首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microglial reactivity associated with induction of MHC class II (HLA-DR) antigen is a sensitive indicator for pathological events in the CNS. To assess the response of glial cells after lesions of supraspinal descending tracts, HLA-DR, CD68 and GFAP were studied immunohistochemically on spinal cord tissue of 5 patients who died after unilateral infarction of the middle cerebral artery territory, and 5 control cases. In patients who died shortly after a stroke (4–14 days) increased HLA-DR-immunoreactivity (HLA-DR-IR) could be observed in the intermediate grey matter and in the ventral horn. The CD68-IR was much less intense. After longer survival times (5 weeks to 4 months), HLA-DR-IR in the grey matter was clearly lower than that observed in the spinal cord of short survival times, but very abundant in the dorsolateral funiculus, specifically within the corticospinal tract. In white matter areas, CD68-IR was almost identical to the HLA-DR-IR. Within the grey matter, CD68-IR was similar to the control tissue. A moderate increase of GFAP-positive astrocytes could be seen only in the grey matter after longer survival times. It seems probable, that the dynamics of HLA-DR-positive microglia reflect the early phagocytosis of presynaptic terminals by microglia in target regions of descending fibre tracts. In the white matter, the removal of degenerating axons by phagocytosing microglia expressing HLA-DR and CD68 antigens is a slower process which occurs over a period of months.  相似文献   

2.
The inflammatory response has been characterized in the lumbosacral segments (L4-S1) of rats after spinal transection at T8. Immune cells were identified immunohistochemically using antibodies to complement type 3 receptor, CD11b (OX-42), the macrophage lysosomal antigen, CD68 (ED1), major histocompatibility complex class II (MHC II), and CD163 (ED2), a marker of perivascular cells. One week after cord transection, OX-42+ microglial density had nearly doubled. In the white matter, microglia became enlarged, often with retracted processes. In contrast, microglia in the grey matter remained ramified although nearly half of those lying medially contained clusters of ED1+ granules. After 8 weeks, ED1+ (+/-MHC II) macrophages were prominent in regions of Wallerian degeneration extending from dorsolateral to ventral funiculi. Microglial density remained raised in grey matter, particularly in the ventral horns of L4/5. Ramified microglia expressing MHC II+ (+/-ED1) extended from deep in the dorsal columns and around the central canal to the ventral columns. More ED2+ (+/-MHC II) perivascular and meningeal cells were recruited and expressed ED1. Thus, distinct from their conversion into macrophages in the white matter, the activation of ramified microglia after degeneration in the grey matter involves expression of ED1 without morphologic transformation.  相似文献   

3.
Transection of the rat sciatic nerve induces retrograde changes in the dorsal root ganglia (DRG) neurons and in the motoneurons in the ventral grey matter of the lumbar L4-L6 spinal cord segments. In the ipsilateral dorsal grey matter and in the ipsilateral nucleus gracilis, transganglionic changes occur in the terminal fields of the centrally projecting axons of injured DRG neurons. As revealed by immunocytochemistry, the neuronal reactions were associated with a rapid proliferation and activation of microglial cells in the lumbar spinal cord as well as in the nucleus gracilis. Reactive microglial cells were detected as early as 24 h after sciatic axotomy. The microglial reaction had a maximum around day 7 postlesion and disappeared around 6 weeks after axotomy. In addition to light microscopy, activated, perineuronal microglia were identified by immuno-electron microscopy in the ventral grey matter. In the DRG, satellite cells constitutively expressed major histocompatibility complex (MHC) class II antigens. Sciatic axotomy led to a proliferation of satellite cells and an increased expression of MHC class II molecules in particular. This satellite cell reaction started 24 h after axotomy and continued to increase gradually until about 6 weeks after the lesion. Resident macrophages, detected in the DRG interstitial tissue by their expression of monocyte/macrophage markers, also reacted to sciatic axotomy. Our data suggest that (1) sciatic axotomy leads to a rapid microglial reaction in both the ventral and dorsal grey matter of the lumbar spinal cord and in the ipsilateral nucleus gracilis; (2) the immunophenotype of activated microglia following sciatic axotomy is comparable with that observed after axotomy of cranial nerves, e.g. the facial nerve; (3) satellite cells in DRG constitutively express MHC class II molecules; and (4) sciatic axotomy leads to a rapid activation of satellite cells and interstitial macrophages in the axotomized DRG.  相似文献   

4.
We have examined the microglial reaction accompanying motor neuron death following sciatic nerve crush in the newborn rat using lectin staining with the Griffonia simplicifolia B4-isolectin, as well as immunocytochemistry with a panel of monoclonal antibodies directed against brain macrophage antigen (ED2), and various immunologically important surface molecules (immunomolecules), such as major histocompatibility complex (MHC) class II (Ia) antigen (OX-6), CR3 complement receptor (OX-42), CD4 antigen (W3/25), and leukocyte common antigen (OX-1). The lectin histochemical method provided the earliest indication of a microglial response by demonstrating increased microglial density and clustering around dying motoneurons as early as 2 days after lesioning. Most immunomolecules were largely undetectable in the normal and early post-lesion spinal cord; however, at post-lesion day 5 localized expression of Ia antigen was visualized in the area of degenerating motor neurons. Ia expression preceded the appearance of other immunomolecules at day 8. No increase in staining with the ED2 antibody for macrophage antigen could be detected at any post-lesion interval. When compared to the microglial activation that occurs after axotomy in adult animals, our results show a similar onset in microglial activation in neonatal animals; however, the duration of immunomolecule expression is much briefer.  相似文献   

5.
Major histocompatibility complex class II (MHC II) and canine distemper virus (CDV) antigen expression were compared by immunohistochemistry in the cerebellar white matter of ten dogs with naturally occurring canine distemper encephalitis. In addition, infiltrating mononuclear cells were characterized by employing poly- and monoclonal antibodies directed against human CD3, canine MHC II, CD5, B cell antigen and CDV-specific nucleoprotein. Positive antigen-antibody reaction was visualized by the avidin-biotin-peroxidase complex method on frozen sections. Histologically, neuropathological changes were categorized into acute, subacute, and chronic. In control brains, MHC II expression was weak and predominantly detected on resident microglia of the white matter and on endothelial, perivascular and intravascular cells. In CDV antigen-positive brains, MHC II was mainly found on microglia and to a lesser extent on endothelial, meningeal, choroid plexus epithelial, ependymal and intravascular cells. In addition, virtually all of the perivascular cells expressed MHC II antigen. CDV antigen was demonstrated most frequently in astrocytes. Of the perivascular lymphocytes, the majority were CD3-positive cells, followed by B cells. Only a small proportion of perivascular cells expressed the CD5 antigen. In addition, B cells and CD3 and CD5 antigen-positive cells were found occasionally in subacute and frequently in chronic demyelinating plaques. In acute encephalitis, CDV antigen exhibited a multifocal or diffuse distribution, and MHC II was moderately up-regulated throughout the white matter and accentuated in CDV antigen-positive plaques. In subacute encephalitis, moderate multifocal CDV antigen and moderate to strong diffuse MHC II-specific staining, especially prominent in CDV antigen-positive lesions, were observed. In chronic encephalitis, CDV antigen expression was restricted to single astrocytes at the edge of the lesions or was absent, while MHC II expression, especially prominent on microglia, was strongly up-regulated throughout the white matter, most pronounced in demyelinated plaques. In summary, in acute and subacute lesions without perivascular cuffs, MHC II expression correlated with the presence of CDV antigen. In contrast, in chronic lesions, MHC II expression on microglial cells was the most prominent despite a few CDV antigen-positive astrocytes, indicating that nonviral antigens may play an important role as triggering molecules for the process of demyelination. Received: 13 September 1995 / Revised: 26 February 1996 / Accepted: 1 April 1996  相似文献   

6.
As the primary intrinsic immune effector cells of the central nervous system, microglia are involved in virtually all pathological processes of the brain and spinal cord including inflammatory, neurodegenerative, traumatic, neoplastic and vascular diseases. Despite this important role, there is a lack of data concerning microglial distribution and protein expression in the human spinal cord. In this study, we immunohistochemically investigated 10 normal human spinal cords to establish reference data and compared these results with 15 pathological human spinal cords deriving from distinct pathologies. Each spinal cord was evaluated at eight different levels for three white and two grey matter areas for both constitutive (MHC-II, CD68, IL-16, AIF-1, LCA, CD4) and reactive (MRP-8, MRP-14) microglial antigens. Whereas previous studies revealed significant regional differences in microglial distribution and protein expression in human brain, normal spinal cord displayed a uniform expression pattern, reaching levels of up to 17% MHC-II positive cells of the total cell population. This datum formed the basis for the further evaluation of microglia expression levels in pathological spinal cords, where levels of up to 45% positive cells were observed. Our results represent important reference values for future neuropathological diagnostic and therapeutical approaches in spinal cord pathologies.  相似文献   

7.
The distribution of microglia during the early stages of postnatal development in the rat was studied on rat brain from day of birth to postnatal day 90 (P90), using immunohistochemical methods with a panel of monoclonal antibodies that recognized the complement type 3 receptor (OX-42), macrophage antigen of unknown function (ED1), and the major histocompatibility complex (MHC) class I (OX-18) or class II (OX-6) antigens. Starting from the day of birth, ameboid microglia can be differentiated with positive immunoreactivity to OX-42, OX-18, and ED1. Labeled cells were localized mainly in the developing white matter. After P21, only positive reaction to OX-42 was present, and those cells had the typical morphology of the resting microglial cells that were located either in the white or grey matter. The changes in the appearance of different antigens are correlated with the morphological differentiation and transformation of ameboid microglial cells that are to become ramified microglia, present in the adult animals.  相似文献   

8.
There is increasing evidence that microglia serve as antigen presenters in the human CNS. Although the occurrence of MHC class II immunoreactive cells has been reported in astrocytic gliomas, the relative contribution of microglia to this cell population has not been studied in detail. Using computer-assisted image analysis, we have investigated the expression of MHC class II molecules and of the microglia/macrophage markers Ki-M1P, RCA-1, KP1 and iba1 , in 97 astrocytic gliomas comprising all WHO grades to answer the question whether there is a correlation between tumour grade and the number of MHC class II positive microglia/macrophage profiles. Microglia expressing MHC class II were common in astrocytomas and anaplastic astrocytomas but rare in pilocytic tumours although there was significant variation within each group. MHC class II immunoreactivity was reduced in highly cellular areas of glioblastomas where large numbers of cells expressing macrophage markers were still present. Thus, there was no simple relationship between tumour grade and microglial/macrophage MHC class II expression. In addition, up to 55% of astrocytic gliomas contained MHC class II immunoreactive tumour cells. Microglia but not tumour cells were found to express the BB1/B7 costimulator. We conclude that microglia in astrocytic gliomas are well equipped to function as antigen presenting cells. Yet, neoplastic astroglia appear to acquire the capacity to downregulate microglial MHC class II expression and, at the same time, may induce T-cell clonal anergy through aberrant expression of MHC class II molecules.  相似文献   

9.
Although microglia are considered to be a sensitive sensor for pathological processes in the central nervous system, there are only a few studies about the distribution and density of microglia in the normal human brain. Therefore, a study of local density of microglial cells was conducted by investigating 20 normal human brains with no clinical neurological symptoms or diseases and no neuropathological alterations. Microglial cells were visualized by immunolabeling of proteins which are known to be expressed either constitutively or facultatively, such as CD68, major histocompatibility complex class II (MHC-II), leukocyte common antigen (LCA), leukocyte chemotactic factor (LCF), macrophage inhibitory factor-related protein (MRP) 8, MRP14, CD4 and allograft-inflammatory factor-1 (AIF-1). CD68, MHC-II and AIF-1 showed the highest densities with significant regional differences ranging from 0.5% to 16.6% of all cells in the brain parenchyma with significantly more microglia in white than in gray matter. LCF and LCA showed a similar pattern of distribution as the proteins described above, but with lower percentages of microglial cells. CD4 was not found in the brain parenchyma. We conclude that CD68, MHC-II and AIF-1 define the main microglial cell population, whereas LCF and LCA are expressed by a subpopulation of microglial cells. The brains showed no or a negligible vascular expression of MRP8 and MRP14. Information about the local microglia density in the normal human brain can serve as a reference for the evaluation of pathological microglial responses.  相似文献   

10.
Summary The appearance and cellular distribution of major histocompatibility complex (MHC), as well as lymphocytic and macrophage antigens has been studied in a fully developed experimental rat forebrain glioma. Activated microglial cells and microglia-derived macrophages expressing CR3 complement receptor molecules and MHC class II (Ia) antigen were found throughout the tumor, and with increased density along the tumor's periphery. MHC class I antigen expression was entirely absent from tumor cells, and found only occasionally on microglia. The expression of leukocyte common antigen, and CD4 and CD8 antigens was conspicuous throughout the tumor, and associated with lymphocytes, perivascular cells, and microglia. Cells expressing the ED2 macrophage epitope were almost exclusively of the perivascular type and revealed a distribution dissimilar to that of cells positive for Ia antigen. The ED2 epitope was found sporadically on ramified microglial cells. The results show that despite heavy infiltration with blood mononuclear and CNS microglial cells, the tumor showed no evidence of destruction caused by inflammatory cells. Possible mechanisms of tumor immunosuppressive activity preventing the full immunological activation of microglia and blood mononuclear cells are discussed.Supported in part by an American Cancer Society Institutional Research Grant at the University of Florida  相似文献   

11.
Monoclonal antibody immunocytochemistry was used to examine spinal cord and muscle in amyotrophic lateral sclerosis for changes that would indicate ongoing or potential immune activity. Increased expression of class I and II major histocompatibility complex (MHC) antigens was seen in the affected areas of spinal cord. New MHC expression was concentrated in phagocytes, particularly in degenerating white matter in which they were dispersed in the tissue and also packed around blood vessels. MHC antigen was not revealed in motor neurons or skeletal muscle fibers. An anti-pan-T-cell monoclonal revealed small numbers of T cells in degenerating white matter. Similar changes have been seen in other neurodegenerative disorders. They suggest a potential for (secondary) cell-mediated activity in the affected areas rather than an ongoing MHC-restricted T-cell response. Vessel-associated phagocytes may be a source of antigen to peripheral lymphoid tissue, stimulating production of the autoantibodies that have been described.  相似文献   

12.
We have studied the microglial reaction that accompanies cortical infarction induced by middle cerebral artery occlusion (MCAO). Lectin histochemistry with the B4-isolectin from Griffonia simplicifoliaas well as immunocytochemistry with a panel of monoclonal antibodies directed against major histocompatibility complex (MHC) and lymphocytic antigens were performed. Principal attention was focused on neocortical and thalamic regions, representative of primary and secondary ischemic damage, respectively. With the lectin procedure, activated microglial cells were abundant in the neocortex 24 hours after MCAO. In contrast, microglial activation in the thalamus was not apparent until day 2 after MCAO. On day 5, MHC class II antigen was expressed by reactive microglia in fiber tracts traversing the striatum, but was absent from activated microglia in the primary cortical infarction area. MHC class I and lymphocytic antigens were expressed differentially on microglia with class I antigens appearing early and lymphocytic antigens appearing late in the time course after focal ischemia. The findings are compatible with previous studies during global ischemia and confirm the early activation and the progressive nature of immunomolecule expression on activated microglia after an ischemic insult. In addition to neocortical and thalamic sites, our results showed an early microglial activation to be present also in forebrain regions outside of the middle cerebral artery (MCA) territory, such as the contralateral cortex and hippocampus. A unilateral microglial reaction was also detectable after long-term survival (≥4 weeks) in the pyramidal tracts, as well as in the corticospinal tracts at cervical but not lumbar spinal cord levels. Ischemia-induced neuronal damage, as evaluated by Nissl staining, was found only in cortical and thalamic regions. We conclude that the demonstration of reactive microglia indicates not only imminent ischemic neuronal damage within MCA territory but can also delineate extra-focal disturbances, possibly reflecting subtle and transitory changes in neuronal activity. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Differential morphologic subtypes of microglia have been identified in the human fetal frontal cerebrum using a lectin, Ricinus communis agglutinin 1 (RCA-1), and a monoclonal antibody, EBM-11. In this report, microglia were characterized in the human fetal cervical spinal cord. RCA-1-positive microglia were ramified in the developing gray matter while in the developing white matter they had a less differentiated (ameboid) appearance. EBM-11, a monoclonal antibody that recognizes CD68 on human macrophages, and microglia labeled only ameboid-type microglia in the developing white matter. This suggests that distinct subpopulations of microglia exist, which may represent different stages in microglial development, and that CD68 may be a differentiation marker for less mature forms. Therefore, cytologically less differentiated forms of microglia appear to be associated with myelination.  相似文献   

14.
Zhang SC  Goetz BD  Carré JL  Duncan ID 《Glia》2001,34(2):101-109
The relationship between microglial activation and dysmyelination/demyelination was analyzed in a long-lived myelin mutant, the Long Evans shaker (les) rat, which exhibits early dysmyelination and a later loss of abnormal myelin sheaths. A microglial reaction characterized by progressive morphological transformation and increasing cell density was localized exclusively to white matter during postnatal 2-4 weeks, suggesting a microglial response to dysmyelination and oligodendroglial pathology. A further microglial reaction as marked by microglial expression of MHC II and a concomitant expression in the brain and spinal cord of mRNA for interleukin-1 beta (IL-1 beta), tumor necrosis factor-alpha (TNF-alpha), and inducible nitric oxide synthase (iNOS) began around 4 weeks when the remaining myelin was lost. Ultrastructurally, activated microglia ingested numerous myelin figures, suggestive of active phagocytosis. Thus, this study indicates that microglial reaction is graded in chronic neurological disorders and suggests that MHC II expression marks a functional change of activated microglia.  相似文献   

15.
Glial activation and degeneration are important outcomes in the pathophysiology of acute brain and spinal cord injury (SCI). Our main goal was to investigate the pattern of glial activation and degeneration during secondary degeneration in both gray matter (GM) and white matter (WM) following SCI. Adult rats were deeply anesthetized and injected with 20 nmol of N-methyl-D-aspartate (NMDA) into the ventral horn of rat spinal cord (SC) on T7. Animals were perfused after survival times of 1, 3, and 7 days. Ten-micrometer sections were submitted to immunocytochemistry for activated macrophages/microglia, astrocytes, oligodendrocytes, and myelin. Astrocyte activation was more intense in the vacuolated white matter than in gray matter and was first noticed in this former region. Microglial activation was more intense in the gray matter and was clear by 24 h following NMDA injection. Both astrocytosis and microglial activation were more intense in the later survival times. Conspicuous WM vacuolation was present mainly at the 3-day survival time and decreased by 7 days after the primary damage. Quantitative analysis revealed an increase in the number of pyknotic bodies mainly at the 7-day survival time in both ventral and lateral white matter. These pyknotic bodies were frequently found inside white matter vacuoles like for degenerating oligodendrocytes. These results suggest a differential pattern of astrocytosis and microglia activation for white and gray matter following SCI. This phenomenon can be related to the different pathological outcomes for this two SC regions following acute injury.  相似文献   

16.
17.
Immunohistochemical techniques have been used to investigate microglial reaction in Creutzfeldt-Jakob diseased (CJD) brains. Autopsy cases of six patients with CJD and age-matched controls were studied. Formalin-fixed, paraffin-embedded brain tissue samples were stained with antibodies against major histocompatibility complex (MHC) class II antigen (Ag), leukocyte common antigen (LCA), CDw75, CD68 and glial fibrillary acidic protein. Of the patients with CJD, two with a subacute spongiform encephalopathic type and short-survival periods after onset of the disease showed an increased number of reactive microglia labeled with anti-MHC class II Ag or LCA in the affected cerebral cortex. In advanced cases of the panencephalopathic type of CJD, in which both cerebral atrophy and astrocytosis were marked, the increase of reactive microglia was small. Some vacuoles developing in the neuropil of the CJD patients were surrounded by MHC class II Ag- or LCA-immunoreactive microglial cells. The number of ramified microglia in the affected lesions was decreased, although their number in the hippocampus was not affected. These results indicate that microglia can frequently be involved in the process of CJD and may be activated at the early stage of the disease.  相似文献   

18.
Chronic constriction injury (CCI) of the sciatic nerve in rodents produces mechanical and thermal hyperalgesia and is a common model of neuropathic pain. Here we compare the inflammatory responses in L4/5 dorsal root ganglia (DRGs) and spinal segments after CCI with those after transection and ligation at the same site. Expression of ATF3 after one week implied that 75% of sensory and 100% of motor neurones had been axotomized after CCI. Macrophage invasion of DRGs and microglial and astrocytic activation in the spinal cord were qualitatively similar but quantitatively distinct between the lesions. The macrophage and glial reactions around neurone somata in DRGs and ventral horn were slightly greater after transection than CCI while, in the dorsal horn, microglial activation (using markers OX-42(for CD11b) and ED1(for CD68)) was greater after CCI. In DRGs, macrophages positive for OX-42(CD11b), CD4, MHC II and ED1(CD68) more frequently formed perineuronal rings beneath the glial sheath of ATF3+ medium to large neurone somata after CCI. There were more invading MHC II+ macrophages lacking OX-42(CD11b)/CD4/ED1(CD68) after transection. MHC I was expressed in DRGs and in spinal sciatic territories to a similar extent after both lesions. CD8+ T-lymphocytes aggregated to a greater extent both in DRGs and the dorsal horn after CCI, but in the ventral horn after transection. This occurred mainly by migration, additional T-cells being recruited only after CCI. Some of these were probably CD4+. It appears that inflammation of the peripheral nerve trunk after CCI triggers an adaptive immune response not seen after axotomy.  相似文献   

19.
The reactive spatial and temporal activation pattern of parenchymal spinal cord microglia was analyzed in rat experimental autoimmune neuritis (EAN). We observed a differential activation of spinal cord microglial cells. A significant increase in ED1+ microglia predominantly located in the dorsal horn grey matter of lumbar and thoracic spinal cord levels was observed on Day 12. As revealed by morphological criteria and by staining with further activation markers [allograft inflammatory factor 1 (AIF-1), EMAPII, OX6, P2X4R], reactive microglia did not reach a macrophage-like state of full activation. On Day 12, a significant proliferative response could be observed, affecting all spinal cord areas and including ED1+ microglial cells and a wide range of putative progenitor cells. Thus, in rat EAN, a reactive localized and distinct microglial activation correlating with a generalized proliferative response could be observed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号