首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Clinical neurophysiology》2010,121(4):588-593
ObjectiveMagnetoencephalography (MEG) recordings were performed to investigate the cortical activation following tactile-on and tactile-off stimulation.MethodsWe used a 306-ch whole-head MEG system and a tactile stimulator driven by a piezoelectric actuator. Tactile stimuli were applied to the tip of right index finger. The interstimulus interval was set at 2000 ms, which included a constant stimulus of 1000 ms duration.ResultsProminent somatosensory evoked magnetic fields were recorded from the contralateral hemisphere at 57.5 ms and 133.0 ms after the onset of tactile-on stimulation and at 58.2 ms and 138.5 ms after the onset of tactile-off stimulation. All corresponding equivalent current dipoles (ECDs) were located in the primary somatosensory cortex (SI). Moreover, long-latency responses (168.7 ms after tactile-on stimulation, 169.8 ms after tactile-off stimulation) were detected from the ipsilateral hemisphere. The ECDs of these signals were identified in the secondary somatosensory cortex (SII).ConclusionsThe somatosensory evoked magnetic fields waveforms elicited by the two tactile stimuli (tactile-on and tactile-off stimuli) with a mechanical stimulator were strikingly similar. These mechanical stimuli elicited both contralateral SI and ipsilateral SII activities.SignificanceTactile stimulation with a mechanical stimulator provides new possibilities for experimental designs in studies of the human mechanoreceptor system.  相似文献   

2.
Different cortical organization of visceral and somatic sensation in humans   总被引:1,自引:0,他引:1  
Sensory stimuli from the visceral domain exhibit perceptual characteristics different from stimuli applied to the body surface. Compared with somatosensation there is not much known about the cortical projection and functional organization of visceral sensation in humans. In this study, we determined the cortical areas activated by non-painful electrical stimulation of visceral afferents in the distal oesophagus, and somatosensory afferents in the median nerve and the lip in seven healthy volunteers using whole-head magnetoencephalography. Stimulation of somatosensory afferents elicited short-latency responses (≈ 20–60 ms) in the primary somatosensory cortex (SI) contralateral (median nerve) or bilateral (lip) to the stimulated side, and long-latency responses (≈ 60–160 ms) bilaterally in the second somatosensory cortex (SII). In contrast, stimulation of visceral oesophageal afferents did not evoke discernible responses in SI but well reproducible bilateral SII responses (≈ 70–190 ms) in close vicinity to long-latency SII responses following median nerve and lip stimuli. Psychophysically, temporal discrimination of successive stimuli became worse with increasing stimulus repetition rates (0.25 Hz, 0.5 Hz, 1 Hz, 2 Hz) only for visceral oesophageal, but not for somatosensory median nerve stimuli. Correspondingly, amplitudes of the first cortical response to oesophageal stimulation emerging in the SII cortex declined with increasing stimulus repetition rates whereas the earliest cortical response elicited by median nerve stimuli (20 ms SI response) remained unaffected by the stimulus frequency. Our results indicate that visceral afferents from the oesophagus primarily project to the SII cortex and, unlike somatosensory afferents, lack a significant SI representation. We propose that this cortical projection pattern forms the neurophysiological basis of the low temporal and spatial resolution of conscious visceral sensation.  相似文献   

3.
ObjectiveTo investigate the dynamics of communication within the primary somatosensory neuronal network.MethodsMultichannel EEG responses evoked by median nerve stimulation were recorded from six healthy participants. We investigated the directional connectivity of the evoked responses by assessing the Partial Directed Coherence (PDC) among five neuronal nodes (brainstem, thalamus and three in the primary sensorimotor cortex), which had been identified by using the Functional Source Separation (FSS) algorithm. We analyzed directional connectivity separately in the low (1–200 Hz, LF) and high (450–750 Hz, HF) frequency ranges.ResultsLF forward connectivity showed peaks at 16, 20, 30 and 50 ms post-stimulus. An estimate of the strength of connectivity was modulated by feedback involving cortical and subcortical nodes. In HF, forward connectivity showed peaks at 20, 30 and 50 ms, with no apparent feedback-related strength changes.ConclusionsIn this first non-invasive study in humans, we documented directional connectivity across subcortical and cortical somatosensory pathway, discriminating transmission properties within LF and HF ranges.SignificanceThe combined use of FSS and PDC in a simple protocol such as median nerve stimulation sheds light on how high and low frequency components of the somatosensory evoked response are functionally interrelated in sustaining somatosensory perception in healthy individuals. Thus, these components may potentially be explored as biomarkers of pathological conditions.  相似文献   

4.
《Clinical neurophysiology》2010,121(3):408-413
ObjectiveThe contribution of the human anterior intraparietal area and the dorsal premotor cortex to arbitrary visuo-motor mapping during grasping were tested.MethodsTrained right-handed subjects reached for and pincer-grasped a cube with the right hand in the absence of visual feedback after the cube location had been displayed for 200 ms. During the reaching movements, the colour of the cube changed and visual feedback about the change of colour was provided for 100 ms at 500 ms after movement onset (at the time of peak grasp aperture). Depending on colour, subjects were instructed to either pincer-grasp the cube in a horizontal or vertical grasp position with the latter necessitating wrist rotation (experiment 1) or to pincer-grasp and transport the cube to either a left or right target position (experiment 2). Within two consecutive 200 ms time windows (TMS 1 and 2) starting 500 ms and 700 ms after movement onset, respectively, double pulses of supra-threshold transcranial magnetic stimulation (inter-stimulus interval: 100 ms) were delivered over (i) the left primary motor cortex (90° vertically angulated coil position, control stimulation), (ii) the left dorsal premotor cortex or (ii) the left anterior intraparietal area.ResultsCompared to control stimulation, stimulation of the anterior intraparietal area, but not of the dorsal premotor cortex, at TMS 1 delayed the times to wrist rotation (experiment 1) and hand transport (experiment 2). Compared to control stimulation, stimulation of the dorsal premotor cortex, but not of the anterior intraparietal area, at TMS 2 delayed both wrist rotation (experiment 1) and hand transport (experiment 2).ConclusionsWe contend that the anterior intraparietal area and the dorsal premotor cortex are both involved albeit at different phases during the mapping of arbitrary visual cues with goal directed grasp and transport movements.SignificanceThese data add to the current understanding of how human cortical areas work in concert during manual activities.  相似文献   

5.
《Clinical neurophysiology》2014,125(9):1912-1922
ObjectiveThe aim of this study was to identify neurophysiologic markers generated by primary motor and premotor cortex for laryngeal muscles, recorded from laryngeal muscle.MethodsTen right-handed healthy subjects underwent navigated transcranial magnetic stimulation (nTMS) and 18 patients underwent direct cortical stimulation (DCS) over the left hemisphere, while recording neurophysiologic markers, short latency response (SLR) and long latency response (LLR) from cricothyroid muscle. Both healthy subjects and patients were engaged in the visual object-naming task. In healthy subjects, the stimulation was time-locked at 10–300 ms after picture presentation while in the patients it was at zero time.ResultsThe latency of SLR in healthy subjects was 12.66 ± 1.09 ms and in patients 12.67 ± 1.23 ms. The latency of LLR in healthy subjects was 58.5 ± 5.9 ms, while in patients 54.25 ± 3.69 ms. SLR elicited by the stimulation of M1 for laryngeal muscles corresponded to induced dysarthria, while LLR elicited by stimulation of the premotor cortex in the caudal opercular part of inferior frontal gyrus, recorded from laryngeal muscle, corresponded to speech arrest in patients and speech arrest and/or language disturbances in healthy subjects.ConclusionIn both groups, SLR indicated location of M1 for laryngeal muscles, and LLR location of premotor cortex in the caudal opercular part of inferior frontal gyrus, recorded from laryngeal muscle, while stimulation of these areas in the dominant hemisphere induced transient speech disruptions.SignificanceDescribed methodology can be used in preoperative mapping, and it is expected to facilitate surgical planning and intraoperative mapping, preserving these areas from injuries.  相似文献   

6.
《Clinical neurophysiology》2008,119(12):2862-2869
ObjectiveAthletes perform skilled movements during games and daily training. We hypothesized that the cortical representation in athletes differs from that in non-athletes.MethodsSomatosensory evoked potentials (SEPs) and high-frequency oscillations (HFOs) were recorded from seven healthy football players, seven healthy racquet players and seven healthy non-athletes. Electrical stimuli were delivered to the posterior tibial nerves and the median nerves, bilaterally. Cortical and spinal SEPs and sensory nerve action potentials (SNAPs) were recorded. SEPs were recorded by 0.3–3000 Hz filter. HFOs were separated by 400–800 Hz band-pass filtering. SNAPs were recorded by 20–2000 Hz filter.ResultsThe P37–N45 amplitude in football players and the N20–P25 amplitude in racquet players were significantly larger than those in non-athletes. The number of negative peaks of HFOs from the posterior tibial nerve in football players and the HFO amplitudes from the median nerve in racquet players were significantly larger than those in non-athletes. The earlier an individual started playing football, the larger the P37–N45 amplitude. Neither spinal SEPs nor SNAPs differed significantly among the three groups.ConclusionsDaily long-term training brings about plastic excitation in the somatosensory cortex representation of the trained limbs in athletes.SignificancePlastic changes in the somatosensory cortex are induced specifically by physical training.  相似文献   

7.
ObjectiveNerve ultrasound (US) has been used to study peripheral nerve disease, and increase of the cross-sectional area (CSA) has been described in demyelinating polyneuropathy. The objective of the current study is to characterise the US features of the sural nerve in a sample of Charcot–Marie-Tooth (CMT) 1A patients.MethodsA total of 20 CMT1A patients were enrolled. As control group we studied 37 age- and sex-matched subjects. All patients underwent clinical examination, neurophysiology and US evaluation of the bilateral sural nerve and right ulnar nerve. US results were correlated with neurophysiology and clinical data.ResultsSural nerve CSA was not increased in the majority of patients (70%), whereas an increased ulnar nerve CSA was present in the whole sample. Inverse relations were found between CSA of the ulnar nerve and body mass index (BMI) (p < 0.0002, R = ?0.8) and CSA of the sural nerve and age (right 0.006, R = ?0.6, left 0.002, R = ?0.6 and left and right p = 0.00003, R = ?0.4).ConclusionsUS showed ulnar CSA enlargement and normal sural nerve CSA.SignificanceThe significance of normal sural nerve CSA in CMT1A patients need to be further investigated, possibly through longitudinal studies.  相似文献   

8.
《Clinical neurophysiology》2014,125(9):1859-1869
ObjectiveTo investigate the generators of the somatosensory evoked potential (SEP) components recorded from the Pedunculopontine Tegmental nucleus (PPTg).MethodsTwenty-two patients, suffering from Parkinson’s disease (PD), underwent electrode implantation in the PPTg area for deep brain stimulation (DBS). SEPs were recorded from the DBS electrode contacts to median nerve stimulation.ResultsSEPs recorded from the PPTg electrode contacts could be classified in 3 types, according to their waveforms. (1) The biphasic potential showed a positive peak (P16) whose latency (16.05 ± 0.61 ms) shifted of 0.18 ± 0.07 ms from the lower to the upper contact of the electrode. (2) The triphasic potential showed an initial positive peak (P15) whose latency (15.4 ± 0.2 ms) did not change across the DBS electrode contacts. (3) In the last SEP configuration (mixed biphasic and triphasic waveform), the positive peak was bifid including both the P15 and P16 potentials.ConclusionWhile the P16 potential is probably generated by the somatosensory volley travelling along the medial lemniscus, the P15 response represents a far-field potential probably generated at the cuneate nucleus level.SignificanceOur results show the physiological meaning of the somatosensory responses recorded from the PPTg nucleus area.  相似文献   

9.
ObjectiveThe aim of the present study was to investigate the effect of water immersion (WI) on short- and long-latency afferent inhibition (SAI and LAI), short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF).MethodsMotor evoked potentials (MEPs) were measured from the first dorsal interosseous (FDI) muscle of fifteen healthy males before, during, and after a 15-min WI at 30 °C up to the axilla. Both SAI and LAI were evaluated by measuring MEPs in response to transcranial magnetic stimulation (TMS) of the left motor cortex following electrical stimulation of the right median nerve (fixed at about three times the sensory threshold) at interstimulus intervals (ISIs) of 20 ms to assess SAI and 200 ms to assess LAI. The paired-pulse TMS paradigm was used to measure SICI and ICF.ResultsBoth SAI and LAI were reduced during WI, while SICI and ICF were not significantly different before, during, and after WI.ConclusionsWI decreased SAI and LAI by modulating the processing of afferent inputs.SignificanceChanges in somatosensory processing and sensorimotor integration may contribute to the therapeutic benefits of WI for chronic pain or movement disorders.  相似文献   

10.
《Clinical neurophysiology》2017,128(7):1214-1219
ObjectiveTo obtain higher amplitude of dorsal sural sensory nerve action potentials (SNAPs), we used a new method for dorsal sural nerve conduction study with surface strip electrodes (SSEs).MethodsDorsal sural SNAPs were recorded orthodromically. The recording electrodes were placed behind the lateral malleolus. SSEs were attached to the laterodorsal aspect of the foot for stimulation of the dorsal sural nerve (DSN). We also used a conventional method with a standard bipolar stimulator and compared the findings.ResultsDorsal sural SNAPs were recordable bilaterally from 49 healthy volunteers. Mean peak-to-peak amplitude for SNAPs was 12.9 ± 6.3 μV, and mean nerve conduction velocity was 44.8 ± 5.5 m/s. The mean amplitude of SNAPs obtained by our method was 118.6% higher than that of SNAPs obtained by the conventional method (12.9 μV vs. 5.9 μV; P < 0.001).ConclusionsThe highest amplitude of dorsal sural SNAPs was constantly obtained by SSEs since SNAPs arising from whole digital branches of the DSN could be elicited by placement of SSEs.SignificanceWhen the DSN supplies more cutaneous branches to the lateral half of the foot, SSEs gives higher amplitude of dorsal sural SNAPs than that of the standard innervation type.  相似文献   

11.
《Clinical neurophysiology》2014,125(5):1021-1029
ObjectiveAge-related changes are well documented in the primary somatosensory cortex (SI). Based on previous somatosensory evoked potential studies, the amplitude of N20 typically increases with age probably due to cortical disinhibition. However, less is known about age-related change in the secondary somatosensory cortex (SII). The current study quantified age-related changes across SI and SII mainly based on oscillatory activity indices measured with magnetoencephalography.MethodsWe recorded somatosensory evoked magnetic fields (SEFs) to right median nerve stimulation in healthy young and old subjects and assessed major SEF components. Then, we evaluated the phase-locking factor (PLF) for local field synchrony on neural oscillations and the weighted phase-lag index (wPLI) for cortico-cortical synchrony between SI and SII.ResultsPLF was significantly increased in SI along with the increased amplitude of N20m in the old subjects. PLF was also increased in SII associated with a shortened peak latency of SEFs. wPLI analysis revealed the increased coherent activity between SI and SII.ConclusionsOur results suggest that the functional coupling between SI and SII is influenced by the cortical disinhibition due to normal aging.SignificanceWe provide the first electrophysiological evidence for age-related changes in oscillatory neural activities across the somatosensory areas.  相似文献   

12.
《Clinical neurophysiology》2009,120(2):336-341
ObjectiveTo establish a methodology for recording corticobulbar motor evoked potentials (CoMEPs) from vocal muscles after transcranial electrical stimulation (TES) and direct cortical stimulation (DCS).MethodsTwenty-four patients were included in this study (22 for TES, 2 for DCS, 3 for TES plus DCS) that underwent different surgical procedures. We used two methods to elicit CoMEPs: (a) TES by stimulation over C3/Cz or C4/Cz and (b) DCS with a strip electrode placed over the primary motor area (M1) for laryngeal muscles. To record CoMEPs from vocal muscles we used two hook wire electrodes 76 μm of diameter passing through 27 gauge needle endotracheally placed in the vocal muscles after intubation.ResultsRecording of CoMEPs in the vocal muscles after TES was successfully performed in 22 patients. TES over the right or left hemisphere elicit responses bilaterally. The onset latencies for the right vocal muscle was 12.4 ± 3.1 ms (ipsilateral stimulation) and 12.7 ±2.2 ms (contralateral stimulation) while for the left vocal muscle, onset latency was 12.9 ± 2.3 ms (ipsilateral stimulation) and 14.1 ± 3.4 ms (contralateral stimulation). In five patients DCS elicited CoMEPs in right and left vocal muscle with latency of 16.6 ± 4.7 and 15.6 ± 3.7 ms, respectively.ConclusionThe method to elicit and record CoMEPs in vocal muscles shows reliable results and adds one more tool in the armamentarium of intraoperative neurophysiology.SignificanceThis method shows the ability to continuously monitor the functional integrity of corticobulbar pathways, vagal nucleus and laryngeal nerves.  相似文献   

13.
《Clinical neurophysiology》2014,125(2):363-369
ObjectiveTo evaluate lip sensory dysfunction in patients with inferior alveolar nerve injury by lip-stimulated somatosensory evoked fields (SEFs).MethodsSEFs were recorded following electrical lip stimulation in 6 patients with unilateral lip sensory disturbance and 10 healthy volunteers. Lip stimulation was applied non-invasively to each side of the lip with the same intensity using pin electrodes.ResultsAll healthy volunteers showed the earliest response clearly and consistently at around 25 ms (P25m) and at least one of the following components, P45m, P60m, or P80m, over the contralateral hemisphere. The ranges of the peak latencies were 23–33, 42–50, 56–67, and 72–98 ms for right-side stimulation and 23–34, 46–49, 52–68, and 71–90 ms for left-side stimulation. Affected-side stimulation did not evoke P25m component in any patients, but invoked traceable responses in 5 patients whose latencies were 57, 89, 65, 53, and 54 ms. Unaffected-side stimulation induced P25m in 2 patients at 27 and 25 ms, but not in the other 4 patients.ConclusionThe P25m component of lip SEFs can be an effective parameter to indicate lip sensory abnormality.SignificanceLip sensory dysfunction can be objectively evaluated using magnetoencephalography.  相似文献   

14.
We recorded somatosensory evoked magnetic fields (SEFs) by a whole head magnetometer to elucidate cortical receptive areas involved in pain processing, focusing on the primary somatosensory cortex (SI), following painful CO(2) laser stimulation of the dorsum of the left hand in 12 healthy human subjects. In seven subjects, three spatially segregated cortical areas (contralateral SI and bilateral second (SII) somatosensory cortices) were simultaneously activated at around 210 ms after the stimulus, suggesting parallel processing of pain information in SI and SII. Equivalent current dipole (ECD) in SI pointed anteriorly in three subjects whereas posteriorly in the remaining four. We also recorded SEFs following electric stimulation of the left median nerve at wrist in three subjects. ECD of CO(2) laser stimulation was located medial-superior to that of electric stimulation in all three subjects. In addition, by direct recording of somatosensory evoked potentials (SEPs) from peri-Rolandic cortex by subdural electrodes in an epilepsy patient, we identified a response to the laser stimulation over the contralateral SI with the peak latency of 220 ms. Its distribution was similar to, but slightly wider than, that of P25 of electric SEPs. Taken together, it is postulated that the pain impulse is received in the crown of the postcentral gyrus in human.  相似文献   

15.
《Clinical neurophysiology》2007,118(5):1097-1104
ObjectiveTo investigate the possible presence of multiple spino-thalamic pathways with different conduction velocities (CVs) in the human spinal cord.MethodsLaser evoked potentials (LEPs) were recorded in 10 healthy subjects after stimulation of the dorsal midline at four vertebral level: C5, T2, T6, and T10. This method allowed us to minimize the influence of the conduction in the peripheral fibers and to calculate the spinal CV in two different ways: (1) the reciprocal of the slope of the regression line was obtained from the latencies of the different LEP components, and (2) the distance between C5 and T10 was divided by the latency difference of the responses at the two sites. In particular, we considered the middle-latency N1 potential (latencies of around 135, 150, 157, and 171 ms after stimulation at C5, T2, T6, and T10 levels, respectively), which is generated in the second somatosensory (SII) area, and the late P2 response (latencies of around 336, 344, 346, and 362 ms after stimulation at C5, T2, T6, and T10 levels, respectively), which is generated in the anterior cingulate cortex (ACC).ResultsThe calculated CV of the spinal fibers generating the N1 potential (around 9 m/s) was significantly different (P < 0.05) from the one of the pathway producing the P2 response (around 13 m/s).ConclusionsOur results suggest that the N1 and the P2 LEP components are generated by two parallel spinal pathways.SignificanceBoth the N1 and P2 potentials should be recorded in the clinical routine since a dissociated abnormality of either response may be found in lesions of the nociceptive system not only in the brain, but also at spinal cord level.  相似文献   

16.
《Clinical neurophysiology》2010,121(4):561-563
ObjectiveAge and height influence on sural sensory nerve action potential (SNAP) have been studied separately. Our aim was to develop an equation for predicting the lower normal limits as a function of both these factors.MethodsOne hundred fifty-eight healthy volunteers, 63 male, with mean age 45.8 and mean height 167.3 without symptoms or signs of peripheral neuropathy participated in the study. The sural SNAP was recorded at the level of the ankle joint, just posterior to the lateral malleolus, using surface electrodes. Antidromic supramaximal stimulation was performed 13 cm proximally at the posterior midcalf.ResultsThe mean sural SNAP amplitude was 19.9 ± 6.89 μV. Pearson linear correlation showed a negative correlation of the SNAP amplitude with age (R = −0.22, p = 0.005) and height (R = −0.19, p = 0.03). The multiple linear regression model was applied for both parameters of age and height with SNAP amplitude as the dependent parameter, producing the following equation: SNAP amplitude = 62.45  0.1447 × Age  0.2147 × Height.ConclusionsUsing our normal data, the computed lower limits of the 95% prediction interval for the sural SNAP amplitude of an individual subject, depending on his age and height, were calculated.SignificanceThe individualized normal values provided by our equation are essential for the correct interpretation of sural nerve studies.  相似文献   

17.
《Clinical neurophysiology》2009,120(12):2109-2113
ObjectiveTo investigate the efficacy of magnetic stimulation over the posterior fossa (PF) as a non-invasive assessment of cerebellar function in man.MethodsWe replicated a previously reported conditioning-test paradigm in 11 healthy subjects. Transcranial magnetic stimulation (TMS) at varying intensities was applied to the PF and motor cortex with a 3, 5 or 7 ms interstimulus interval (ISI), chosen randomly for each trial. Surface electromyogram (EMG) activity was recorded from two intrinsic hand muscles and two forearm muscles. Responses were averaged and rectified, and MEP amplitudes were compared to assess whether suppression of the motor output occurred as a result of the PF conditioning pulse.ResultsCortical MEPs were suppressed following conditioning-test ISIs of 5 or 7 ms. No suppression occurred with an ISI of 3 ms. PF stimuli alone also produced EMG responses, suggesting direct activation of the corticospinal tract (CST).ConclusionsCST collaterals are known to contact cortical inhibitory interneurones; antidromic CST activation could therefore contribute to the observed suppression of cortical MEPs.SignificancePF stimulation probably activates multiple pathways; even at low intensities it should not be regarded as a selective assessment of cerebellar function unless stringent controls can confirm the absence of confounding activity in other pathways.  相似文献   

18.
《Clinical neurophysiology》2017,128(7):1327-1336
ObjectivesDeep brain stimulation (DBS) and dopaminergic medication effectively alleviate the motor symptoms in Parkinson’s disease (PD) patients, but their effects on the sensory symptoms of PD are still not well understood. To explore early somatosensory processing in PD, we recorded magnetoencephalography (MEG) from thirteen DBS-treated PD patients and ten healthy controls during median nerve stimulation.MethodsPD patients were measured during DBS-treated, untreated and dopaminergic-medicated states. We focused on early cortical somatosensory processing as indexed by N20m, induced gamma augmentation (31–45 Hz and 55–100 Hz) and induced beta suppression (13–30 Hz). PD patients’ motor symptoms were assessed by UPDRS-III.ResultsUsing Bayesian statistics, we found positive evidence for differentiated effects of treatments on the induced gamma augmentation (31–45 Hz) with highest gamma in the dopaminergic-medicated state and lowest in the DBS-treated and untreated states. In contrast, UPDRS-III scores showed beneficial effects of both DBS and dopaminergic medication on the patients’ motor symptoms. Furthermore, treatments did not affect the amplitude of N20m.ConclusionsOur results suggest differentiated effects of DBS and dopaminergic medication on cortical somatosensory processing in PD patients despite consistent ameliorating effects of both treatments on PD motor symptoms.SignificanceThe differentiated effect suggests differences in the effect mechanisms of the two treatments.  相似文献   

19.
We tested the possible role of dopaminergic activity in the processing of somatosensory afferent information in healthy humans. Somatosensory evoked magnetic fields (SEFs) were recorded in seven subjects in response to left median nerve stimulation. SEFs were obtained in all subjects after oral administration of 2 mg haloperidol, an antagonist to dopaminergic D2 receptors, and placebo, which were given in a randomized, double-blind cross-over design. SEFs were analyzed using a multiple equivalent current dipole (ECD) model, with one dipole at the right primary somatosensory cortex (SI) and at both left and right secondary somatosensory cortices (SII). The earliest responses from SI, peaking at about 20 ms (N20m) and 35 ms (P35m), were not affected by haloperidol. A later deflection peaking at about 75 ms (P60m), however, was slightly reduced (p < 0.05). Responses arising from SII were not significantly changed. The results suggest that dopaminergic activity may be involved in modulating somatosensory processing after the initial stages of cortical activation.  相似文献   

20.
OBJECTIVE: To clarify the generator mechanism of giant somatosensory evoked potentials (giant SEPs) and the hyperexcitability of primary somatosensory and motor cortices (SI and MI). METHODS: In a patient with intractable focal seizures manifesting cortical reflex myoclonus of the left foot, giant SEPs to left tibial nerve stimulation were epicortically recorded as a part of presurgical evaluation with subdural electrodes. RESULTS: In the single pulse SEPs, enlarged P1-N1 components were observed at the foot area of the SI and MI (86.5-258.8 microV, respectively), and the peak latencies were always shorter at SI than at MI by 6 ms. Similar findings were obtained for peroneal and sural nerve stimulation. In the paired pulse SEPs, the second response was less suppressed, as compared to other interstimulus intervals (ISIs), with ISIs of 40 and 200 ms both at SI and MI. CONCLUSIONS: In this particular patient, cortical hyperexcitability to somatosensory stimuli seems to originate from SI but subsequently both SI and MI are responsible for the generation of giant SEPs and cortical reflex myoclonus. SIGNIFICANCE: Somatosensory and primary motor cortices both generated enhanced early cortical components of SEPs, most likely by enhancing the latter by the former.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号