首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Du  XX; Scott  D; Yang  ZX; Cooper  R; Xiao  XL; Williams  DA 《Blood》1995,86(1):128-134
Interleukin-11 (IL-11) is a bone marrow microenvironment-derived growth factor with pleiotropic effects on a variety of hematopoietic cells. To more accurately assess the effects of IL-11 on stem and progenitor compartments within the hematopoietic microenvironment (HM), we added recombinant human (rh) IL-11 to human and murine long-term bone marrow cultures (LTMC) and analyzed primitive (high proliferative potential- colony forming cells [HPP-CFC], long-term culture-initiating cells [LTC- IC], and long-term reconstituting stem cells) and progenitor (day 12 colony forming unit-spleen [CFU-S12], colony forming unit-megakaryocyte [CFU-Mk] and colony forming unit-granulocyte/macrophage [CFU-GM]) compartments throughout the duration of the cultures. rhIL-11 (100 ng/mL) added twice weekly resulted in significantly increased nonadherent (NA) cellularity, CFU-GM, and CFU-Mk production in human LTMC. Addition of rhIL-11 to murine LTMC was associated with a 5- to 40- fold increase in CFU-GM and a four- to 20-fold increase in day 12 CFU-S in NA cells. However, IL-11 had no significant effect on total HPP-CFC concentration and decreased the size of the more primitive stem/progenitor compartment as evidenced by both decreased LTC-IC frequency in human LTMC and decreased frequency of long-term reconstituting stem cells in murine LTMC. These data suggest that IL-11 may increase commitment of stem cells into a multipotential progenitor compartment.  相似文献   

2.
An elucidation of the interaction between the bone marrow microenvironment and hematopoietic stem cells is critical to the understanding of the molecular basis of stem cell self renewal and differentiation. This interaction is dependent, at least in part, on direct cell to cell contact or cellular adhesion to extracellular matrix proteins. Long-term bone marrow cultures (LTMC) provide an appropriate microenvironment for maintenance of primitive hematopoietic stem cells and a means of analyzing this stem cell-stromal cell interaction in vitro. Although LTMC have been successfully generated from murine and human bone marrow, only limited success has been reported in a primate system. In addition, few permanent stromal cell lines are available from nonmurine bone marrow. Because the primate has become a useful model for large animal bone marrow transplant studies and, more specifically, retroviral-mediated gene transfer analysis, we have generated immortalized bone marrow stromal cell lines from primate bone marrow using gene transfer of the Simian virus large T (SV40 LT) antigen. At least one stromal cell line has demonstrated the capacity to maintain early hematopoietic cells in long-term cultures for up to 4 weeks as measured by in vitro progenitor assays. Studies were undertaken to characterize the products of extracellular matrix biosynthesis and growth factor synthesis of this cell line, designated PU-34. In contrast to most murine bone marrow-derived stromal cell lines capable of supporting hematopoiesis in vitro that have been examined, the extracellular matrix produced by this primate cell line includes collagen types I, laminin. Growth factor production analyzed through RNA blot analysis, bone marrow cell culture data, and factor-dependent cell line proliferation assays includes interleukin-6 (IL-6), IL-7, granulocyte-macrophage colony-stimulating factor (GM-CSF), G-CSF, M-CSF, leukemia inhibitory factor, and a novel cytokine designated IL-11. This immortalized primate bone marrow stromal cell line may be useful in maintaining early progenitor cells for experimental manipulation without the loss of reconstituting capacity and as a potential source of novel hematopoietic growth factors.  相似文献   

3.
The hematopoietic system in patients with aplastic anemia (AA) shows both quantitative and qualitative deficiencies, i.e., reduced numbers of hematopoietic progenitor cells (HPC) and impaired HPC proliferation in long-term marrow cultures (LTMC). Since recombinant human granulocyte macrophage-colony stimulating factor (rhGM-CSF) has been shown to be a potent stimulator of normal hematopoiesis, both in vivo and in vitro, in the present study we wanted to assess the possibility of stimulating hematopoiesis in LTMC from 17 patients with AA, by weekly addition of rhGM-CSF (10 ng/ml). In LTMC from 11 patients (group of responders), rhGM-CSF induced a significant increase (4.8-fold, compared with untreated cultures) in the levels of myeloid progenitor cells; in contrast, in six patients (group of nonresponders), myeloid progenitors were refractory to this cytokine. In the group of responders, rhGM-CSF also induced a pronounced increment in the levels of nonadherent and adherent cells (5.99- and 5.18-fold, respectively, compared with untreated cultures). Among the different myelopoietic lineages, rhGM-CSF preferentially stimulated the macrophagic lineage; this was evident both at the progenitor and mature cell levels. Interestingly, the effect of rhGM-CSF in LTMC from AA patients was only transient. Indeed, the effects mentioned above were observed only during the first three weeks of culture; afterwards, myeloid progenitor and nonadherent cell levels in treated cultures declined, practically reaching the levels observed in untreated cultures. At the moment, we do not know whether this transient stimulatory effect is due to the production of inhibitory cytokines, by macrophages generated in response to rhGM-CSF, or to the exhaustion of the HPC pool in AA cultures. In all 17 patients, rhGM-CSF had no effect on the kinetics of erythroid or multipotent progenitor cells. These results are in keeping with clinical studies in which it has been observed that most AA patients treated with rhGM-CSF show increments in circulating monocytes and granulocytes, as well as in bone marrow cellularity. However, little or no effect is observed on erythropoiesis. The actual mechanisms involved in the in vitro effects of rhGM-CSF on myeloid progenitor cells from AA bone marrow are still not completely understood. Future studies on this issue should be encouraged, since they may help to understand the in vivo (clinical) effects of this cytokine.  相似文献   

4.
It has recently been reported that human thrombopoietin (TPO) acts on early hematopoietic progenitor cells. Consequently, we investigated the effects of TPO on murine hematopoietic progenitor cells using lineage negative (Lin-), Sca-1+, c-Kit+ marrow cells from 5-fluorouracil-treated mice. One hundred enriched cells were cultured in suspension with various single cytokines for 5 days. When cultured with the single cytokines as stem cell factor (SCF), TPO, or interleukin (IL)-3, these cells were maintained or had increased by day 5, whereas only a few cells survived in cultures with granulocyte colony stimulating factor, IL-11, or IL-6. We extended the study in serum-free or serum-containing suspension cultures with SCF or TPO. Anti-TPO antibodies did not inhibit the effects of SCF on enriched cells but did inhibit the effects of TPO on those cells. We further examined the effects of TPO, SCF, and IL-3 on other populations of murine hematopoietic progenitor cells. Either TPO or SCF as a single cytokine could maintain murine Lin-, Sca-1+, c-Kit+, CD34- marrow cells, which are the most dormant cells. In addition, IL-3 increased Lin-, Sca-1-, c-Kit+ cells more than did SCF and TPO but did not stimulate Lin-, Sca-1+, c-Kit+, CD34- cells more. These results indicate that TPO as well as SCF may be key regulators in the proliferation of murine hematopoietic early progenitor cells.  相似文献   

5.
Rusten  LS; Lyman  SD; Veiby  OP; Jacobsen  SE 《Blood》1996,87(4):1317-1325
The present studies investigated the effects of the recently cloned flt3 ligand (FL) on the in vitro growth and differentiation of primitive and committed subsets of human CD34+ bone marrow (BM) progenitor cells. FL alone was a weak growth stimulator of CD34+ BM cells, but synergistically and directly enhanced colony formation in combination with interleukin (IL) 3, granulocyte colony-stimulating factor (G-CSF), CSF-1, granulocyte macrophage (GM) CSF stem cell factor (SCF), and IL-6. FL and SCF were equally effective in stimulating colony formation in combination with IL-3. However, the tri-factor combination of FL + IL-3 + SCF stimulated 2.3-fold and 2.5-fold more colonies than FL + IL-3 and SCF + IL-3, respectively. These additional recruited progenitors appeared to be predominantly located in a primitive (CD71-) subset of the CD34+ progenitors, as 4.5-fold more colonies were formed by CD34+CD71- cells in response to FL + IL-3 + SCF than to FL + IL-3 or SCF + IL-3. Similar findings were observed in serum-containing and serum-deprived cultures. Whereas FL did not enhance burst-forming unit-erythroid (BFU-E) colony formation of CD34+ BM cells in the presence of serum, a low number of BFU-E colonies were formed in response to FL plus erythropoietin (Epo) under serum-deprived conditions. In addition, FL both in serum-containing and serum-deprived cultures stimulated colony formation of more committed myeloid progenitors in CD34+CD71+ BM cells. Thus, FL potently stimulates the growth of primitive and more committed human BM progenitor cells.  相似文献   

6.
The continued retrieval of progenitor cells (CFU-GEMM, BFU-E, CFU-E, CFU-GM) from human long-term marrow cultures (LTMC) is not uncommonly used as evidence that proliferation and differentiation are occurring in more primitive hematopoietic stem cells (HSC) in these cultures. Alternatively, the continued presence of progenitors in LTMC could be the result of survival and/or limited self-renewal of progenitor cells present when the culture was initiated, and such progenitors would have little relevance to the parent HSC. The following studies were designed to determine the relative contributions of precursors of progenitor cells to the total progenitor cells present in LTMC using a two-stage regeneration model. The adherent layer in LTMC was established over 3 weeks, irradiated (875 rad) to permanently eliminate resident hematopoietic cells, and recharged with autologous cryo-preserved marrow that was either treated or not treated (control) with 4-hydroperoxycyclophosphamide (4-HC, 100 micrograms/ml for 30 min). The 4-HC-treated marrow contained no progenitor cells, yet based on clinical autologous bone marrow transplant experience, has intact HSC. Within 1-3 weeks, progenitor cells reappeared in the irradiated LTMC recharged with 4-HC-treated marrow, and were preferentially located in the adherent layer. By 2-6 weeks, the number of progenitor in the adherent layer of LTMC recharged with 4-HC marrow was equivalent to control LTMC. The progenitors regenerating in the irradiated LTMC recharged with 4-HC-treated marrow appear to originate from precursors of progenitor cells, perhaps HSC. We propose this model may be useful in elucidating cellular and molecular correlates of progenitor cell regeneration from precursors.  相似文献   

7.
We have characterized the proliferation kinetics of hematopoietic cells in long-term marrow cultures (LTMC) from five normal children and seven children with congenital bone marrow failure (four with Fanconi anemia [FA] and three with congenital pure red cell aplasia [PRCA]). Total nonadherent and adherent cells, as well as nonadherent progenitors, were determined weekly in the presence or in the absence of rhGM-CSF (10 ng/ml) or rhEPO (3 U/ml). As compared to normal LTMC, hematopoiesis was drastically reduced in cultures from FA patients. Myeloid and erythroid progenitor cells reached undetectable levels after only 3 and 1 weeks of culture, respectively. This was observed even in cultures supplemented with rhGM-CSF, in which no response to this cytokine occurred. In LTMC from PRCA children, the growth of erythroid and multipotent progenitors was also drastically reduced. Myelopoiesis, on the other hand, showed normal levels during the first three weeks of culture; however, from week 4, there was a significant decrease in the levels of both progenitor and mature cells, reaching undetectable levels several weeks before normal cells did. Response to rhGM-CSF and rhEPO was transient and deficient. Our results suggest that in FA, alterations at the level of primitive progenitor cells are so severe that myeloid, erythroid and multipotent progenitors are unable to proliferate in LTMC, even in the presence of rhGM-CSF. In patients with PRCA the erythroid arm of hematopoiesis is preferentially affected and addition of rhGM-CSF and/or rhEPO to these cultures had little or no effect on erythroid cell production. Interestingly, myelopoiesis in this culture system was deficient as well and response to rhGM-CSF was defective, suggesting that the myeloid lineage is also altered in congenital PRCA.  相似文献   

8.
In spite of their ability to support myelopoiesis for several months, human long-term marrow cultures (LTMC) are unable to sustain the production of mature erythroid cells for greater than 4 weeks. Because this preference correlates with the presence of myeloid growth factors and possible absence of erythroid factors in LTMC, we studied the effects of the erythroid growth and differentiation factor erythropoietin (Epo) on both erythropoiesis and myelopoiesis in human LTMC. Either natural or recombinant Epo was added weekly to LTMC for 10 weeks, and total cell number, numbers of hemopoietic progenitors (mixed lineage colony-forming units, CFU-MIX; erythroid burst-forming units, BFU-E; erythroid CFU, CFU-E; granulocyte-macrophage CFU (CFU-GM); granulocyte CFU, CFU-G; and macrophage CFU, CFU-M), erythroblasts (early and late), granulocytes, and macrophages were quantitated separately in the adherent and nonadherent layers of the cultures. In the absence of Epo, mature erythroid cells disappeared within the first 3-4 weeks, whereas in cultures supplemented with Epo, erythropoiesis was supported for up to 8 weeks. Results indicate that erythroid maturation is blocked at the BFU-E stage and that exogenous Epo may act on a mature subpopulation of BFU-E located in the nonadherent fraction of the cultures, promoting its maturation into CFU-E, which in turn develop into erythroblasts. However, despite Epo supplementation, erythropoiesis was not restored to in vivo proportions, suggesting that additional factors or conditions necessary for erythropoiesis are lacking in LTMC. Interestingly, we found that exogenous Epo reduced the numbers of presumably more mature (nonadherent) myeloid CFU (CFU-C), granulocytes, and macrophages compared to controls and did not alter the levels of any of the most primitive hemopoietic progenitors measured (CFU-MIX, adherent BFU-E, and adherent CFU-C). Thus the data show that exogenous Epo modulates hemopoiesis in human LTMC, enhancing erythropoiesis and suppressing myelopoiesis, but that its effects appear limited to modulating levels of the nonadherent (more mature) progenitors, leaving the numbers of the adherent (immature) progenitor cells unchanged.  相似文献   

9.
INTRODUCTION: We compared the effects of the early-acting growth factors (GF), Flt-3 ligand (FL), c-Kit ligand (KL), and leukemia inhibitory factor (LIF), and the late-acting GF, granulocyte-colony stimulating factor (G-CSF) and megakaryocyte growth and development factor (MGDF), added alone in human long-term marrow culture (LTMC). MATERIALS AND METHODS: The GF were used in primary cultures of mononuclear cells (MNC) and in cocultures of CD34+ cells on murine preestablished MS-5 stromal layers. GF activity was assessed as nonadherent and adherent progenitor cell production and cobblestone area formation at week 5. RESULTS: In this system, only FL, KL, and MGDF significantly stimulated early stages of hematopoiesis, whereas only G-CSF stimulated the proliferation of mature progenitor cells within the granulo-monocyte lineage and no effect was observed with LIF. FL displayed the strongest activity, and MGDF was more efficient than KL, both in primary cultures of MNC and in cocultures of CD34+ cells. However, the stimulatory effects of these GF used alone were dependent on the presence of a stromal layer. CONCLUSION: These LTMC data emphasize the particular roles for FL and MGDF in the stimulation of primitive hematopoiesis.  相似文献   

10.
Jacobsen  SE; Veiby  OP; Myklebust  J; Okkenhaug  C; Lyman  SD 《Blood》1996,87(12):5016-5026
The recently cloned flt3 ligand (FL) stimulates the growth of primitive hematopoietic progenitor cells through synergistic interactions with multiple other cytokines. The present study is the first demonstrating cytokines capable of inhibiting FL-stimulated hematopoietic cell growth. Tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta 1 (TGF-beta l) potently inhibited the clonal growth of murine Lin-Sca-l+ bone marrow progenitors stimulated by FL alone or in combination with granulocyte colony-stimulating factor (G-CSF), stem cell factor (SCF), interleukin (IL)-3, IL-6, IL-11, or IL-12. TGF-beta 1 inhibited more than 96% of the myeloid colony formation in response to these cytokine combinations, whereas TNF-alpha reduced the number of colonies by 58% to 96% depending on the cytokine by which FL was combined. In addition, both TNF-alpha and TGF-beta 1 inhibited more than 90% of B220+ cell production from B220- bone marrow cells stimulated by FL + IL-7. The effects of TNF-alpha and TGF-beta 1 appeared to be due to a direct effect and on the early progenitors because the inhibition was observed at the single cell level, and because delayed addition of the two inhibitors for only 48 hours dramatically reduced their inhibitory effects. A neutralizing anti-TGF- beta antibody showed the presence of endogenous TGF-beta in the cultures and potently enhanced the ability of FL to stimulate progenitor cell growth in the absence of other cytokines. Agonistic antibodies specifically activating the p75 TNF receptors were more efficient than wild type murine TNF-alpha in signaling growth inhibition of Lin-Sca-l+ progenitor cells, whereas the p55 agonist had less effect than murine TNF-alpha. Finally, TGF-beta increased the number of FL + IL-11-stimulated Lin-Sca-1+ cells in the G1 phase of the cell cycle with 76%, whereas TNF-alpha only had a marginal effect on cell cycle distribution. Thus, TGF-beta, TNF-alpha, and p75 TNF receptor agonists are potent direct inhibitors of FL-stimulated progenitor cell growth in vitro.  相似文献   

11.
Interleukin 7 (IL-7) stimulates the proliferation of pre-B cells from long-term murine lymphoid cultures and normal bone marrow. In addition, IL-7 stimulates the proliferation of murine T cells, including fetal and adult thymocytes as well as peripheral T cells. Flow cytometry and cell enumeration analyses were carried out on light-density human bone marrow cells incubated in the presence or absence of IL-7. The data showed no evidence for a proliferative effect of IL-7 on B-lineage cells expressing CD24 or on myeloid cells expressing CD15; however, IL-7 did stimulate the growth of T cells expressing CD3. After 16 days of stimulation the number of CD3+ cells in marrow cultures increased 350% in the presence of IL-7. In contrast, cultures incubated in the absence of IL-7 showed a 50% decrease in the number of T cells, with a preponderance of myeloid lineage cells. Flow cytometry indicated that cells from IL-7-stimulated cultures were mature T cells because they also expressed cell surface antigens for either CD4 or CD8. These studies show that in contrast to the murine system, IL-7 does not appear to stimulate the growth of human pre-B cells from adult human bone marrow. This is consistent with other experiments that suggest that human pro-B cells and not human pre-B cells respond to IL-7. It appears that IL-7 preferentially promotes the growth of T cells from human marrow.  相似文献   

12.
OBJECTIVE: Placenta immunomodulator ferritin (PLIF) is a cloned human chimeric ferritin H chain with a novel non-ferritin C-terminal 48 amino acid sequence (C48). Recombinant PLIF-C48 exhibited cell-mediated immunosuppression. The aim of the current study was to investigate the regulatory effects of native placental ferritin (PLF), recombinant PLIF, and C48 on hematopoiesis of human bone marrow (BM). METHODS: BM mononuclear cells (BM-MNCs) and CD34(+) selected cells were treated in vitro with either PLF, PLIF, or C48 without and in combination with granulocyte (G)-monocyte (M) colony-stimulating factor (GM-CSF) and subjected to hematopoietic progenitor cell assay. Cytokines and chemokines secreted by the treated cells were evaluated in culture supernatant using antibody array assays to determine mechanism of action. RESULTS: In vitro treatment of BM-MNCs with PLF, PLIF, or C48 induced significant growth of myeloid colonies and when mixed with GM-CSF or Granulocyte-Colony Stimulating Factor (G-CSF) exhibited additive enhanced colony forming units-granulocyte monocyte growth. Yet, C48 treatment of selected CD34(+) cells did not yield colony formation and did not affect their response to GM-CSF. Treatment of BM-MNCs with C48 for 48 hours induced secretion of marked levels of GM-CSF, interleukin (IL)-6, IL-1, and IL-10. These cytokines were secreted primarily by C48-treated BM adherent cells and partly by nonadherent cells, whereas the CD34(+) selected cells secreted IL-6 only. CONCLUSION: C48-PLIF enhancement of myelopoiesis resulted from cross talk between BM accessory cells and progenitor cells. The differential PLIF-C48 effects (i.e., myeloid progenitor cell growth and T-cell suppression) are due to their effect on the cytokine-chemokine networks.  相似文献   

13.
There is a long-standing controversy as to whether a single bone marrow (BM)-derived cell can differentiate along both hematopoietic and stromal lineages. Both primitive hematopoietic and stromal progenitor cells in human BM express the CD34 antigen but lack expression of other surface markers, such as CD38. In this study we examined the CD34+, CD38- fraction of human fetal BM by multiparameter fluorescence- activated cell sorting (FACS) analysis and single-cell sorting. CD34+, C38- cells could be divided into HLA-DR+ and HLA-DR- fractions. After single-cell sorting, 59% of the HLA-DR+ cells formed hematopoietic colonies. In contrast, the CD34+, CD38-, HLA-DR- cells were much more heterogeneous with respect to their light scatter properties, expression of other hematopoietic markers (CD10, CD36, CD43, CD49b, CD49d, CD49e, CD50, CD62E, CD90w, CD105, and CD106), and growth properties. Single CD34+, CD38-, HLA-DR- cells sorted into individual culture wells formed either hematopoietic or stromal colonies. The presence or absence of CD50 (ICAM-3) expression distinguished hematopoietic from stromal progenitors within the CD34+, CD38-, HLA-DR- population. The CD50+ fraction had light scatter characteristics and growth properties of hematopoietic progenitor cells. In contrast, the CD50- fraction lacked hematopoietic progenitor activity but contained clonogenic stromal progenitors at a mean frequency of 5%. We tested the hypothesis that cultures derived from single cells with the CD34+, CD38- , HLA-DR- phenotype could differentiate along both a hematopoietic and stromal lineage. The cultures contained a variety of mesenchymal cell types and mononuclear cells that had the morphologic appearance of histiocytes. Immunophenotyping of cells from these cultures indicated a stromal rather than a hematopoietic origin. In addition, the growth of the histiocytic cells was independent of the presence or the absence of hematopoietic growth factors. Based on sorting more than 30,000 single cells with the CD34+, CD38-, HLA-DR- phenotype into individual culture wells, and an analysis of 864 stromal cultures initiated by single CD34+ BM cells, this study does not support the hypothesis of a single common progenitor for both hematopoietic and stromal lineages within human fetal BM.  相似文献   

14.
beta-Glucans stimulate leukocyte anti-infective activity, enhance murine hematopoietic recovery following bone marrow injury and mobilize murine progenitor cells from bone marrow. This study evaluated the in vitro hematopoietic potential of the beta-glucan, PGG-glucan, on human bone marrow mononuclear cells (BMMC) and CD34+ BMMC compared with protein cytokines. In the presence of submaximal concentrations of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF; 0.5 ng/ml), PGG-glucan significantly increased BMMC myeloid colony formation comparable to the increase observed with either interleukin-3 (rhIL-3) or stem cell factor (rhSCF). Moreover, the addition of PGG-glucan to cultures containing GM-CSF + IL-3 or GM-CSF + SCF significantly augmented granulocyte-macrophage colony production above baseline, demonstrating that PGG-glucan acts independently of those early-acting cytokines and can enhance their activity in an additive manner. Anti-PGG-glucan monoclonal antibody specifically abrogated the growth-enhancing effect of added PGG-glucan in a saturable manner and other control carbohydrate polymers failed to affect colony formation. Further, PGG-glucan was not associated with induction of IL-6, GM-CSF production and removal of accessory cells by CD34+ cell isolation did not alter the PGG-glucan effect. These data demonstrate that PGG-glucan acts on committed myeloid progenitors to enhance human hematopoietic activity by a mechanism of direct action independent of IL-3 or SCF and independent of secondary cytokine stimulation.  相似文献   

15.
Long-term bone marrow cultures (LTMC) have provided a useful in vitro system to study stem cell self-renewal and myeloid differentiation. However, standard murine LTMC are devoid of erythroid differentiation within 2 weeks of establishment. In an attempt to develop a model system to study erythropoiesis in vitro, we have used a recombinant retrovirus vector to transfer the erythropoietin cDNA into stromal cells making up the hematopoietic microenvironment of murine LTMC. Three weeks after infection, erythroid differentiation was evident macroscopically, with clumps of hemoglobinized red blood cells present in the infected cultures. Hemoglobinization was confirmed by benzidine staining of nonadherent cells, which showed that up to 70% of nucleated cells were benzidine positive. In combination with LTMC, the use of recombinant retrovirus vectors to transfer growth factor genes may provide useful models to study the interactions of hematopoietic stem cells, hematopoietic microenvironment, and growth factors in vitro.  相似文献   

16.
The authors studied the role that interleukin (IL)-11 plays during the early stages of megakaryocyte (MK) development by investigating its in vitro effects on cell subpopulations enriched for bone marrow primitive progenitor cells and early and late committed progenitor cells. Progenitor subpopulations were isolated from bone marrow of normal or 5-fluorouracil (5FU)-treated mice and separated by sorting based on the surface antigens Sca-1, c-kit, and CD34. Functional analysis of the cell subpopulations, 5FU Lin(-)Sca-1(+)c-kit(+) or normal bone marrow (NBM) Lin(-)Sca-1(+)c-kit(+)CD34(-)cells, indicated that exposure of these cells to recombinant human (rh)IL-11 in combination with steel factor (SF) stimulates the formation of colonies in methylcellulose and their proliferation in single cell-containing liquid cultures. Kinetic studies of MK progenitor generation, in response to SF and rhIL-11, demonstrated that a significant number of the progenitors produced are committed to the MK lineage. RhIL-11 also synergized with both SF and IL-3 to stimulate MK colony growth from NBM Lin(-)Sca-1(+)c-kit(+) cells (early progenitors) and NBM Lin(-)Sca-1(-)c-kit(+) cells (committed late progenitors). In the presence of IL-3, NBM, Lin(-)Sca-1(-)c-kit(+) cells responded more strongly to rhIL-11 than SF. Consistent with these results is the observation that IL-11 receptor alpha chain mRNA is present in all the progenitor cells from which the MKs are derived. This cell culture and RNA analysis suggest that murine bone marrow primitive progenitor cells and early and late progenitor cells are direct targets of rhIL-11 and that rhIL-11 has the potential to promote megakaryocyte development at several very early stages. (Blood, 2000;95:503-509) (Blood. 2000;95:503-509)  相似文献   

17.
Summary. We evaluated progenitor cell proliferation in cultures supplemented by different cytokine combinations in the presence or absence of IL-12. In cultures of low density cells, cytokine combinations including IL-12 were associated to a greater proliferation (up to 6.7 ± 2.5 CFU-GM fold expansion). However, in cultures of purified CD34+ cells the more efficient cytokine combination (147 ± 49 CFU-GM fold expansion) was SCF, IL-3, IL-11 and MlP-la, and the addition of IL-12 did not further enhance expansion of progenitors.
These results indicate that accessory cells, lost in CD34+ cell purification, could be in part responsible for IL-12 effect on progenitor cell proliferation. In CD34+ cell cultures the addition of IL-12 led to CD19 mRNA generation, suggesting that IL-12 acts on haemopoietic cells with both myeloid and lymphoid potential.  相似文献   

18.
Keller  U; Aman  MJ; Derigs  G; Huber  C; Peschel  C 《Blood》1994,84(7):2189-2196
Interleukin-4 (IL-4) has distinct hematopoietic activities, primarily as a costimulant with other cytokines to enhance colony formation of hematopoietic progenitors. We investigated the influence of IL-4 on stromal cell-supported long-term cultures (LTCs) of normal human bone marrow. Addition of IL-4 to LTCs of unseparated bone marrow or highly enriched CD34+ cells resulted in a significant increase of myeloid progenitors in the nonadherent, as well as in the stromal cell-adherent cell populations. In contrast, the total cell number was not influenced by IL-4, suggesting a selective effect on primitive progenitor cells. Cord blood cells or CD34+ bone marrow cells were incubated with stem cell factor (SCF) and/or IL-4 in stromal cell-free cultures. In these experiments, a twofold to fivefold increase of myeloid progenitor cells was observed in the presence of SCF and IL-4 as compared with SCF alone. Preincubation of the stromal cell cultures with IL-4 resulted in an enhanced adherence of CD34+ cells to the stromal layer. Secretion of hematopoietic growth factors produced by the stromal cells, such as granulocyte-macrophage colony-stimulating factor (G-CSF), and IL-1, was inhibited by IL-4. Thus, the increase of hematopoietic progenitors in LTCs, as observed in the presence of IL-4, can be at least partially explained by a costimulation of SCF and IL-4 on primitive progenitor cells and by an enhancement of hematopoietic cells to stroma. The downregulation of CSFs by IL-4 might prevent the expansion of the mature hematopoietic cell compartment.  相似文献   

19.
Cashman  JD; Eaves  AC; Raines  EW; Ross  R; Eaves  CJ 《Blood》1990,75(1):96-101
Long-term marrow cultures (LTMC) allow the proliferation and differentiation of primitive human hematopoietic progenitor cells to be maintained for many weeks in the absence of exogenously provided hematopoietic growth factors. Previous investigations focused on defining various types of cells that are present in this culture system and on measuring the cycling behavior of the different subpopulations of colony-forming cells maintained within it. These studies suggested that mesenchymal stromal elements derived from the input marrow play a key role in regulating the turnover of the most primitive, high- proliferative potential erythroid and granulopoietic colony-forming cells that are found almost exclusively in the adherent layer of LTMC. In this study we show that the re-entry into S-phase of these primitive hematopoietic progenitors that occurs after each weekly medium change is due to an as yet undefined constituent of horse serum, which is absent from fetal calf serum. However, this effect is not unique to the factor present in horse serum. It is also elicited by the addition to LTMC of several well-defined growth regulatory molecules, ie, platelet- derived growth factor (PDGF), interleukin-1 (IL-1), transforming growth factor alpha (TGF-alpha), and IL-2. None of these was able to stimulate hematopoietic colony-forming cells in methylcellulose assays, although all have known actions on mesenchymal cells including, in some cases, the ability to increase production of growth factors that can stimulate primitive high-proliferative potential hematopoietic progenitors in clonogenic assays. Interestingly, a stimulating effect was not obtained after addition of endotoxin to LTMC. TGF-beta, a direct-acting negative regulator that acts selectively on primitive hematopoietic progenitor cells if added to LTMC simultaneously with new medium or IL-1, blocked their stimulating activity. These results suggest a model in which indirect, local modulation of both positive and negative regulatory factors via effects on mesenchymal elements determines the rate of turnover of adjacent populations of very primitive hematopoietic cells that are normally maintained in a quiescent state in vivo.  相似文献   

20.
The generation of murine mast cells is supported by several cytokines, and mast cell lines are frequently established in long-term cultures of normal murine marrow cells. In contrast, growth of human mast cells was initially dependent on coculture with murine fibroblasts. The growth factor produced by murine fibroblasts and required to observe differentiation of human mast cells is attributable in part to stem cell factor (SCF). However, other factors are likely involved. We have previously shown that the combination of SCF and interleukin-3 (IL-3) efficiently sustains proliferation and differentiation of colony- forming cells (CFCs) from pre-CFC enriched from human umbilical cord blood by CD34+ selection. With periodic medium changes and the addition of fresh growth factors, five consecutive cultures of different cord blood samples gave rise to differentiated cells and CFCs for more than 2 months. Although differentiated cells continued to be generated for more than 5 months, CFCs were no longer detectable by day 50 of culture. The cells have the morphology of immature mast cells, are Toluidine blue positive, are karyotypically normal, are CD33+, CD34-, CD45+, c-kit-, and c-fms-, and die in the absence of either SCF or IL- 3. These cells do not form colonies in semisolid culture and are propagated in liquid culture stimulated with SCF and IL-3 at a seeding concentration of no less than 10(4) cells/mL. At refeedings, the cultures contain a high number (> 50%) of dead cells and have a doubling time ranging from 5 to 12 days. This suggests that subsets of the cell population die because of a requirement for a growth factor other than SCF or IL-3. These results indicate that the combination of cord blood progenitor and stem cells, plus a cocktail of growth factors including SCF and IL-3, is capable with high efficiency of giving rise in serum-deprived culture to human mast cells that behave like factor- dependent cell lines. These cells may represent a useful tool for studies of human mast cell differentiation and leukemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号