首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Culture supernatants from lipopolysaccharide (LPS)-treated murine microglial cells were found to markedly induce the expression of human immunodeficiency virus (HIV)-1 in the chronically infected human promonocytic cell line U1 as detected by measurements of HIV-1 p24 antigen release into U1 culture supernatants. Antibody to tumor necrosis factor (TNF)-α had an inhibitory effect on the induction of virus by microglial cell supernatants. Also, treatment of microglia with pentoxifylline, an inhibitor of TNF-α production, resulted in suppressed amounts of TNF in the supernatants of LPS-treated microglia and in a reduced stimulatory capacity of these supernatants on HIV-1 expression in U1 cells. These findings support the concept that TNF-α production by glial cells plays a pathogenetic role in HIV-1-associated brain disease by promoting the expression of the virus in infected cells.  相似文献   

2.
Summary Using ferritin as a marker of reactive microglia, we demonstrated a close association between proliferation of reactive microglia and expression of human immunodeficiency virus type 1 (HIV-1) in brain tissue from autopsied cases of acquired immunodeficiency syndrome (AIDS). An increased number of ferritin-positive reactive microglia was observed in formalin-fixed paraffin-embedded brain sections from all 13 AIDS cases examined. Similar findings were observed in brain tissue from other neurological diseases (subacute sclerosing penencephalitis, herpes simplex encephalitis and multiple sclerosis). Multinucleated giant cells were found in 7 of the AIDS cases which were also intensely labeled for ferritin. Dual-label immunohistochemistry using anti-ferritin and cell-specific markers showed that ferritin-positive cells were distinct from astrocytes, neurons and endothelia using anti-glial fibrillary acidic protein (anti-GFAP), anti-neurofilament protein and Ulex europaeus agglutinin 1, respectively. In 5 AIDS brains, only ferritin-positive cells were shown to contain HIV-1 gp41 antigen using dual-label immunohistochemistry. In addition, HIV-1 RNA was localized in territin-positive reactive microglia but not in GFAP-positive astrocytes using immunohistochemistry combined with in situ hybridization. Ferritin-positive reactive microglia and multinucleated giant cells were colabeled with the microglial marker, Ricinus communis agglutinin 1 (RCA-1). Howerver, RCA-1 also extensively stained resting microglia only a few of which were colabeled for ferritin. The density of ferritin-positive cells was correlated with the presence of HIV-1 RNA-positive cells in AIDS brain. Thus, ferritin immunoreactivity can be used as an activation marker of microglia in archival paraffin sections and reflects the extent of inflammation in HIV-1-infected brain.Supported in part by NIH Grants RO1 DA04787, RO1 HD26621, PO1 NS25569, the Biopsychosocial Center for the Study of AIDS (NIMH P50 MH 43455), the Department of Veterans Affairs, the Mary Jane Crowe Foundation, the Swedish Society of Medicine (Stockholm, Sweden), and the Multiple Sclerosis Society of Göteborg (Göteborg, Sweden)  相似文献   

3.
The expression of HIV-1 negative factor (nef) has been positively correlated with HIV disease progression [Z. Hanna, D.G. Kay, N. Rebai, A. Guimond, S. Jothy, P. Jocicoeur, Nef harbors a makor determinant of pathogenicity for an AIDS-like disease induced by HIV-1 in transgenic mice. Cell 95 (1998) 163-175]. Nef expression has been detected in HIV infected human brains with neuronal damage [A. Ranki, M. Nyberg, V. Ovod, M. Haltia, I. Elovaara, R. Raininko, H. Haapsalo, K. Krohn, Abundant expression of HIV Nef and Rev proteins in brain astrocytes in associated with dementia, AIDS 9(9) (1995) 1001-1008; Y. Saito, L.R. Sharer, M.G. Epstein, J. Michaels, M. Mintz, M. Londer, K. Golding, B.M. Blumberg, Overexpression of nef as a marker for restricted HIV-1 infection of astrocytes in postmorten paediatric central tissues, Neurology 14 (1994) 474-480]. It is postulated that nef may contribute to the neuronal damage observed in the brain of those with late HIV disease. To test this, the potential toxicity of recombinant nef (from HIV-1 IIIB) was compared to the neurotoxin human tumour necrosis alpha (TNFalpha) on human brain cells in culture. SK-N-SH neuroblastoma, primary human neurons and glial cells were exposed to recombinant nef or TNFalpha protein for 3 days or twice over 6 days. Cell viability was assessed by Trypan Blue, lactate dehydrogenase (LDH) release and MTT assays. Nuclear fragmentation was detected using the Hoechst Blue nuclear dye assay. Both nef and TNFalpha (100 ng/ml) caused a significant 30% reduction of SK-N-SH cell numbers after 3 days exposure (P=0. 001). At this time, exposure to nef caused evident fragmented nuclei in these cultures. Human neuronal cultures had a 32 and 33% decrease in cell number after 6 days exposure to either nef or TNFalpha, respectively (P<0.001). Furthermore, as previously shown [J. He, C.M. DeCastro, G.R. Vandenbark, J. Busciglio, D. Gabuzda, Astrocyte apoptosis induced by HIV-1 transactivation of the c-kit protoonocogene, Proc. Natl. Acad. Sci. 94 (1997) 3954-3959], a 3-day exposure to nef significantly reduced human glial cell number by 25% (P=0.001). Recombinant nef and TNFalpha compromise human neurons in culture. Thus, like other virotoxins, it is shown for the first time that nef may also contribute to neuronal damage that has been reported in dementia in late HIV disease.  相似文献   

4.
5.
Infection with the human immunodeficiency virus (HIV-1) often produces a set of neuropsychiatric dysfunctions which have been termed the AIDS dementia complex. This complex appears due to the infection of brain cells by HIV-1. If so, brain cells might be expected to contain a binding site for the same viral envelope glycoprotein that enables HIV-1 to bind to other cells (e.g. CD4+ T-cells), gp120. The present study shows that the cells of the brain-derived U-138MG, U-373MG, SK-N-MC and SK-N-SH cell lines bind gp120 in an inhibitable fashion. Binding of gp120 to these cells is inhibited by the dyes Aurintricarboxylic acid (ATA) and Evans blue (EB), which are known to inhibit specific gp120 and HIV-1 binding, and block HIV-1 infection, in CD4-expressing cells. Binding is not inhibited by Aurin, a dye related to ATA but lacking its anti-HIV effects. As expected, anti-CD4 antibodies are ineffective in blocking gp120 binding to brain-derived cells. These results suggest that human brain-derived cells possess a specific binding site for gp120 that is not the CD4 antigen.  相似文献   

6.
Brain pericytes are uniquely positioned within the neurovascular unit to provide support to blood brain barrier (BBB) maintenance. Neurologic conditions, such as HIV-1-associated neurocognitive disorder, are associated with BBB compromise due to chronic inflammation. Little is known about pericyte dysfunction during HIV-1 infection. We found decreased expression of pericyte markers in human brains from HIV-1-infected patients (even those on antiretroviral therapy). Using primary human brain pericytes, we assessed expression of pericyte markers (α1-integrin, α-smooth muscle actin, platelet-derived growth factor-B receptor β, CX-43) and found their downregulation after treatment with tumor necrosis factor-α (TNFα) or interleukin-1 β (IL-1β). Pericyte exposure to virus or cytokines resulted in decreased secretion of factors promoting BBB formation (angiopoietin-1, transforming growth factor-β1) and mRNA for basement membrane components. TNFα and IL-1β enhanced expression of adhesion molecules in pericytes paralleling increased monocyte adhesion to pericytes. Monocyte migration across BBB models composed of human brain endothelial cells and pericytes demonstrated a diminished rate in baseline migration compared to constructs composed only of brain endothelial cells. However, exposure to the relevant chemokine, CCL2, enhanced the magnitude of monocyte migration when compared to BBB models composed of brain endothelial cells only. These data suggest an important role of pericytes in BBB regulation in neuroinflammation.  相似文献   

7.
The cellular basis of HIV associated dementia has been correlated with microglial activation and neuronal dysfunction in symptomatic HIV-1 disease. As a cellular model of HIV-1 infection of brain tissue in vitro, we established a stationary human brain aggregate (SHBA) system to compare infection of HIV-1 SF162 (R5 virus) to that of IIIB (X4 virus). Aggregates were analysed by immunohistochemistry, morphometry, flow cytometry and p24 ELISA. SHBAs had a 1 mm(3) size with a mixed cellular composition of 36% neurones, 27% astrocytes, 2% macrophages/microglia and 14% oligodendrocytes. Infection of SHBA's with the R5 HIV-1 SF162 virus led to the expression of HIV-1 p24 antigen in 6% of cells. Infection with this R5 using virus culminated in transient neuronal damage and a decrease in mitotically active progenitor cells within aggregates. Infection with X4 using HIV-1 IIIB was associated with astrocytosis and neurotoxicity. We propose that: (1) the pattern of cellular damage elicited by HIV-1 infection of brain tissue in vitro depends on virus subtype as determined by its preferential use of R5 or X4 chemokine receptors for entry into cells; (2) SHBAs are a reliable and readily established model of the cellular complexity of human brain tissue in vitro.  相似文献   

8.
The CX(3)C chemokine fractalkine was found to be up-regulated in the brain during inflammatory processes. In this study, we tried to assess the role of fractalkine in HIV-1-associated dementia. Fractalkine expression is up-regulated in the brains of AIDS patients with HAD. Fractalkine immunoreactivity was mainly detected in astrocytes. In addition, fractalkine expression was found to be up-regulated in cocultures of astrocytes and HIV-infected macrophages. This up-regulation was dependent on cell-cell contact. We propose that fractalkine produced during interactions between astrocytes and HIV-infected macrophages plays a role in HAD by regulating the trafficking of monocytic cells in the brain parenchyma.  相似文献   

9.
Ronaldson PT  Persidsky Y  Bendayan R 《Glia》2008,56(16):1711-1735
Limited drug penetration is an obstacle that is often encountered in the treatment of CNS diseases including human immunodeficiency virus type-1 (HIV-1) encephalitis (HIVE). One mechanism that may contribute to this phenomenon is the expression of ATP-binding cassette (ABC) drug efflux transporters [i.e., P-glycoprotein (P-gp), Multidrug Resistance-Associated Proteins (MRP/Mrp), Breast Cancer Resistance Protein (BCRP; also known as ABCG2)] at the primary brain barrier sites (i.e., blood-brain barrier, blood-cerebrospinal fluid barrier). In addition, it has been recently proposed that glial cells may also contribute to the low accumulation and altered distribution of therapeutic compounds in the CNS by functioning as a "secondary barrier." In fact, a few studies have shown that ABC transporters are both expressed and functional in glial cells. Furthermore, commonly prescribed antiretroviral compounds (ARVs), particularly HIV-1 protease inhibitors, are substrates for many of these same transport proteins suggesting that ABC transporters in glial cells may contribute to the overall export of these drugs from the brain. HIV-1 infection is a chronic condition characterized by long-term exposure of brain cellular compartments to HIV-1 virions and soluble viral proteins. In addition, treatment of HIV-1 infection involves long-term administration of a multiplicity of ARVs (i.e., HAART regimens). Indeed, pathological factors associated with HIV-1 infection and/or pharmacological factors related to treatment may alter the expression of ABC transporters and lead to changes in CNS ARV uptake and/or distribution. This review summarizes recent knowledge in this area and emphasizes the role that glial ABC transporters may play in regulating ARV transport.  相似文献   

10.
Brain endothelial hemostasis regulation by pericytes.   总被引:1,自引:0,他引:1  
Pericytes are known to regulate brain capillary endothelial functions. The purpose of this study was to define the hemostatic regulatory role of human brain pericytes. We used blood-brain barrier models consisting of human pericytes grown on transwell membrane inserts and cocultured with human brain microvascular endothelial cells (HBEC), or pericytes grown in direct contact with HBEC. When grown in cocultures in which pericytes were physically separated from endothelial cells, pericytes induced significant changes in endothelial tissue plasminogen activator (tPA) messenger ribonucleic acid (mRNA) and protein: tPA mRNA level was decreased in pericyte cocultures (52%+/-25% of monocultures, P < 0.05) and tPA protein level was decreased (66%+/-23% of monocultures, P < 0.05). Pericyte effects on endothelial fibrinolysis were enhanced when the two cell types were cocultured in direct contact, with tPA protein reduced in cocultures compared with monocultures (25%+/-15% of monocultures, P < 0.05). Endotoxin (lipopolysaccharide (LPS)), used as a standardized stimulus to define brain-specific inflammation-induced change, amplified pericyte-induced enhanced release of the tPA inhibitor plasminogen activator inhibitor-1 (PAI-1); the latter was released by endothelial cells first cocultured with pericytes and then incubated with LPS in the absence of pericytes. Pericytes (in contrast to endothelial cells and astrocytes) were found to be the principal in vitro source of the serpin protease nexin-1 (PN-1), known to have primarily antithrombin effects. These in vitro findings suggest that pericytes negatively regulate brain endothelial cell fibrinolysis, while pericyte expression of PN-1 may provide endogenous anticoagulant activity.  相似文献   

11.
There is increasing evidence that opiates accelerate the pathogenesis and progression of acquired immunodeficiency syndrome (AIDS), as well as the incidence of human immunodeficiency virus (HIV) encephalitis (HIVE), a condition characterized by inflammation, leukocyte infiltration, and microglial activation. The mechanisms, by which the HIV-1 transactivating protein Tat and opioids exacerbate microglial activation, however, are not fully understood. In the current study, we explored the effects of morphine and HIV-1 Tat1–72 on the activation of mouse BV-2 microglial cells and primary mouse microglia. Both morphine and Tat exposure caused up-regulation of the chemokine receptor CCR5, an effect blocked by the opioid receptor antagonist naltrexone. Morphine in combination with Tat also induced morphological changes in the BV-2 microglia from a quiescent to an activated morphology, with a dramatic increase in the expression of the microglial activation marker CD11b, as compared with cells exposed to either agent alone. In addition, the mRNA expression of inducible nitric oxide synthase (iNOS), CD40 ligand, Interferon-gamma-inducible protein 10 (IP-10), and the proinflammatory cytokines tumor necrosis factor alpha (TNFα), interleukin (IL)-1β, and IL-6, which were elevated with Tat alone, were dramatically enhanced with Tat in the presence of morphine. In summary, these findings shed light on the cooperative effects of morphine and HIV-1 Tat on both microglial activation and HIV coreceptor up-regulation, effects that could result in exacerbated neuropathogenesis.  相似文献   

12.
The Rho signaling has an essential function in human immunodeficiency virus (HIV)-1-mediated disruption of the integrity of the blood–brain barrier (BBB). However, it is unknown how membrane domains, such as lipid rafts, can influence HIV-1-mediated activation of the Rho pathway and how these processes can affect the expression of the efflux transporters at the BBB level. This study is focused on the function of HIV-1 protein Tat in activation of the Rho signaling and upregulation of P-glycoprotein (P-gp) in human brain endothelial cells. Treatment with Tat markedly elevated GTP-RhoA levels and the potential downstream effectors, such as myosin phosphatase target subunit 1 and myosin light chain. In addition, Tat upregulated expression and promoter activity of P-gp as well as its efflux function. Inhibition of the Rho signaling cascade effectively blocked P-gp overexpression at the level of promoter activity. Disruption of lipid rafts by depletion of membrane cholesterol by methyl-beta-cyclodextrin, but not caveolin-1 silencing, also abolished Tat-mediated RhoA activation and P-gp upregulation. The present data indicate the critical function of intact lipid rafts and the Rho signaling in HIV-1-mediated upregulation of P-gp and potential development of drug resistance in brain endothelial cells.  相似文献   

13.
Direct and productive infection of neurons in vivo is still a matter of debate, although in vitro experiments have demonstrated that immature neuronal cells can be productively infected by various human immunodeficiency virus (HIV) strains. To address this controversy we have analyzed, using light microscopy and in situ hybridization (ISH), HIV-1 infected cells in brain tissue from four pediatric cases of HIV-1-associated encephalopathy (EP). HIV-1 RNA-expressing cells—therefore, actively infected cells—were detected by ISH in different amounts in all brain specimens from the four children. They mainly correspond to glial cells. However, in two of the four children, who had severe progressive EP, but not in the other two, who had the static form, HIV-1-infected neurons were clearly observed in the cortical brain samples. These results provide initial evidence that HIV-1 can actively infect neurons in vivo in children and show a cortical involvement of HIV brain infection in clear correlation with the clinical EP symptoms.  相似文献   

14.
Our laboratories previously demonstrated that expression of a single chain variable antibody fragment (SFv), anti-CXCR4 SFv, in human lymphoid cells suppresses surface display of the chemokine co-receptor CXCR4 and inhibits infectious entry of human immunodeficiency virus type I (HIV-1). We now sought to extend these results to two types of central nervous system (CNS) cells, primary isolated human brain microvascular endothelial cells (MVECs), and post-mitotic differentiated human neurons, both of which normally express significant levels of CXCR4. The anti-CXCR4 SFv expression construct was delivered using an HIV-1-based vector, and control cells received LacZ-expressing viral particles. Upon intracellular expression of the anti-CXCR4 SFv, immunostaining revealed a marked reduction in surface display of CXCR4 on both cell types. Consequently, post-mitotic neurons expressing the anti-CXCR4 SFv were significantly protected from HIV-1 infection, as measured by HIV-1 p24 antigen production, and partial protection was observed in human brain MVECs. The ability to selectively down-modulate the surface expression of CXCR4 in CNS cells may allow for the development of clinical molecular therapy strategies against HIV-1-related neurodegenerative disorders and neuroinvasion.  相似文献   

15.
16.
Si Q  Cosenza M  Zhao ML  Goldstein H  Lee SC 《Glia》2002,39(2):174-183
Significant numbers of patients with acquired immunodeficiency syndrome (AIDS) develop CNS infection primarily in macrophages and microglial cells. Therefore, the regulation of human immunodeficiency virus type 1 (HIV-1) infection and activation of the brain mononuclear phagocytes subsequent to infection are important areas of investigation. In the current report, we studied the role of granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage-CSF (M-CSF) in the expression of antiviral beta-chemokines and HIV-1 p24 in cultures of primary human fetal microglia. We found that stimulation with GM-CSF or M-CSF induced macrophage inflammatory proteins (MIP-1alpha and MIP-1beta) and augmented RANTES expression, after HIV-1 infection of microglia. This was not due to the effect of GM-CSF on viral expression because GM-CSF was neither necessary nor stimulatory for viral infection, nor did GM-CSF enhance the expression of env-pseudotyped reporter viruses. Blocking GM-CSF-induced microglial proliferation by nocodazole had no effect on beta-chemokine or p24 expression. The functional significance of the GM-CSF-induced beta-chemokines was suggested by the finding that, in the presence of GM-CSF, exogenous beta-chemokines lost their anti-HIV-1 effects. We further show that although HIV-1-infected microglia produced M-CSF, they failed to produce GM-CSF. In vivo, GM-CSF expression was localized to activated astrocytes and some inflammatory cells in HIV-1 encephalitis, suggesting paracrine activation of microglia through GM-CSF. Our results demonstrate a complex interplay between CSFs, chemokines, and virus in microglial cells and may have bearing on the interpretation of data derived in vivo and in vitro.  相似文献   

17.
Macrophage-colony stimulating factor (M-CSF) is detectable in the cerebrospinal fluid (SF) of HIV-1-infected patients, and may be produced intrathecally by both reactive astrocytes and cells of the monocyte/macrophage (MO) lineage, microglial cells included. Since MO constitute the target cells for HIV-1 in the central nervous system (CNS), the culture conditions that induce M-CSF production by HIV-1-infected MO were studied. MO cultures infected with supernatants (SN) of HIV-1-infected peripheral blood lymphocyte (PBL) cultures produced only trace or undetectable amounts of M-CSF. Co-cultures of MO with normal PBL released high amounts of M-CSF, suggesting that viable cell-to-cell interactions are required to induce cytokine production by MO and/or PBL. M-CSF production was markedly increased in the MO co-cultured with HIV-1-infected PBL, thus implying that HIV-1 induces increased cytokine synthesis/release by MO and/or PBL only when cell membrane-associated messages are operating. Intracerebrally synthesized M-CSF by HIV-1-infected MO may play a role in promoting viral replication/spread within the CNS, and inducing brain damage by stimulating microglia proliferation, and neurotoxic factor release by these cells.  相似文献   

18.
Dementia is a common complication of AIDS which is associated with human immunodeficiency virus type 1 (HIV-1) infection of brain macrophages and microglia. Recent studies have shown that astrocytes are also infected in the brain but HIV-1 replication in these cells is restricted. To determine virus specificity of this restriction we tested the expression of 15 HIV-1 molecular clones in primary human fetal astrocytes by infection and DNA transfection. Infection with cell-free viruses was poorly productive and revealed no clone-specific differences. In contrast, transfected cells produced transiently high levels of HIV-1 p24 core antigen, up to 50 nanograms per ml culture supernatant, and nanogram levels of p24 were detected 3-4 weeks after transfection of some viral clones. The average peak expression of HIV-1 in astrocytes varied as a function of viral clone used by a factor of 15 but the differences and the subsequent virus spread did not correlate with the tropism of the viral clones to T cells or macrophages. Functional vif, vpu, and vpr genes were dispensable for virus replication from transfected DNA, but intact nef provided a detectable enhancement of early viral gene expression and promoted maintenance of HIV-1 infection. We conclude that primary astrocytes present no fundamental barriers to moderate expression of different strains of HIV-1 and that the presence of functional Nef is advantageous to virus infection in these cells.  相似文献   

19.
HIV-1 expression in monocytes/macrophages can be controlled by transforming growth factor-beta l (TGF-β1). TGF-β1 is present in astrocytes surrounding HIV-1-infected monocyte/macrophages in brain tissue from patients with AIDS but not from seronegative, normal individuals. We sought to determine whether or not production of TGF-β1 can be directly stimulated by HIV-1 in astrocytes. Astrocytes from neonatal rat cortex grown in primary culture were exposed to HIV-1 virions for 24 h. One day later, TGF-β1 was measured in culture supernatants by a biological assay. HIV-1 caused 1.7-2.1-fold increase in extracellular concentration of TGF-β1. TGF-β1 production also was stimulated by recombinant HIV-1 proteins gp120, p66 and p24. Gpl20 labeled with fluorescein was visualized inside astrocytes and its stimulatory effect was not blocked by antibodies against rat CD4. The effect was not specific to HIV-1 and its proteins, because non-opsonized Latex particles and leucine methyl ester (LME) (known to be phagocytosed and endocytosed, respectively, by astrocytes) also stimulated TGF-β1 production. The effect was inhibited by two inhibitors of the phago/endocytotic pathway, chloroquine and leupeptin. These results may be relevant to the neuropathogenesis of HIV-1 infection.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) is associated with a neuroinflammatory dementia. Cognitive impairment remains a common complication of late-stage HIV-1 infection. Previous studies have shown that entry of HIV-1 into the central nervous system (CNS) occurs soon after infection. For these reasons, it is important to understand how HIV-1 crosses the BBB. We used primary mouse brain microvessel endothelial cell (MBEC) monolayer models to study interactions between brain endothelial cells and radioactively labeled HIV-1 CL4 (131I-HIV-1), which had been rendered noninfectious with aldithiol, and compared to radioactively labeled bovine serum albumin (131I-BSA or 125I-BSA) and detected HIV-1 on MBEC monolayer with electron microscopic analysis. The permeability of the monolayers to HIV-1 was measured by determining the percent material transported (PMT). Luminal to abluminal PMT of 131I-HIV-1 was 4.65 times greater than that of the much smaller 131I-BSA, showing that the MBEC monolayer is more permeable to HIV-1 than to BSA. Electron microscopy showed that HIV-1 was transported through a trans-cellular pathway from luminal side to basolateral space with some virus associated with the nucleus. Unlabeled HIV-1 did not affect the transport of 131I-HIV-1 or break down the MBEC monolayer. Wheatgerm agglutinin (WGA) increased 131I-HIV-1 penetration across the MBEC monolayer, consistent with absorptive endocytosis as the mechanism for HIV-1 penetration. The enhanced transport of HIV-1 was unidirectional, as the abluminal to luminal PMT of 131I-HIV-1 was not different from that of BSA nor enhanced by WGA. Characterization of the radioactivity transported from the luminal to abluminal chamber on Sepharose 4B-200 columns showed the transported radioactivity represented intact virus. MBEC monolayers preloaded from the luminal surface with 131I-HIV-1 showed most of the virus was retained by the endothelial cells, while the remainder was effluxed mainly to the luminal surface. MBEC monolayers preloaded from the abluminal surface with 131I-HIV-1 retained little virus and most of the virus was effluxed mainly to the abluminal surface. In conclusion, cell-free, intact 131I-HIV-1 crossed brain endothelial cell monolayers unidirectionally in the luminal to abluminal direction through an adsorptive endocytotic pathway. HIV-1 taken up from luminal side by monolayers of brain endothelial cells was mainly released to the luminal side. HIV-1 efflux mechanisms are different from influx mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号