首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: T-cell-depleted bone marrow transplantation (TDBMT) can prevent graft-versus-host disease (GvHD). However, depleting T cells from allogeneic bone marrow often results in failure of bone marrow engraftment under irradiation conditioning. It is not know whether donor T cells are essential for bone marrow engraftment and whether blocking the CD40/CD154 pathway promotes allogeneic TDBM engraftment under nonmyeloablative and irradiation-free fludarabine phosphate and cyclophosphamide conditioning therapy. METHODS: Using fully major histocompatibility complex (MHC)-matched mouse models, we investigated whether donor T cells are essential for bone marrow engraftment under fludarabine phosphate and cyclophosphamide conditioning therapy. We also determined whether the barrier of allogeneic TDBM could be overcome by blocking the CD40/CD154 pathway. Donor chimerism was detected by flow cytometric analysis. Donor-specific tolerance through establishing mixed chimerism was tested in vivo by skin transplantation and in vitro by mixed leukocyte reaction and enzyme-linked immunospot (ELISPOT) assay. RESULTS: Compared with unmodified bone marrow, TDBM resulted in poor engraftment when fully MHC-mismatched donors were used. However, anti-CD154 monoclonal antibody (mAb) treatment significantly enhanced donor TDBM engraftment. TDBM engraftment was also seen in CD154 knockout mice. A stable and high level of multilinage donor chimerism was achieved. Recovery of host CD3 T cells was suppressed, and recovery of donor CD3 T cells was promoted, after TDBMT and anti-CD154 mAb treatment. Donor chimerism was established by TDBMT induced donor-specific tolerance in vivo and in vitro. CONCLUSION: Donor T cells facilitate bone marrow engraftment under nonmyeloablative and irradiation-free conditioning therapy, and the blocking the CD40/CD154 pathway can replace donor T cells to promote TDBM engraftment.  相似文献   

2.
It is well documented that donor bone marrow in combination with peri-transplant anti-thymocyte globulin (ATG) administration induces transplantation tolerance in a variety of animal models. Our previous work showed that the ability of donor marrow to induce tolerance was dependent on the presence of CD95 ligand (Fas-ligand) on the donor cells. In this study we investigate whether CD95 (Fas) on the recipient cells is required. By comparing skin allograft survival times between wild-type C57BL/6 ATG-treated recipients and C57BL/6(lpr/lpr) ATG-treated recipients (which do not have a functional CD95 gene), we show that donor bone marrow could induce indefinite transplant survival (median survival time >200 days) only in recipients with a functional CD95 gene. Thus, we conclude that the CD95 ligand-CD95 apoptotic pathway plays a major role in donor bone marrow-induced transplantation tolerance.  相似文献   

3.
T-cell costimulatory blockade as a constituent for recipient conditioning prior to bone marrow transplantation has led to the development of less toxic protocols for the establishment of donor cell chimerism. We therefore hypothesized that the addition of the hematopoietic growth factor, Flt3-ligand (Flt3-L), to the perioperative inhibition of the CD28/B7 and CD40/CD40 ligand costimulatory pathways would enhance the engraftment of allogeneic bone marrow. Recipient BALB/c ByJ (H-2(d), Mls(c), Vbeta6+/Vbeta8+ TCR) received a single sublethal dose of total body irradiation (300 rad) 6 h prior to transplantation IV with unfractionated donor CBA/J (H-2(k), Mls(d), Vbeta6-/Vbeta8+ TCR) bone marrow cells. CTLA4-Ig and/or MRI were administered at 500 microg IP on days 0, 2, 4, and 6 posttransplantation. Flt3-L was administered at 10 microg IP on days 0-6. Donor cell chimerism was determined on days 30-90 by flow cytometric analysis. Donor-specific tolerance was assessed by skin grafting. In vitro TCR cross-linking assays and flow cytometry were utilized to explore the deletion of donor-reactive T cells. Recipients receiving CTLA4-Ig and MRI engrafted allogeneic bone marrow cells in the peripheral blood (3/6; 50%) with chimerism being detected at 2-31%. Addition of Flt3-L to this preconditioning regimen enhanced the incidence of engraftment of donor bone marrow cells (10/13; 3-70%). Long-term survival of donor but not third-party-specific skin grafts demonstrated that donor-specific tolerance had been achieved in the chimeric recipients. Deletion of the donor-reactive T cells within the chimeric recipients was also observed. The addition of hematopoietic growth factors and cytokines to the nonmyeloablative regimen of sublethal irradiation and T-cell costimulatory blockade provides a novel strategy for the establishment of donor cell chimerism and for the induction of stable and robust donor-specific tolerance. The deletion of donor-reactive T cells using this protocol suggests the reliability and feasibility of this protocol for clinical transplantation.  相似文献   

4.
Avoidance of long‐term immunosuppression is a desired goal in organ transplantation. Mixed chimerism offers a promising approach to tolerance induction, and we have aimed to develop low‐toxicity, nonimmunodepleting approaches to achieve this outcome. In a mouse model achieving fully MHC‐mismatched allogeneic bone marrow engraftment with minimal conditioning (3 Gy total body irradiation followed by anti‐CD154 and T cell–depleted allogeneic bone marrow cells), CD4 T cells in the recipient are required to promote tolerance of preexisting alloreactive recipient CD8 T cells and thereby permit chimerism induction. We now demonstrate that mice devoid of CD4 T cells and NK cells reject MHC Class I‐deficient and Class I/Class II‐deficient marrow in a CD8 T cell–dependent manner. This rejection is specific for donor alloantigens, since recipient hematopoiesis is not affected by donor marrow rejection and MHC Class I‐deficient bone marrow that is syngeneic to the recipient is not rejected. Recipient CD8 T cells are activated and develop cytotoxicity against MHC Class I‐deficient donor cells in association with rejection. These data implicate a novel CD8 T cell–dependent bone marrow rejection pathway, wherein recipient CD8 T cells indirectly activated by donor alloantigens promote direct killing, in a T cell receptor–independent manner, of Class I‐deficient donor cells.  相似文献   

5.
BACKGROUND: An important component of a composite tissue limb allograft (CTA) is the vascularized bone marrow and bone marrow stroma, which when transplanted could create immediate marrow space and engraftment. We have previously demonstrated that tolerance to musculoskeletal allografts can be achieved with a 12-day course of cyclosporine without the presence of long-term peripheral donor cell chimerism. The objective of this study was to determine the fate of the donor bone marrow after transplantation of a limb allograft in a miniature swine model. METHODS: CTAs from donor swine were heterotopically transplanted into six MHC-matched, minor-antigen-mismatched recipients, and a 12-day course of cyclosporine was given. Previous animals transplanted without cyclosporine rejected their grafts in less than 42 days. A non-MHC-linked marker, pig allelic antigen (PAA), was used to distinguish host and donor cells. Three PAA- animals received PAA+ CTAs, and three PAA+ animals received PAA- CTAs. Bone marrow was harvested from the donor limb grafts and the recipient and analyzed by flow cytometry and histology. Thymus, spleen, and mesenteric lymph nodes were also harvested from the recipient swine and evaluated for the presence of donor cells by flow cytometry. RESULTS: All animals receiving cyclosporine demonstrated permanent tolerance to their allografts. Donor bone marrow cells were present in all grafts at the time of transplantation and during the immediate postoperative period. By 48 weeks, donor cells were no longer detectable within the marrow space of the allograft. In long-term animals host bone marrow cells replaced donor cells in the graft marrow space. No evidence of donor cell engraftment was found in recipient animals. CONCLUSION: This study demonstrates that in long-term tolerant recipients of musculoskeletal allografts there is no evidence of persistent donor bone marrow cells in the hematopoietic tissues of the graft or the host. Rather, the recipient's bone marrow cells and lymphocytes repopulate the donor marrow space of the graft.  相似文献   

6.
Composite tissue allografts (CTAs) are currently accepted in the clinic; however, long-term immunosuppression is still needed for allograft survival. The presence of donor-specific chimerism may induce tolerance. Thirty-six vascularized bone marrow transplantation (VBMT) allotransplantation were performed across MHC barrier under short-term protocol of 7-day alphabeta-TCRmAb and Cyclosporin A therapy to determine the efficacy of VBMT alone and VBMT augmented with donor bone marrow transplantation (BMT) in chimerism induction. Flow cytometry analysis revealed that VBMT supported with donor BMT directly into the bone resulted in chimerism augmentation and maintenance compared to VBMT. In vivo and in vitro tolerance testing showed prolonged survival of donor skin graft up to 35 days and moderate reactivity in MLR assay that suggests only tolerance induction. Transplantation of vascularized bone without chronic immunosuppression provides a substantial source of bone marrow cells, leading to the development of stable donor-specific chimerism.  相似文献   

7.
BACKGROUND: Induction of tolerance to organ transplants will increase graft survival and decrease patient mortality and morbidity. Radiation-induced cytoreduction/ablation followed by donor hematopoietic cell reconstitution has been the most consistently successful approach to experimental tolerance induction. However, reluctance of clinicians to expose recipients to radiation has hampered its clinical application. METHODS: In the studies described, administration of polyclonal antilymphocyte serum (ALS), donor-specific bone marrow (DSBM) (150x10(6) cells), and sirolimus (24 mg/kg) in a completely mismatched murine model (B10.A donor, C57B/10 recipient) produced 100% indefinite (>250 days) skin graft survival. The level and character of donor-specific chimerism was evaluated with flow cytometry. RESULTS: Specific tolerance was confirmed by continued acceptance of primary and secondary donor-specific skin allografts and rejection of third-party grafts. The level and duration of chimerism induced was directly related to the dose of DSBM administered. Mice given 150x10(6) DSBM cells showed levels of 8-10% donor peripheral blood mononuclear cell chimerism by 30 days, and these levels persisted indefinitely (>250 days) in association with permanent tolerance of donor grafts. Eighty percent of donor chimeric cells were B lymphocytes (MHC class I and II positive, Fc receptor positive, CD45/B220 positive but negative for CD4, CD8 and Thy 1.2) and 20% were sorted in the macrophage monocyte population. CONCLUSIONS: These studies demonstrate for the first time that cytoreduction/ablation with ALS combined with sirolimus and reconstitution with donor bone marrow induces tolerance and chimerism in a completely mismatched murine combination. The use of ALS and sirolimus, currently employed therapies in clinical transplantation, and the lack of requirement for radiation make this tolerance protocol attractive for clinical application.  相似文献   

8.
J S Odorico  C F Barker  A M Posselt  A Naji 《Surgery》1992,112(2):370-6; discussion 376-7
BACKGROUND. Induction of donor-specific tolerance to tissue or organ allografts can readily be achieved by administration of allogeneic bone marrow to neonatal rodents; however, in adult recipients induction of transplantation tolerance by this strategy generally requires intensive cytoablative conditioning. Described here is a novel method of promoting transplantation tolerance that involves inoculation of donor bone marrow into the thymus of transiently immunosuppressed adult recipients. METHODS. Prospective Wistar-Furth recipients were inoculated with allogeneic Lewis bone marrow cells (BMCs) either intrathymically or intravenously in conjunction with a single dose of antilymphocyte serum 2 to 3 weeks before receiving donor-strain cardiac allografts. Recipients were monitored for graft survival and examined for presence of hematopoietic chimerism. RESULTS. Intrathymic but not intravenous inoculation of donor BMCs led to permanent survival of donor-strain cardiac allografts, whereas third-party Dark agouti cardiac allografts were rejected promptly. Persistence of donor chimerism was demonstrated in the thymus of Wistar-Furth recipients of intrathymic Lewis BMCs for as long as 3 weeks after BMC inoculation. CONCLUSIONS. Intrathymic inoculation of BMCs concurrently with a single dose of antilymphocyte serum induces donor-specific unresponsiveness to rat cardiac allografts. The unresponsiveness may be the result of deletion or functional inactivation of alloreactive clones maturing in a thymus bearing donor alloantigen. Intrathymic inoculation of BMCs deserves further evaluation as a possible clinical strategy for the induction of transplantation tolerance.  相似文献   

9.
BACKGROUND: Human type 1 diabetes is associated with defects in the hematopoietic stem cells. Simultaneous donor islet and bone marrow transplantation may be an ideal therapeutic approach for inducing tolerance to islet allogeneic antigens and restoring self-tolerance to islet autoimmune antigens. METHODS: Using a nonobese diabetic (NOD) mouse model of human type 1 diabetes, we investigated whether tolerance to MHC-matched allogeneic islet grafts from male nonobese diabetes-resistant (NOR) donors can be induced in female NOD recipients by simultaneous islet and bone marrow transplantation under fludarabine phosphate-based nonmyeloablative and irradiation-free conditioning therapy. Donor-specific chimerism in the peripheral blood of tolerant mice (n=7) was measured by semiquantitative polymerase chain reaction for a male-specific marker (SRY). RESULTS: Donor-specific tolerance to NOR islet grafts was induced in all diabetic NOD mice after simultaneous islet and bone marrow transplantation and treated with fludarabine phosphate, cyclophosphamide, anti-mouse lymphocyte serum, and rapamycin. At 100 days and 200 days after transplantation, the average percentage of male NOR marker in DNA derived from the peripheral blood of NOD recipients that had long-term islet graft survival was over 10%. CONCLUSION: Our data suggest that this approach may induce donor-specific tolerance in clinical islet transplantation and living-related donor solid organ transplantation.  相似文献   

10.
BACKGROUND: Peritransplant treatment with antithymocyte serum (ATS) and posttransplantation administration of donor bone marrow or donor splenocytes results in extended skin allograft survival. In this study, we examined the molecular basis of the tolerance promoting effect of donor bone marrow (BMC) cells and splenocytes with emphasis on the role of CD8 expression on the donor cells. METHODS: (C57BL/6J x A/J)F1 mice were treated on days -1 and +2 with ATS relative to transplantation with C3H/HeJ skin. On day +7, they were infused with CD8+ BMC, CD8- BMC, CD8+ splenocytes, or CD8- splenocyte donor subpopulations isolated by magnetic or fluorescence-based sorting. In additional experiments, B10.D2(R107) mice were treated in the same manner with C57BL/6 skin and BMC or splenocytes from C57BL/6 mice in which the CD8alpha gene had been inactivated. RESULTS: CD8+ donor bone marrow cells induced operational tolerance (defined as graft acceptance in the absence of chronic immunosuppression) in skin graft recipients at a dose that was reduced by 250-fold relative to unfractionated bone marrow cells (1.0x10(5) cells per recipient, median survival time (MST)=41 days vs. 2.5x10(7) cells per recipient, MST=49 days, P=0.40). Similarly, donor bone marrow cells from CD8 knockout mice did not promote graft acceptance (MST=98 days vs. animals not treated with bone marrow cells, MST=70 days, P=0.16). In contrast, the extension of graft survival by donor splenocytes did not require the presence of CD8+ donor cells because splenocytes depleted of CD8+ cells extended graft survival (MST=55 days) as well as unsorted splenocytes (44 days, P=0.2), and splenocytes from CD8 knockout animals (MST=145 days) extended graft survival at least as well as unsorted splenocytes (MST=74 days, P=0.4) CONCLUSIONS: These results suggest that the prolongation of graft survival by donor bone marrow is dependent on the presence of the CD8 molecule, whereas prolongation by donor splenocytes is not. Therefore, we suggest that the prolongation of graft survival by these cell types occurs via distinct molecular mechanisms probably mediated by different cell types.  相似文献   

11.
BACKGROUND: We have recently established a new method for bone marrow transplantation (BMT) in mice: bone marrow cells are directly injected into the intra-bone marrow (IBM) cavity. IBM-BMT induces persistent donor-specific tolerance and enhances the rapid recovery or reconstitution of the hematolymphoid system of donor origin without any signs of graft-versus-host disease (GVHD) or graft failure. Furthermore, the prior injection of fludarabine can reduce the irradiation dose to the sublethal level (4.5 Gy x 2). Therefore, we hypothesize that IBM-BMT plus fludarabine is applicable to allogeneic leg transplantation in rats. METHODS: Brown Norway (BN; RT1An) rats were injected intravenously with 50 mg/kg of fludarabine phosphate, followed by sublethal fractionated irradiation (4.5 Gy x 2) 1 day before IBM-BMT. The hind limbs from Fischer 344 (F344; RT1Al) rats were transplanted on day 0, and bone marrow cells (3 x 10(7) cells/50 microL) obtained from the donor F344 rats were injected into the bone marrow cavity of the left tibias of the recipient BN rats. RESULTS: The hematolymphoid cells in the recipient BN rats were completely reconstituted by the cells of the donor F344 rats. The limbs transplanted from the donor F344 rats were accepted for >1 year without any clinical signs of rejection (10 of 10). The lymphocytes of the BN rats showed tolerance to both donor-type and recipient-type major histocompatibility complex determinants in mixed lymphocyte reaction, but showed a significant response to the third-party major histocompatibility complex determinants. CONCLUSIONS: Using a combination of the injection of fludarabine, low-dose irradiation, and IBM-BMT, we have succeeded in allogeneic limb transplantation without using any immunosuppressants after the operation. This strategy would be applicable to the transplantation of other vascularized organs in humans.  相似文献   

12.
BACKGROUND: Even though a number of transplant centers have adopted donor-specific bone marrow cell (DBMC) infusions to enhance donor cell chimerism, to date there has been no direct evidence linking chimerism with tolerance induction in human organ transplant recipients. METHODS: Cells of donor phenotype were isolated 1 year postoperatively from the peripheral blood lymphocytes and iliac crest bone marrow of 11 living-related-donor (LRD) renal transplant recipients, who had received perioperative donor bone marrow cell infusions. These recipient-derived donor (RdD) cells were characterized phenotypically by flow cytometric analysis and functionally as modulators in mixed lymphocyte reaction (MLR) and cell-mediated lympholysis (CML) assays. RESULTS: The yield of RdD cells ranged from 0.1 to O.9% of the starting material with the majority being TcRalphabeta, CD3 positive T cells, a substantial percentage of which coexpressed CD28. At 1 year posttransplant almost 50% of the LRD-kidney/DBMC recipients tested so far exhibited donor-specific unresponsiveness in MLR (7/17) and CML (6/13) reactions and this trend was further enhanced at 23 years. In the recipients with residual positive antidonor immune responses, the RdD cells inhibited recipient antidonor MLR and CML responses significantly more strongly than freshly isolated and similarly treated iliac crest bone marrow cells from the donor. RdD cells also inhibited the MLR of the recipient to third party allogeneic stimulator cells; however, this nonspecific effect was significantly weaker than specific inhibition. We also established long-term bone marrow cultures stimulated every 2 weeks with irradiated alogeneic feeder cells, that had similar functional properties thus possibly providing us with an in vitro correlate the RdD cells. CONCLUSIONS: These results clearly support the notion that the infused donor cells play a positive role in the induction and/or maintenance of transplant tolerance.  相似文献   

13.
Previous studies in our laboratory have shown that giving bone marrow cells through the portal vein or intraosseous route is likely to be beneficial to tolerance of induction of allografts in rabbits. Using this model, we tested whether a less severe regimen for conditioning of the host can prevent rejection of allografts. Rabbits were given a single intraosseous injection of donor bone marrow cells and total body irradiation (7 Gy) and transplantation of skin and ear allografts. Mean skin allograft survival for this treatment was 88 days, which was similar to the results of our earlier study. A donor ear was accepted for more than a year with no signs of rejection. These results suggest that a single intraosseous injection of donor bone marrow cells is sufficient for induction of donor-specific tolerance in rabbits and that immunosuppressive agents may not be needed.  相似文献   

14.
Previous studies in our laboratory have shown that giving bone marrow cells through the portal vein or intraosseous route is likely to be beneficial to tolerance of induction of allografts in rabbits. Using this model, we tested whether a less severe regimen for conditioning of the host can prevent rejection of allografts. Rabbits were given a single intraosseous injection of donor bone marrow cells and total body irradiation (7 Gy) and transplantation of skin and ear allografts. Mean skin allograft survival for this treatment was 88 days, which was similar to the results of our earlier study. A donor ear was accepted for more than a year with no signs of rejection. These results suggest that a single intraosseous injection of donor bone marrow cells is sufficient for induction of donor-specific tolerance in rabbits and that immunosuppressive agents may not be needed.  相似文献   

15.
16.
Liu YP  Li Z  Nador RG  Strober S 《Transplantation》2008,85(4):607-614
BACKGROUND: The use of combined organ and bone marrow transplantation has been studied extensively in rodent models to induce immune tolerance to organ grafts. However, bone marrow transplants with mature donor T cells can induce graft-versus-host disease even in human leukocyte antigen-matched humans. We determined whether total lymphoid irradiation can simultaneously protect against graft-versus-host disease while facilitating tolerance. METHODS: To more closely model clinical studies, we added mature donor T cells to bone marrow grafts combined with heart grafts, and compared murine graft and host survival after conditioning with nonmyeloablative total body or total lymphoid irradiation and depletive anti-T-cell antibodies. RESULTS: Conditioning with total lymphoid irradiation protected hosts against both graft-versus-host disease and organ graft rejection. Although nonmyeloblative total body irradiation prevented organ graft rejection, all hosts succumbed to lethal graft-versus host disease. Induction of tolerance with total lymphoid irradiation and anti-T-cell antibodies was dependent on the presence of regulatory host natural killer T cells, and expression of CD1d on donor marrow but not heart graft cells. CONCLUSION: Conditioning with total lymphoid irradiation and anti-T-cell antibodies prevented host-versus-donor and donor-versus-host alloimmune responses. Tolerance required host natural killer T-cell recognition of CD1d on donor marrow cells.  相似文献   

17.
Using the miniature swine large animal model we have attempted to determine the relationship between tolerance and the presence of donor cells in the bone marrow, thymus and lineages of peripheral blood in a series of hematopoietic cell transplant recipients receiving delayed donor allografts without immunosuppression. Twenty-two animals receiving hematopoietic cell transplantation and a delayed organ allograft were analyzed. Assays for presence of donor CFUs in bone marrow (by PCR), thymic chimerism (by FACS and PCR/Southern Blot), peripheral blood chimerism (by FACS), and in vitro responsiveness to donor MHC were performed. Presence of donor BM CFUs, thymic chimerism and multilineage peripheral blood chimerism at the time of organ transplantation all correlated precisely with subsequent allograft tolerance (p < 0.001, p < 0.001, p < 0.005 respectively). These parameters were therefore accurate predictors (Positive Predictive Value (PPV) = 100% in all) of tolerance. In vitro assays of responsiveness were also highly associated (p < 0.002, p < 0.002 respectively), but were not as accurate predictors of subsequent organ tolerance (CML PPV = 80%). Engraftment, as indicated by the presence of donor derived CFU in the bone marrow, detectable thymic chimerism and multilineage peripheral blood chimerism are reliable predictors of subsequent donor allograft acceptance in hematopoietic cell transplant recipients.  相似文献   

18.
Li S  Louis LB  Kawaharada N  Yousem SA  Pham SM 《The Annals of thoracic surgery》2003,75(1):257-63; discussion 263
BACKGROUND: We investigated whether intrathymic inoculation of donor bone marrow at the time of transplantation induced long-term acceptance of lung allografts. METHODS: Four- to-six-week-old August Copenhagen Irish (ACI) and Wistar Furth (WF) rats were used as donors and recipients, respectively. After being inoculated intrathymically with either donor-specific (ACI) or third-party (F344) bone marrow (2.0 x 10(7) cells/lobe), the recipient (WF) animal received a left lung transplant from an ACI donor. A short course of tacrolimus (1 mg/kg per day for 5 days) was administered. Animals were sacrificed at timed intervals after transplantation, and rejection was graded on a scale of 0 (none) to 4 (severe). RESULTS: At 28 days, animals receiving donor-specific bone marrow have lower (p < 0.01) median rejection grade (MRG = 0.25; n = 6) than those receiving third-party bone marrow (MRG = 3; n = 6) and controls (no bone marrow; MRG = 2.5; n = 6). Animals receiving intrathymic donor bone marrow accepted lung allografts up to 380 days with minimal rejection (MRG = 2; n = 6). Long-term lung recipients also accepted a challenging donor-specific heart graft (n = 4) for more than 150 days. In mixed lymphocyte reaction assays, T lymphocytes of WF recipients that had received intrathymic bone marrow (from ACI donor) exhibited low response (similar to self antigens) to donor (ACI) cells, but reacted strongly (five times higher) to third-party (F344) cells. CONCLUSIONS: Intrathymic inoculation of donor bone marrow at the time of transplantation along with a short course of tacrolimus induces long-term acceptance of lung allografts in rats. This simple approach of tolerance induction may have clinical application.  相似文献   

19.
OBJECTIVE: This study examined the immunologic mechanism(s) responsible for the induction of transplantation tolerance in rats pretreated with intrathymic inoculation of donor strain bone marrow. SUMMARY BACKGROUND DATA: Induction of unresponsiveness may involve deletion and/or inactivation of donor-reactive T-cell precursors maturing in a thymus harboring donor alloantigen or generation of regulatory/suppressor cells. It was reasoned that, if unresponsiveness is caused by deletion of alloreactive clones, the presence of additional thymic tissue devoid of donor alloantigen permits normal maturation of T-cells and, thus, prevents induction of tolerance. However, if unresponsiveness were primarily mediated by regulatory/suppressor cells, the presence of noninoculated thymic tissue should not affect the induction of tolerance. METHODS: Three strategies were used to define the cellular basis of cardiac and islet allograft survival in WF recipients of intrathymic LEW donor bone marrow as follows: (1) inoculation of bone marrow either into the native thymus and/or into an ectopic thymus, (2) limiting dilution analyses of the frequency of precursor cytotoxic T-lymphocytes (CTLp), and (3) adoptive transfer to syngeneic secondary hosts. RESULTS: Inoculation of bone marrow into only one lobe of the native thymus and/or into an ectopic thymus did not promote consistent survival of subsequent LEW cardiac allografts. Tolerant hosts displayed significant reductions in CTLp frequencies against donor alloantigens. Adoptive transfer of spleen cells from tolerant WF hosts harboring long-standing cardiac allografts led to permanent survival of LEW cardiac allografts in all secondary recipients. However, transfer of spleen cells from WF animals that received intrathymic LEW bone marrow (but no cardiac allograft) did not promote survival of LEW cardiac allografts in naive secondary hosts. CONCLUSIONS: These results indicate that the unresponsive state after intrathymic inoculation of bone marrow cells is primarily mediated by deletion and/or inactivation of donor-specific T-cell precursors maturing in a chimeric thymus. The demonstration by adoptive transfer studies of putative regulatory/suppressor cells suggested an important role for the persistence of donor alloantigen (supplied by a vascularized allograft) in the maintenance of the unresponsive state.  相似文献   

20.
BACKGROUND: Xenotransplantation is a potential solution to the critical shortage of transplantable organs. However, conventional immunosuppressive agents do not control the vigorous cellular and humoral rejection across species disparities. The induction of donor specific tolerance via bone marrow chimerism may be a method to avoid xenograft rejection. In xenogeneic chimeras, T cell repertoire selection plays an important role in the induction of tolerance. Until now a model of mouse-->rat multilineage chimerism has not been reported. This study reports the establishment of fully xenogeneic mouse-->rat multilineage chimeras and evaluates the role of T cell development and repertoire selection in tolerance induction in a xenogeneic environment. METHODS: Recipient rats were irradiated at a dose of total body irradiation ranging between 800-1100 cGy and injected with 120-300x10(6) donor mouse bone marrow cells. Chimeras were typed for engraftment at 4 weeks and then monthly thereafter. T cell repertoire was evaluated in chimeras using two-color flow cytometry and monoclonal antibodies directed against the variable portion of the beta chain of the T cell receptor. RESULTS: Fully xenogeneic multilineage bone marrow chimerism was produced in a mouse-->rat model by using ablative radiation and a high dose of donor cells. Mouse T cells develop in a phenotypically normal fashion in chimeric rats and the host rat is capable of deleting T cells that are reactive to the donor mouse strain. CONCLUSION: Long-term multilineage bone marrow chimerism can be produced in a mouse-->rat bone marrow transplant model. Mouse T cells develop in a phenotypically normal fashion and negative selection of specific T cell receptor-Vbeta occurs in a xenogeneic environment in a predictable fashion paralleling that for syngeneic or allogeneic transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号