES have previously been identified as major immunogens for human T cells. We used synthetic peptides to characterize the determinants recognized by murine T cells. The findings suggest that, despite 90% sequence identity between these two proteins, T cells recognize prominently the species-specific determinants localized within amino acid residues 21-40 and 49-72. Analysis of the molecular determinants of species-specificity for the M. leprae GroES sequence 25-40, using T-cell hybridomas and major histocompatibility complex (MHC)-binding assays, led to the identification of epitope cores and critical residues. Interestingly, closely overlapping epitope cores were found to be restricted by either H-2Ad (24-34) or H-2Ed (28-34). Furthermore, the site recognized by the M. leprae-specific monoclonal antibodies ML06 and ML10 was also localized in the overlapping sequences 25-31 and 25-29. In conclusion, we demonstrated that immunodominant species-specific T- and B-cell epitopes can be found in a mycobacterial heat-shock protein despite its highly conserved amino acid sequence. This finding suggests the feasibility of identifying a sufficient number of M. leprae-specific determinants for a composite T-cell immunodiagnostic reagent for tuberculoid leprosy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号