首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
PURPOSE: To identify the disease locus of autosomal recessive congenital nuclear cataracts in a consanguineous Pakistani family. METHODS: A large Pakistani family with multiple individuals affected by autosomal recessive congenital cataracts was ascertained. Patients were examined, blood samples were collected, and DNA was isolated. A genome-wide scan was performed using 382 polymorphic microsatellite markers on genomic DNA from affected and unaffected family members. Two-point lod scores were calculated, and haplotypes were formed by inspection. RESULTS: In the genome-wide scan, a maximum lod score of 2.89 was obtained for marker D19S414 on 19q13. Fine mapping using D19S931, D19S433, D19S928, D19S225, D19S416, D19S213, D19S425, and D19S220 markers from the Généthon database showed that markers in a 14.3-cM (12.66-Mb) interval flanked by D19S928 and D19S420 cosegregated with the cataract locus. Lack of homozygosity further suggests that the cataract locus may lie in a 7-cM (4.3-Mb) interval flanked by D19S928 proximally and D19S425 distally. On fine mapping, a maximum lod score of 3.09 was obtained with D19S416 at theta = 0. CONCLUSIONS: Linkage analysis identified a new locus for autosomal recessive congenital nuclear cataracts on chromosome 19q13 in a consanguineous Pakistani family.  相似文献   

2.
PURPOSE: Some 30% of cases of congenital cataract are genetic in origin, usually transmitted as an autosomal dominant trait. The molecular defects underlying some of these autosomal dominant cases have been identified and were demonstrated to be mostly mutations in crystallin genes. The autosomal recessive form of the disease is less frequent. To date, only four genes and three loci have been associated with autosomal recessive congenital cataract. Two extended unrelated consanguineous inbred Bedouin families from southern Israel presenting with autosomal recessive congenital nuclear cataract were studied. METHODS: Assuming a founder effect, homozygosity testing was performed using polymorphic microsatellite markers adjacent to each of 32 candidate genes. RESULTS: A locus on chromosome 22 surrounding marker D22S1167 demonstrated homozygosity only in affected individuals (lod score > 6.57 at theta = 0 for D22S1167). Two crystallin genes (CRYBB1 and CRYBA4) located within 0.1 cM on each side of this marker were sequenced. No mutations were found in CRYBA4. However, an identical homozygous delG168 mutation in exon 2 of CRYBB1 was discovered in affected individuals of both families, generating a frameshift leading to a missense protein sequence at amino acid 57 and truncation at amino acid 107 of the 252-amino-acid CRYBB1 protein. Denaturing [d]HPLC analysis of 100 Bedouin individuals unrelated to the affected families demonstrated no CRYBB1 mutations. CONCLUSIONS: CRYBB1 mutations have been shown to underlie autosomal dominant congenital cataract. The current study showed that a different mutation in the same gene causes an autosomal recessive form of the disease.  相似文献   

3.
PURPOSE: To localize and identify the gene and mutations causing autosomal recessive retinitis pigmentosa in three consanguineous Pakistani families. METHODS: Blood samples were collected and DNA was extracted. A genome-wide scan was performed by using 382 polymorphic microsatellite markers on genomic DNA from affected and unaffected family members, and lod scores were calculated. RESULTS: A genome-wide scan of 25 families gave an hlod = 4.53 with D8S260. Retinitis pigmentosa in all three families mapped to a 14.21-cM (21.19-Mb) region on chromosome 8 at q11, flanked by D8S532 and D8S260. This region harbors RP1, which is known to cause autosomal dominant retinitis pigmentosa. Sequencing of the coding exons of RP1 showed mutations in all three families: two single-base deletions, c.4703delA and c.5400delA, resulting in a frame shift, and a 4-bp insertion, c.1606insTGAA, all causing premature termination of the protein. All affected individuals in these families are homozygous for the mutations. Parents and siblings heterozygous for the mutant allele did not show any signs or symptoms of RP. CONCLUSIONS: These results provide strong evidence that mutations in RP1 can result in recessive as well as dominant retinitis pigmentosa. The findings suggest that truncation of RP1 before the BIF motif or within the terminal portion results in a simple loss of RP1 function, producing a recessive inheritance pattern. In contrast, disruption of RP1 within or immediately after the BIF domain may result in a protein with a deleterious effect and hence a dominant inheritance pattern.  相似文献   

4.
5.
PURPOSE: To map the disease locus in a six-generation, consanguineous Pakistani family affected by nonsyndromic autosomal recessive persistent hyperplastic primary vitreous (arPHPV). All affected individuals had peripheral anterior synechiae and corneal opacities with variable degrees of cataract and a retrolenticular white mass behind the lens. METHODS: Genomic DNA from family members was typed for alleles at more than 400 known polymorphic genetic markers, by polymerase chain reaction. Alleles were assigned to individuals, which allowed calculation of lod scores. RESULTS: A maximum two-point lod score of 4.07 was obtained with marker D10S1225 with no recombination. Two recombinations with marker D10S208 and D10S537 localized the disease within a region of approximately 30 centimorgans (cM). However, homozygosity across the region refined the arPHPV locus to 13 cM. CONCLUSIONS: Linkage analysis shows localization of nonsyndromic arPHPV to chromosome10q11-q21.  相似文献   

6.
Autosomal dominant cerulean cataracts (ADCC) have previously been mapped to two loci: one on chromosome 17q24 and the other on chromosome 22q11.2–q12.2, which includes the ß-B2 crystallin (CRYBB2) candidate gene. Using polymorphic markers in these regions (D17S802, D17S836, D17S1806 and CRYBB2, D22S258) for linkage analysis, we excluded these loci in a large Moroccan family presenting with an unusual form of ADCC with early onset of lens opacities and rapid evolution. This finding confirms the clinical and genetic heterogeneity of autosomal dominant congenital cerulean cataracts.  相似文献   

7.
Autosomal dominant cerulean cataracts (ADCC) have previously been mapped to two loci: one on chromosome 17q24 and the other on chromosome 22q11.2-q12.2, which includes the beta-B2 crystallin (CRYBB2) candidate gene. Using polymorphic markers in these regions (D17S802, D17S836, D17S1806 and CRYBB2, D22S258) for linkage analysis, we excluded these loci in a large Moroccan family presenting with an unusual form of ADCC with early onset of lens opacities and rapid evolution. This finding confirms the clinical and genetic heterogeneity of autosomal dominant congenital cerulean cataracts.  相似文献   

8.
PURPOSE: To map the disease locus in a four-generation, consanguineous Pakistani family affected by autosomal dominant congenital nuclear cataract (adNCat). All affected individuals had early onset of bilateral nuclear cataract. METHODS: Genomic DNA from family members was typed for alleles at more than 300 known polymorphic genetic markers by polymerase chain reaction. The lod scores were calculated by using two-point linkage analysis of the genotyping data. RESULTS: The maximum lod score, 4.05, was obtained for the marker D2S2333. Proximal and distal crossovers were observed with markers D2S286 and D2S1790, respectively. These crossovers define the critical disease locus to an interval of approximately 9 centimorgans (cM). CONCLUSIONS: Linkage analysis identified a novel locus for adNCat on chromosome 2p12 in a Pakistani family. A genome database analysis of the target interval is being undertaken to identify candidate gene(s) for the disease.  相似文献   

9.
PURPOSE: To study some functional candidate genes in cataract families of Indian descent. METHODS: Nine Indian families, clinically documented to have congenital/childhood cataracts, were screened for mutations in candidate genes such as CRYG (A-->D), CRYBB2, and GJA8 by PCR analyses and sequencing. Genomic DNA samples of either probands or any representative affected member of each family were PCR amplified and sequenced commercially. Documentation of single nucleotide polymorphisms (SNPs) and candidate mutations was done through BLAST SEARCH (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?). RESULTS: Several single nucleotide polymorphisms in CRYG, CRYBB2, and GJA8 genes were observed. Because they do not co-segregate with the phenotype, they were excluded as candidates for the cataract formation in these patients. However, a substitution (W151C in exon 6 of CRYBB2) was identified as the most likely causative mutation underlying the phenotype of central nuclear cataract in all affected members of family C176. Protein structural interpretations demonstrated that no major structural alterations could be predicted and that even the hydrogen bonds to the neighboring Leu166 were unchanged. Surprisingly, hydropathy analysis of the mutant betaB2-crystallin featuring the amino acids at position 147 to 155, further increased the hydrophobicity, which might impair the solubility of the mutant protein. Finally, the Cys residue at position 151 might possibly be involved in intramolecular disulphide bridges with other cysteines during translation, possibly leading to dramatic structural changes. CONCLUSIONS: Exon 6 of CRYBB2 appears to be a critical region susceptible for mutations leading to lens opacity.  相似文献   

10.
目的 分析一个先天性白内障家系的遗传规律,对其突变基因进行初步研究.方法 选取一先天性膜性白内障家系,对家系成员进行临床检查并采集静脉血.标准饱和酚/氯仿抽提法提取DNA,选取多态性微卫星遗传标记,合成引物,聚合酶链反应,聚丙烯酰胺凝胶电泳,基因分型,等位基因共享分析法对已知候选基因进行排除性定位.结果 该家系为常染色体显性遗传性先天性白内障家系.其致病基因与D22S315联系紧密,重组发生在以D22S303和D22S1167为上下边界的范围内.对该范围内已知的先天性白内障致病基因CRYBB1、CRYBB2、CRYBB3、CRYBA4进行DNA直接测序,未发现突变.结论 该家系致病基因定位于22q11.2~q12.1的2.4 Mbp范围内,其致病基因与已知基因座不同.该范围内可能存在导致先天性膜性白内障的新的致病基因.  相似文献   

11.
目的:分析一先天性核型白内障家系的遗传方式及致病基因所在位置。方法:收集一个3代遗传性白内障家系成员的临床资料;提取家系成员外周血DNA,选取62个态性微卫星标记进行连锁分析。应用LINKAGE软件(version 5.2)中的MLINK程序计算两点连锁LOD值,并人工构建家系成员的单体型。结果:确定该家系为一常染色体显性遗传性白内障大家系,在微卫星标记D22S689可获得最大LOD值2.71(θ=0时),单体型提示该家系表型可能与染色体22q11.2-12.1区域连锁。该区域含有CRYBB1,CRYBB2,CRYBB3,CRYBA44个候选基因。结论:本研究先天性核型白内障家系符合常染色体显性遗传规律,其致病基因定位于22q11.2-12.1区域。  相似文献   

12.
PURPOSE: To identify the genetic defect associated with autosomal recessive congenital cataract in four Arab families from Israel. METHODS: Genotyping was performed using microsatellite markers spaced at approximately 10 cM intervals. Two-point lod scores were calculated using MLINK of the LINKAGE program package. Mutation analysis of the glucosaminyl (N-acetyl) transferase 2 gene (GCNT2) gene was performed by direct sequencing of PCR-amplified exons. RESULTS: The cataract locus was mapped to a 13.0-cM interval between D6S470 and D6S289 on Chr. 6p24. A maximum two-point lod score of 8.75 at theta = 0.019 was obtained with marker D6S470. Sequencing exons of the GCNT2 gene, mutations of which have been associated with cataracts and the i blood group phenotype, revealed in these families a homozygous G-->A substitution in base 58 of exon-2, resulting in the formation of premature stop codons W328X, W326X, and W328X, of the GCNT2A, -B, and -C isoforms, respectively. Subsequent blood typing of affected family members confirmed the possession of the rare adult i blood group phenotype. CONCLUSIONS: A nonsense mutation in the GCNT2 gene isoforms is associated with autosomal recessive congenital cataract in four distantly related Arab families from Israel. These findings provide further insight into the dual role of the I-branching GCNT2 gene in the lens and in reticulocytes.  相似文献   

13.
PURPOSE: To map a gene for cataracts in a family with congenital nuclear and sutural cataracts and to examine candidate genes in the linked region. METHODS: A large family with autosomal dominant congenital nuclear and sutural cataracts was identified and characterized. A genome-wide screen was conducted with a set of markers spaced at 10- to 15-cM intervals, and linkage was assessed using standard LOD score analysis. RESULT: Fifteen (15) affected individuals were identified. This form of congenital cataracts maps to a 12-cM region on chromosome 3q21.2-q22.3 between markers D3S3674 and D3S3612, with a maximum multipoint LOD score of 6.94 at D3S1273. The crystallin gene, CRYGS, was excluded as a candidate gene for this locus. CONCLUSIONS: There are now more than 12 different genetic loci that cause congenital cataracts. The most recent locus to be identified is on chromosome 3q21.2-q22.3, in a family with congenital nuclear and sutural cataracts.  相似文献   

14.
Congenital cataracts are clinically and genetically heterogeneous. Loci for autosomal dominant posterior polar cataracts have been mapped to chromosomes 1p36, 11q22-q22.3, 16q22, and 20p12-q12. We investigated a large four-generation family with 20 individuals affected with congenital posterior polar cataracts. After exclusion of known loci for posterior polar cataracts, a genome-wide screen was conducted. In this family, we mapped dominant congenital posterior polar cataracts to chromosome 10q24. On haplotype analysis, we identified an 11-cM interval between loci D10S1680 and D10S467, which included the PITX3 gene. On sequencing the coding region of PITX3, we found a 17-base-pair duplication in exon 4. Although the same genotype was described in a family with ASMD and cataracts, the common phenotype of this mutation is probably posterior polar cataract; a modifier gene is presumed to cause anterior segment abnormalities in the previously described patients. The same mutation was recently identified in four families with congenital cataracts. This study provides further evidence of genetic heterogeneity of autosomal dominant posterior polar cataract.  相似文献   

15.
Congenital cataracts are clinically and genetically heterogeneous. Loci for autosomal dominant posterior polar cataracts have been mapped to chromosomes 1p36, 11q22-q22.3, 16q22, and 20p12-q12. We investigated a large four-generation family with 20 individuals affected with congenital posterior polar cataracts. After exclusion of known loci for posterior polar cataracts, a genome-wide screen was conducted. In this family, we mapped dominant congenital posterior polar cataracts to chromosome 10q24. On haplotype analysis, we identified an 11-cM interval between loci D10S1680 and D10S467, which included the PITX3 gene. On sequencing the coding region of PITX3, we found a 17-base-pair duplication in exon 4. Although the same genotype was described in a family with ASMD and cataracts, the common phenotype of this mutation is probably posterior polar cataract; a modifier gene is presumed to cause anterior segment abnormalities in the previously described patients. The same mutation was recently identified in four families with congenital cataracts. This study provides further evidence of genetic heterogeneity of autosomal dominant posterior polar cataract.  相似文献   

16.
PURPOSE: To determine the locus of the mutant gene causing autosomal recessive cone-rod dystrophy (arCRD) in a consanguineous pedigree, to evaluate a candidate gene expressed in retina that maps to this locus, and to estimate the percentage of arCRD cases caused by mutations in this gene. METHODS: DNAs from family members were genotyped for markers covering the entire genome at an average spacing of approximately 9 centimorgans (cM). The data were input into a pedigree computer program to produce output files used to calculate lod scores. Significant linkage was revealed at 8cen, prompting the genotyping of a number of additional markers. Exons of a candidate gene were sequenced directly by standard fluorescent dideoxy methods. Haplotype analysis was performed with markers in this locus in 13 multiplex and 2 simplex CRD families in which neither parent had disease. RESULTS: Four-point linkage analysis gave a maximum lod score of approximately 7.6 at both D8S1769 and GATA101H09 in the large consanguineous family. Recombination events defined an interval of 8.7 cM between D8S1820 and D8S532 within which the gene must lie. This 8p11 locus (CORD9) is immediately distal to but distinct from the RP1 autosomal dominant RP (adRP) locus. Two islands of homozygosity were found in this locus: The alleles of 6 of 10 markers in one of the islands and 2 of 4 in the other were homozygous. The UniGene cluster Hs.8719 (UniGene System, provided by the National Center for Biotechnology Information and available at http://www.ncbi.nlm.nih.gov/UniGene), which tags a gene with significant homology to Dual Specificity Phosphatase 3, maps within the CORD9 interval and is highly expressed in the retina. To evaluate this gene as a potential disease candidate, intron-exon structure was determined, and exons were screened in the consanguineous family. No variants were found that could be related to disease. Haplotype analysis of 15 other families with CRD, using markers at CORD9, excluded this locus in 9 of 15. CONCLUSIONS: A new arCRD locus (CORD9) has been identified corresponding to a yet unidentified gene in the 8.7-cM interval D8S1820-D8S532. No mutations were found in one candidate gene in affected members of the primary study family. Haplotype analysis of a cohort of 13 multiplex and 2 simplex families with CRD ruled out the CORD9 gene in 9 of 15 of the families. To date, a total of 126 loci carrying gene mutations causing various forms of retinal degeneration have been mapped, and the mutant gene has been identified in 64 of them. However, only 2 loci for arCRD have been documented. This is the report of a third.  相似文献   

17.
PURPOSE: To map and identify the mutated gene for autosomal dominant cataract (ADC) in family ADC4. METHODS: Ophthalmic evaluations were performed on an American family with ADC and a panel of polymorphic DNA sequence-tagged site (STS) markers for known ADC loci and other genome-wide polymorphic markers were used to map the gene; two-point lod scores were calculated. Fine mapping was undertaken in the chromosomal regions of maximum lod scores, and candidate genes were sequenced. RESULTS: A four-generation American family with ADC was studied. The only phakic individual exhibited white and vacuolated opacities in the cortical region. This ADC locus mapped to several suggestive chromosomal regions. Assuming full penetrance, the highest calculated maximum lod score was 3.91 with D19S903 [corrected] On chromosome 12, we sequenced all exons and the exon-intron borders of the membrane intrinsic protein (MIP) gene. On chromosome 19, all exons and the exon-intron borders of genes for lens intrinsic membrane2 (LIM2), ferritin light chain (FTL), and the human homologue of the Drosophila sine oculis homeobox 5 (SIX5) were sequenced, and the 3' untranslated repeat region (UTR) of the dystrophy (DMPK) gene and both the 5' and 3' UTRs of the SIX5 genes were amplified; the promoter for LIM2 was sequenced. For these genes, the sequence matched that in the reference libraries, and the DMPK gene had a normal number of CTG repeats. CONCLUSIONS: The mutated gene in ADC4 probably represents a new, not yet identified locus on chromosome 19. In one phakic member, the cortical cataracts were punctate and vacuolated.  相似文献   

18.
目的对河北汉族一个四代先天性核性常染色体显性遗传白内障家系进行基因分析,了解此家系在候选基因上是否存在突变位点。方法该家系22名成员(包括患者7人,非患者15人)知情同意进人本研究,并接受全面的眼部及全身检查,以排除白内障以及外眼部及全身疾患。该家系成员中患病者经眼部裂隙灯检查发现晶状体均为核性混浊。采集22名家系成员的外周静脉血,提取基因组DNA。选择国内外已报道的与先天性核性白内障发生相关的7个候选基因(CRYBA3/A1、CRYBB1、CRYBB2、CRYGD、GJA3、GJA8和MIP),设计引物使聚合酶链反应扩增的片段覆盖候选基因外显子,对扩增产物进行测序和序列分析,寻找突变位点。结果发现编码晶状体蛋白Βb1的基因(CRTBB1)第4外显子一个等位基因的第457个碱基发生错义突变C>A,形成杂合子,导致其编码蛋白第129位氨基酸由丝氨酸(S)转变为精氨酸(R),其余外显子的碱基序列与GenBank数据库中的正常序列一致。结论该家系的核性先天性白内障是由于CRYBB1基因外显子4的错义突变C>A引起。  相似文献   

19.
背景先天性白内障约1/3的病例是由遗传所致,已发现遗传性白内障有着极为明显的遗传异质性,了解先天性白内障的致病基因对其基因治疗极为重要。目的分析一个具有常染色体显性遗传特点的先天性白内障家系的临床表型特征,进行已知致病基因的筛查定位。方法对遗传性先天性白内障一家系共16名成员眼部进行详细的临床检查,包括6例患者,确定为本家系白内障患者的临床表型。收集其中11名家系成员的血液样本提取DNA,包括3名正常家系成员及其配偶、5例患者。利用连锁分析进行排除定位,并采用Schuelke报道的新方法,只合成普通引物及一种荧光标记的通用引物M13,进行聚合酶链反应(PCR),对连锁区域内的候选基因进行基因序列分析。结果本家系的白内障遗传方式符合常染色体显性遗传特征。基因连锁分析表明,在D22S315得到最高LOD值为1.20,在D16S3068得到LOD值为0.6。CRYBB2基因所有编码区及外显子与内含子交界处未发现基因序列突变。结论本家系初步排除了CRYBB2基因与此家系先天性白内障的相关性。对这个家系的基因定位需要更进一步的全基因组扫描,以发现致病基因在染色体上的可疑区间。连锁分析中进行微卫星位点的PCR扩增时,利用合成荧光标记的通用引物M13,可以显著降低成本,并取得同样的实验结果。  相似文献   

20.
PURPOSE: To map the disease locus in a six-generation, consanguineous Pakistani family with autosomal recessive retinitis pigmentosa (arRP). All affected individuals had pigmentary retinopathy associated with symptoms of night blindness and the loss of peripheral visual fields by the age of 20 years, loss of central vision between the ages of 25 and 30 years, and complete blindness between the ages of 40 and 50 years. METHODS: Genomic DNA from family members was typed for alleles at known polymorphic genetic markers using polymerase chain reaction. Alleles were assigned to individuals, which allowed calculation of LOD scores using the programs Cyrillic (http://www.cyrillicsoftware.com) and MLINK (Cherwell Scientific Publishing LTD:, Oxford, UK). The genes for membrane glycoprotein (M6a) and chloride channel 3 (CLCN3) were analyzed by direct sequencing for mutations. RESULTS: A new locus for arRP (RP29) has been mapped to chromosome 4q32-q34. A maximum two-point LOD score of 3.76 was obtained for the marker D4S415, with no recombination. Two recombination events in the pedigree positioned this locus to a region flanked by markers D4S621 and D4S2417. A putative region of homozygosity by descent was observed between the loci D4S3035 and D4S2417, giving a probable disease interval of 4.6 cM. Mutation screening of two candidate genes, M6a and CLCN3, revealed no disease-associated mutations. CONCLUSIONS: The results suggest that the arRP phenotype maps to a new locus and is due to a mutated gene within the 4q32-q34 chromosomal region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号