首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Sclerostin (Scl) is an osteocyte protein that decreases bone formation, and its inhibition by neutralizing antibodies (Scl-Ab) increases bone formation, mass and strength. We investigated the effects of Scl-Ab in mature ovariectomized (OVX) rats with a mechanistic focus on longer-term responses of osteoclasts, osteoblasts and osteocytes. Four-month-old Sprague–Dawley rats had OVX or sham surgery. Two months later, sham controls received sc vehicle while OVX rats received vehicle (OVX-Veh) or Scl-Ab (25 mg/kg) once weekly for 6 or 26 weeks followed by necropsy (n = 12/group). Terminal blood was collected for biochemistry, non-adherent marrow cells were harvested from femurs for ex vivo osteoclast formation assays, and vertebrae and tibiae were collected for dynamic histomorphometry and mRNA analyses. Scl-Ab treatment led to progressively thicker but fewer trabeculae in the vertebra, leading to increased trabecular bone volume and reduced trabecular surfaces. Scl-Ab also increased cortical bone volume in the tibia, via early periosteal expansion and progressive endocortical contraction. Scl-Ab significantly reduced parameters of bone resorption at week 6 relative to OVX-Veh controls, including reduced serum TRACP-5b, reduced capacity of marrow cells to form osteoclasts ex vivo, and > 80% reductions in vertebral trabecular and tibial endocortical eroded surfaces. At week 26, serum TRACP-5b and ex vivo osteoclast formation were no longer reduced in the Scl-Ab group, but eroded surfaces remained > 80% lower than in OVX-Veh controls without evidence for altered skeletal mRNA expression of opg or rankl. Scl-Ab significantly increased parameters of bone formation at week 6 relative to OVX-Veh controls, including increases in serum P1NP and osteocalcin, and increased trabecular, endocortical and periosteal bone formation rates (BFRs). At week 26, surface-referent trabecular BFR remained significantly increased in the Scl-Ab group versus OVX-Veh controls, but after adjusting for a reduced extent of trabecular surfaces, overall (referent-independent) trabecular BFR was no longer significantly elevated. Similarly, serum P1NP and osteocalcin were no longer significantly increased in the Scl-Ab group at week 26. Tibial endocortical and periosteal BFR were increased at week 6 in the Scl-Ab group versus OVX-Veh controls, while at week 26 only endocortical BFR remained increased. The Scl-Ab group exhibited significant increments in skeletal mRNA expression of several osteocyte genes, with sost showing the greatest induction in both the tibia and vertebra. We propose that Scl-Ab administration, and/or the gains in bone volume that result, may have increased osteocytic expression of Scl as a possible means of regulating gains in bone mass.  相似文献   

3.
Glucocorticoids have a beneficial anti-inflammatory and immunosuppressive effect, but their use is associated with decreased bone formation, bone mass and bone quality, resulting in an elevated fracture risk. Exercise and sclerostin antibody (Scl-Ab) administration have both been shown to increase bone formation and bone mass, therefore the ability of these treatments to inhibit glucocorticoid-induced osteopenia alone or in combination were assessed in a rodent model. Adult (4 months-old) male Wistar rats were allocated to a control group (C) or one of 4 groups injected subcutaneously with methylprednisolone (5 mg/kg/day, 5 days/week). Methylprednisolone treated rats were injected subcutaneously 2 days/week with vehicle (M) or Scl-Ab-VI (M + S: 25 mg/kg/day) and were submitted or not to treadmill interval training exercise (1 h/day, 5 days/week) for 9 weeks (M + E, M + E + S). Methylprednisolone treatment increased % fat mass and % apoptotic osteocytes, reduced whole body and femoral bone mineral content (BMC), reduced femoral bone mineral density (BMD) and osteocyte lacunae occupancy. This effect was associated with lower trabecular bone volume (BV/TV) at the distal femur. Exercise increased BV/TV, osteocyte lacunae occupancy, while reducing fat mass, the bone resorption marker NTx, and osteocyte apoptosis. Exercise did not affect BMC or cortical microarchitectural parameters. Scl-Ab increased the bone formation marker osteocalcin and prevented the deleterious effects of M on bone mass, further increasing BMC, BMD and BV/TV to levels above the C group. Scl-Ab increased femoral cortical bone parameters at distal part and midshaft. Scl-Ab prevented the decrease in osteocyte lacunae occupancy and the increase in osteocyte apoptosis induced by M. The addition of exercise to Scl-Ab treatment did not result in additional improvements in bone mass or bone strength parameters. These data suggest that although our exercise regimen did prevent some of the bone deleterious effects of glucocorticoid treatment, particularly in trabecular bone volume and osteocyte apoptosis, Scl-Ab treatment resulted in marked improvements in bone mass across the skeleton and in osteocyte viability, resulting in decreased bone fragility.  相似文献   

4.
This study was aimed to investigate the effects of Parathyroid hormone (PTH) and alendronate (ALN) on stress fracture repair. Stress fractures were induced in the ulnae of female adult rats. Animals were treated daily with vehicle, PTH (40 µg/kg) or alendronate (2 µg/kg), respectively. Bone mineral content (BMC) and bone mineral density (BMD) of bilateral ulnae were measured at two, four and eight weeks following induction of stress fracture. Histology at the ulna midshaft was undertaken at 2 and 4 weeks and mechanical testing was done at 8 weeks after stress fracture. PTH increased BMC significantly by 7% at 4 weeks and BMD and BMC significantly by 10% and 7% at 8 weeks compared to the control. Alendronate did not change BMD or BMC in comparison with the control. PTH significantly stimulated bone formation by 114% at 2 weeks, increased intracortical resorption area by 23% at 4 weeks, and enhanced the ultimate force of the affected ulnae by 15% at 8 weeks compared to the control. Alendronate significantly suppressed bone formation rate by 44% compared to the control at 4 weeks. These data indicate that PTH may accelerate intracortical bone remodeling induced by microdamage and alendronate may delay intracortical bone remodeling during stress fracture repair in rats. This study suggests that PTH may be used to facilitate stress fracture repair whereas bisphosphonates may delay tissue level repair of stress fractures.  相似文献   

5.
IntroductionPeriodontitis and osteoporosis are bone destructive diseases with a high prevalence in the adult population. The concomitant presence of osteoporosis may be a risk factor of progression of periodontal destruction. We studied the effect of sclerostin-neutralizing monoclonal antibody (Scl-Ab) on alveolar bone endpoints in an ovariectomized (OVX) rat model of induced experimental periodontitis.MethodsSixty female, 4-month-old Sprague–Dawley rats underwent sham operation or bilateral OVX and were left untreated for 2 months. Experimental periodontitis (ligature) was established by placing silk sutures subgingival to the right maxillary first and second molar teeth for 4 weeks, and feeding the rats food and high-sugar drinking water during this period. Thereafter, ligatures were removed and 25 mg/kg vehicle or Scl-Ab was administered subcutaneously twice weekly for 6 weeks. Rats were randomized into four groups: (1) Control (Sham + Vehicle), (2) Sham + Ligature + Vehicle, (3) OVX + Ligature + Vehicle, and (4) OVX + Ligature + Scl-Ab. Terminal blood and right maxilla specimens were collected for analyses.ResultsGroup 3 rats showed lower bone volume fraction (BVF) of alveolar bone with higher bone resorption and lower bone formation than Group 2 rats. Group 4 rats had higher alveolar crest height, as assessed by linear distance of cementoenamel junction to the alveolar bone crest and greater alveolar bone mass using Micro CT, than Group 3 rats. Significantly higher values of mineral apposition rate (MAR) and mineralizing surface/bone surface (MS/BS) were also observed in Group 4 rats by analyzing polychrome sequential labeling data. Increased serum osteocalcin and osteoprotegerin, and deceased serum tartrate-resistant acid phosphatase and CTx-1 illustrate the ability of Scl-Ab to increase alveolar bone mass by enhancing bone formation and decreasing bone resorption in an animal model of estrogen deficiency osteopenia plus periodontitis.ConclusionScl-Ab could be a potential bone anabolic agent for improving alveolar crest height and higher alveolar bone mass in conditions where alveolar bone loss in periodontitis is compounded by estrogen deficiency osteopenia.  相似文献   

6.
Osteoporosis is characterized by low bone mass and compromised trabecular architecture, and is commonly occurred in post-menopausal women with estrogen deficiency. In addition, prolonged mechanical unloading, i.e., long term bed rest, can exaggerate the bone loss. Sclerostin is a Wnt signaling antagonist and acts as a negative regulator for bone formation. A sclerostin-neutralizing antibody (Scl-Ab) increased bone mineral density in women with postmenopausal osteoporosis and healthy men. The objective of this study was to characterize the condition of bone loss in ovariectomized (OVX) rats with concurrent mechanical unloading and evaluate the effect of sclerostin antibody treatment in mitigating the prospective severe bone loss conditions in this model. Four-month-old OVX- or sham-operated female SD rats were used in this study. They were subjected to functional disuse induced by hind-limb suspension (HLS) or free ambulance after 2 days of arrival. Subcutaneous injections with either vehicle or Scl-Ab at 25 mg/kg were made twice per week for 5 weeks from the time of HLS. μCT analyses demonstrated a significant decrease in distal metaphyseal trabecular architecture integrity with HLS, OVX and HLS + OVX (bone volume fraction decreased by 29%, 71% and 87% respectively). The significant improvements of various trabecular bone parameters (bone volume fraction increased by 111%, 229% and 297% respectively as compared with placebo group) with the administration of Scl-Ab are associated with stronger mechanical property and increased bone formation by histomorphometry. These results together indicate that Scl-Ab prevented the loss of trabecular bone mass and cortical bone strength in OVX rat model with concurrent mechanical unloading. The data suggested that monoclonal sclerostin-neutralizing antibody represents a promising therapeutic approach for severe osteoporosis induced by estrogen deficiency with concurrent mechanical unloading.  相似文献   

7.
Osteogenesis imperfecta (OI) is a heritable collagen-related bone dysplasia, characterized by brittle bones with increased fracture risk that presents most severely in children. Anti-resorptive bisphosphonates are frequently used to treat pediatric OI and controlled clinical trials have shown that bisphosphonate therapy improves vertebral outcomes but has little benefit on long bone fracture rate. New treatments which increase bone mass throughout the pediatric OI skeleton would be beneficial. Sclerostin antibody (Scl-Ab) is a potential candidate anabolic therapy for pediatric OI and functions by stimulating osteoblastic bone formation via the canonical Wnt signaling pathway. To explore the effect of Scl-Ab on the rapidly growing OI skeleton, we treated rapidly growing 3 week old Brtl/+ mice, harboring a typical heterozygous OI-causing Gly  Cys substitution on col1a1, for 5 weeks with Scl-Ab. Scl-Ab had anabolic effects in Brtl/+ and led to new cortical bone formation and increased cortical bone mass. This anabolic action resulted in improved mechanical strength to WT Veh levels without altering the underlying brittle nature of the material. While Scl-Ab was anabolic in trabecular bone of the distal femur in both genotypes, the effect was less strong in these rapidly growing Brtl/+ mice compared to WT. In conclusion, Scl-Ab was able to stimulate bone formation in a rapidly growing Brtl/+ murine model of OI, and represents a potential new therapy to improve bone mass and reduce fracture risk in pediatric OI.  相似文献   

8.
Wnt signaling has emerged as a major target pathway for the development of novel bone anabolic therapies. Neutralizing antibodies against the secreted Wnt antagonist sclerostin (Scl-Ab) increase bone mass in both animal models and humans. Because we have previously shown that Rictor-dependent mTORC2 activity contributes to Wnt signaling, we test here whether Rictor is required for Scl-Ab to promote bone anabolism. Mice with Rictor deleted in the early embryonic limb mesenchyme (Prx1-Cre;Rictorf/f, hereafter RiCKO) were subjected to Scl-Ab treatment for 5 weeks starting at 4 months of age. In vivo micro–computed tomography (μCT) analyses before the treatment showed that the RiCKO mice displayed normal trabecular, but less cortical bone mass than the littermate controls. After 5 weeks of treatment, Scl-Ab dose-dependently increased trabecular and cortical bone mass in both control and RiCKO mice, but the increase was significantly blunted in the latter. Dynamic histomorphometry revealed that the RiCKO mice formed less bone than the control in response to Scl-Ab. In addition, the RiCKO mice possessed fewer osteoclasts than normal under the basal condition and exhibited lesser suppression in osteoclast number by Scl-Ab. Consistent with the fewer osteoclasts in vivo, bone marrow stromal cells (BMSC) from the RiCKO mice expressed less Rankl but normal levels of Opg or M-CSF, and were less effective than the control cells in supporting osteoclastogenesis in vitro. The reliance of Rankl on Rictor appeared to be independent of Wnt-β-catenin or Wnt-mTORC2 signaling as Wnt3a had no effect on Rankl expression by BMSC from either control or RICKO mice. Overall, Rictor in the limb mesenchymal lineage is required for the normal response to the anti-sclerostin therapy in both bone formation and resorption.  相似文献   

9.
Dried plum has been reported to have potent effects on bone in osteopenic animal models, but the mechanisms through which bone metabolism is altered in vivo remain unclear. To address this issue, a study comparing the metabolic response of dried plum to the anabolic agent, parathyroid hormone (PTH), was undertaken. Six month-old female Sprague Dawley rats (n = 84) were sham-operated (SHAM) or ovariectomized (OVX) and maintained on a control diet for 6 wks until osteopenia was confirmed. Treatments were initiated consisting of a control diet (AIN-93M) supplemented with dried plum (0, 5, 15 or 25%; w/w) or a positive control group receiving PTH. At the end of 6 wks of treatment, whole body and femoral bone mineral density (BMD) were restored by the two higher doses of dried plum to the level of the SHAM group. Trabecular bone volume and cortical thickness were also improved with these two doses of dried plum. Dried plum suppressed the OVX-induced increase in bone turnover as indicated by systemic biomarkers of bone metabolism, N-terminal procollagen type 1 (P1NP) and deoxypyridinoline (DPD). Dynamic bone histomorphometric analysis of the tibial metaphysis revealed that dried plum restored the OVX-induced increase in cancellous bone formation rate (BFR) and mineralizing surface (MS/BS) to the SHAM group, but some doses of dried plum increased endocortical mineral apposition rate (MAR). As expected, PTH significantly increased endocortical MAR and BFR, periosteal BFR, and trabecular MAR and BFR beyond that of the OVX and maintained the accelerated rate of bone resorption associated with OVX. Dried plum up-regulated bone morphogenetic protein 4 (Bmp4) and insulin-like growth factor 1 (Igf1) while down-regulating nuclear factor T cell activator 1 (Nfatc1). These findings demonstrate that in the adult osteopenic OVX animal, the effects of dried plum differ from that of PTH in that dried plum primarily suppressed bone turnover with the exception of the indices of bone formation at the endocortical surface.  相似文献   

10.
Stimulation of bone formation by PTH is related to mechanosensitivity. The response to PTH treatment in intact bone could therefore be blunted by unloading. We studied the effects of mechanical loading on the response to PTH treatment in bone healing. Most fractures occur in the metaphyses, therefor we used a model for metaphyseal bone injury.One hind leg of 20 male SD rats was unloaded via intramuscular botulinum toxin injections. Two weeks later, the proximal unloaded tibia had lost 78% of its trabecular contents. At this time-point, the rats received bilateral proximal tibiae screw implants. Ten of the 20 rats were given daily injections of 5 μg/kg PTH (1–34). After two weeks of healing, screw fixation was measured by pull-out, and microCT of the distal femur cancellous compartment was performed. Pull-out force provided an estimate for cancellous bone formation after trauma.PTH more than doubled the pull-out force in the unloaded limbs (from 14 to 30 N), but increased it by less than half in the loaded ones (from 30 to 44 N). In relative terms, PTH had a stronger effect on pull-out force in unloaded bone than in loaded bone (p = 0.03).The results suggest that PTH treatment for stimulation of bone healing does not require simultaneous mechanical stimulation.  相似文献   

11.
Three experiments were conducted to investigate the effect of intermittent administration of parathyroid hormone (PTH) (1–34) applied at different regimes on fracture healing and muscle in healthy and ovariectomized (Ovx at 3 months of age) rats. Five-month old rats underwent bilateral transverse metaphyseal osteotomy of tibia and were divided into groups (12 rats each). In Exp 1, Ovx rats were either treated with PTH (7×/w, 1–35d), with oral estradiol-17β-benzoate (0.4 mg/kg BW, 1–35d) or untreated. In Exp. 2, there were 3 groups: healthy untreated or treated with PTH (5×/w, 1–35d or 7–35d). In Exp. 3, there were 7 groups: healthy, Ovx, “healthy PTH 5×/w 7–35d”, “Ovx PTH 5×/w 7–35d, 14–35d or 14–28d”, “Ovx PTH every other day 7–35d”. Single dosage of PTH was 40 μg/kg BW. After 35 days of healing one tibia was analyzed by computed tomographical, biomechanical, histological analyses. The other tibia was used in analyses of Alp, Oc, Trap 1, Igf-1, Rankl, Opg genes (Exp.2, 3). Serum Oc and Alp were measured. Body, uterus weight was recorded. M. gastrocnemius was analyzed for weight (Exp. 2), fiber size and mitochondrial respiratory activity (MRA) (Exp.3). Estrogen enhanced uterus weight, prevented body increase, however, did not improve bone healing in Ovx rats (Exp. 1). PTH administration from days 1 and 7 improved bone parameters in all rats regardless of the application frequency (7, 5×/w or every other day) (Exp. 1, stiffness Ovx: 118 + 13 N/mm, Ovx PTH: 250 ± 20 N/mm) being more effective in healthy rats (Exp. 3, stiffness improvement Healthy: 59 to 174 N/mm, Ovx: 52 to 98 N/mm). Serum Oc level was elevated in PTH treated rats. Application from day 14 proved to be less effective (Exp. 3). PTH had no effect (P > 0.05) on body, uterus and muscle weight, muscle fiber size, MRA and expression of bone markers. PTH promoted bone healing in Ovx and healthy rats, when it is applied during early stage of healing without having any adverse systemic effect. In perspective, PTH may represent a treatment for enhancement of fracture healing. The findings need to be confirmed by follow-up studies on other animals.  相似文献   

12.
During spaceflight, astronauts will be exposed to a complex mixture of ionizing radiation that poses a risk to their health. Exposure of rodents to ionizing radiation on Earth causes bone loss and increases osteoclasts in cancellous tissue, but also may cause persistent damage to stem cells and osteoprogenitors. We hypothesized that ionizing radiation damages skeletal tissue despite a prolonged recovery period, and depletes the ability of cells in the osteoblast lineage to respond at a later time. The goal of the current study was to test if irradiation prevents bone accrual and bone formation induced by an anabolic mechanical stimulus. Tibial axial compression was used as an anabolic stimulus after irradiation with heavy ions. Mice (male, C57BL/6J, 16 weeks) were exposed to high atomic number, high energy (HZE) iron ions (56Fe, 2 Gy, 600 MeV/ion) (IR, n = 5) or sham-irradiated (Sham, n = 5). In vivo axial loading was initiated 5 months post-irradiation; right tibiae in anesthetized mice were subjected to an established protocol known to stimulate bone formation (cyclic 9N compressive pulse, 60 cycles/day, 3 day/wk for 4 weeks). In vivo data showed no difference due to irradiation in the apparent stiffness of the lower limb at the initiation of the axial loading regimen. Axial loading increased cancellous bone volume by microcomputed tomography and bone formation rate by histomorphometry in both sham and irradiated animals, with a main effect of axial loading determined by two-factor ANOVA with repeated measure. There were no effects of radiation in cancellous bone microarchitecture and indices of bone formation. At the tibia diaphysis, results also revealed a main effect of axial loading on structure. Furthermore, irradiation prevented axial loading-induced stimulation of bone formation rate at the periosteal surface of cortical tissue. In summary, axial loading stimulated the net accrual of cancellous and cortical mass and increased cancellous bone formation rate despite prior exposure to ionizing radiation, in this case, HZE particles. Our findings suggest that mechanical stimuli may prove an effective treatment to improve skeletal structure following exposure to ionizing radiation.  相似文献   

13.
We examined the effects of ONO-5334, a cathepsin K inhibitor, on bone markers, BMD, strength and histomorphometry in ovariectomized (OVX) cynomolgus monkeys. ONO-5334 (1.2, 6 and 30 mg/kg/day, p.o.), alendronate (0.05 mg/kg/2 weeks, i.v.), or vehicle was administered to OVX monkeys (all groups N = 20) for 16 months. A concurrent Sham group (N = 20) was also treated with vehicle for 16 months. OVX significantly increased bone resorption and formation markers and decreased BMD in lumbar vertebra, femoral neck, proximal tibia and distal radius. Alendronate suppressed these parameters to a level similar to that in the Sham-operated monkeys. ONO-5334 at doses 6 and 30 mg/kg decreased bone resorption markers to a level roughly half of that in the Sham group, while keeping bone formation markers level above that in the Sham monkeys. Changes in DXA BMD confirmed that ONO-5334 at doses 6 and 30 mg/kg increased BMD to a level greater than that in the Sham group in all examined sites. In the proximal tibia, in vivo pQCT analysis showed that ONO-5334 at doses 6 and 30 mg/kg suppressed trabecular BMD loss to the sham level. However, ONO-5334 increased cortical BMD, cortical area and cortical thickness to a level greater than that in the Sham group, suggesting that ONO-5334 improves both cortical BMD and cortical geometry. Histomorphometric analysis revealed that ONO-5334 suppressed bone formation rate (BFR) at osteonal site in the midshaft femur but did not influence OVX-induced increase in BFR at either the periosteal or endocortical surfaces. Unlike alendronate, ONO-5334 increased osteoclasts surface (Oc.S/BS) and serum tartrate-resistant acid phosphatise 5b (TRAP5b) activity, highlighting the difference in the mode of action between these two drugs. Our results suggest that ONO-5334 has therapeutic potential not only in vertebral bones, but also in non-vertebral bones.  相似文献   

14.
Calcium and vitamin D are essential nutrients for bone health. Periods of activity with repetitive mechanical loading, such as military training, may result in increases in parathyroid hormone (PTH), a key regulator of Ca metabolism, and may be linked to the development of stress fractures. Previous studies indicate that consumption of a Ca and vitamin D supplement may reduce stress fracture risk in female military personnel during initial military training, but circulating markers of Ca and bone metabolism and measures of bone density and strength have not been determined. This randomized, double-blind, placebo-controlled trial sought to determine the effects of providing supplemental Ca and vitamin D (Ca + Vit D, 2000 mg and 1000 IU/d, respectively), delivered as 2 snack bars per day throughout 9 weeks of Army initial military training (or basic combat training, BCT) on PTH, vitamin D status, and measures of bone density and strength in personnel undergoing BCT, as well as independent effects of BCT on bone parameters. A total of 156 men and 87 women enrolled in Army BCT (Fort Sill, OK; 34.7°N latitude) volunteered for this study. Anthropometric, biochemical, and dietary intake data were collected pre- and post-BCT. In addition, peripheral quantitative computed tomography was utilized to assess tibia bone density and strength in a subset of volunteers (n = 46). Consumption of supplemental Ca + Vit D increased circulating ionized Ca (group-by-time, P = 0.022), maintained PTH (group-by-time, P = 0.032), and increased the osteoprotegerin:RANKL ratio (group-by-time, P = 0.006). Consistent with the biochemical markers, Ca + Vit D improved vBMD (group-by-time, P = 0.024) at the 4% site and cortical BMC (group-by-time, P = 0.028) and thickness (group-by-time, P = 0.013) at the 14% site compared to placebo. These data demonstrate the benefit of supplemental Ca and vitamin D for maintaining bone health during periods of elevated bone turnover, such as initial military training.This trial was registered with ClincialTrials.gov, NCT01617109.  相似文献   

15.
Intermittent administration of parathyroid hormone (PTH) is used to stimulate bone formation in patients with osteoporosis. A reduction in the degree of matrix mineralisation has been reported during treatment, which may reflect either production of undermineralised matrix or a greater proportion of new matrix within the bone samples assessed. To explore these alternatives, high resolution synchrotron-based Fourier Transform Infrared Microspectroscopy (sFTIRM) coupled with calcein labelling was used in a region of non-remodelling cortical bone to determine bone composition during anabolic PTH treatment compared with region-matched samples from controls.8 week old male C57BL/6 mice were treated with vehicle or 50 μg/kg PTH, 5 times/week for 4 weeks (n = 7–9/group). Histomorphometry confirmed greater trabecular and periosteal bone formation and 3-point bending tests confirmed greater femoral strength in PTH-treated mice. Dual calcein labels were used to match bone regions by time-since-mineralisation (bone age) and composition was measured by sFTIRM in six 15 μm2 regions at increasing depth perpendicular to the most immature bone on the medial periosteal edge; this allowed in situ measurement of progressive changes in bone matrix during its maturation.The sFTIRM method was validated in vehicle-treated bones where the expected progressive increases in mineral:matrix ratio and collagen crosslink type ratio were detected with increasing bone maturity. We also observed a gradual increase in carbonate content that strongly correlated with an increase in longitudinal stretch of the collagen triple helix (amide I:amide II ratio). PTH treatment did not alter the progressive changes in any of these parameters from the periosteal edge through to the more mature bone.These data provide new information about how the bone matrix matures in situ and confirm that bone deposited during PTH treatment undergoes normal collagen maturation and normal mineral accrual.  相似文献   

16.
PurposeGenetic knockout or pharmacological inhibition of the beta-2 adrenergic receptor (B2AR) increased bone mass, whereas stimulation decreased bone mass in rodents. In humans, observational studies support sympathetic nervous system regulation of bone metabolism, but intervention studies are lacking. We aimed to determine the effects of a selective beta-2 adrenergic agonist and non-selective antagonist on human bone metabolism.Methods32 healthy postmenopausal women were included in a randomized controlled trial conducted in the Academic Medical Center Amsterdam. Participants were randomized to receive treatment with 17-β estradiol 2 mg/day; 17-β estradiol 2 mg/day and terbutaline 5 mg/day (selective B2AR agonist); propranolol 80 mg/day (non-selective B-AR antagonist); or no treatment during 12 weeks. Main outcome measure was the change in serum concentrations of procollagen type I N propeptide (P1NP) and C-terminal crosslinking telopeptides of collagen type I (CTx) as markers of bone formation and resorption after 12 weeks compared between the treatment groups. Data were analyzed with mixed model analysis.Results17-β estradiol decreased bone turnover compared to control (P1NP p < 0.001, CTx p = 0.003), but terbutaline combined with 17-β estradiol failed to increase bone turnover compared to 17-β estradiol alone (P1NP p = 0.135, CTx p = 0.406). Propranolol did not affect bone turnover compared to control (P1NP p = 0.709, CTx p = 0.981).ConclusionSelective beta-2 adrenergic agonists and non-selective beta-antagonists do not affect human bone turnover although we cannot exclude small changes below the detection limit of this study.  相似文献   

17.
Type 2 diabetes mellitus increases skeletal fragility; however, the contributing mechanisms and the efficacy of bone-forming agents are unclear. We studied diabetes and parathyroid hormone (PTH) treatment effects on cortical porosity (Ct.Po), non-enzymatic glycation (NEG) and bone mechanics in Zucker diabetic fatty (ZDF) rats.Eleven-week old ZDF diabetic (DB) and non-diabetic (ND) rats were given 75 μg/kg PTH (1–84) or vehicle 5 days per week over 12 weeks. The right femora and L4 vertebrae were excised, micro-CT scanned, and tested in 3-point bending and uniaxial compression, respectively. NEG of the samples was determined using fluorescence.Diabetes increased Ct.Po (vertebra (vert): + 40.6%, femur (fem): + 15.5% vs. ND group, p < 0.05) but had no effect on NEG. PTH therapy reduced vertebral NEG in the ND animals only (− 73% vs untreated group, p < 0.05), and increased femoral NEG in the DB vs. ND groups (+ 63%, p < 0.05). PTH therapy had no effect on Ct.Po. Diabetes negatively affected bone tissue mechanics where reductions in vertebral maximum strain (− 22%) and toughness (− 42%) were observed in the DB vs. ND group (p < 0.05). PTH improved maximum strain in the vertebra of the ND animals (+ 21%, p < 0.05) but did not have an effect in the DB group. PTH increased femoral maximum strain (+ 21%) and toughness (+ 28%) in ND and decreased femoral maximum stress (− 13%) and toughness (− 27%) in the DB animals (treated vs. untreated, p < 0.05). Ct.Po correlated negatively with maximum stress (fem: R =  0.35, p < 0.05, vert: R =  0.57, p < 0.01), maximum strain (fem: R =  0.35, p < 0.05, vert: R =  0.43, p < 0.05) and toughness (fem: R =  0.34, p < 0.05, vert: R =  0.55, p < 0.01), and NEG correlated negatively with toughness at the femur (R =  0.34, p < 0.05) and maximum strain at the vertebra (R =  0.49, p < 0.05).Diabetes increased cortical porosity and reduced bone mechanics, which were not improved with PTH treatment. PTH therapy alone may worsen diabetic bone mechanics through formation of new bone with high AGEs cross-linking. Optimal treatment regimens must address both improvements of bone mass and glycemic control in order to successfully reduce diabetic bone fragility.This article is part of a Special Issue entitled “Bone and diabetes”.  相似文献   

18.
Hedgehog (Hh) signaling is critical in developmental osteogenesis, and recent studies suggest it may also play a role in regulating osteogenic gene expression in the post-natal setting. However, there is a void of studies directly assessing the effect of Hh inhibition on post-natal osteogenesis. This study utilized a cyclic loading-induced ulnar stress fracture model to evaluate the hypothesis that Hh signaling contributes to osteogenesis and angiogenesis during stress fracture healing. Immediately prior to loading, adult rats were given GDC-0449 (Vismodegib — a selective Hh pathway inhibitor; 50 mg/kg orally twice daily), or vehicle. Hh signaling was upregulated in response to stress fracture at 3 days (Ptch1, Gli1 expression), and was markedly inhibited by GDC-0449 at 1 day and 3 days in the loaded and non-loaded ulnae. GDC-0449 did not affect Hh ligand expression (Shh, Ihh, Dhh) at 1 day, but decreased Shh expression by 37% at 3 days. GDC-0449 decreased woven bone volume (− 37%) and mineral density (− 17%) at 7 days. Dynamic histomorphometry revealed that the 7 day callus was composed predominantly of woven bone in both groups. The observed reduction in woven bone occurred concomitantly with decreased expression of Alpl and Ibsp, but was not associated with differences in early cellular proliferation (as determined by callus PCNA staining at 3 days), osteoblastic differentiation (Osx expression at 1 day and 3 days), chondrogenic gene expression (Acan, Sox9, and Col2α1 expression at 1 day and 3 days), or bone resorption metrics (callus TRAP staining at 3 days, Rankl and Opg expression at 1 day and 3 days). To evaluate angiogenesis, vWF immunohistochemistry showed that GDC-0449 reduced fracture callus blood vessel density by 55% at 3 days, which was associated with increased Hif1α gene expression (+ 30%). Dynamic histomorphometric analysis demonstrated that GDC-0449 also inhibited lamellar bone formation. Lamellar bone analysis of the loaded limb (directly adjacent to the woven bone callus) showed that GDC-0449 significantly decreased mineral apposition rate (MAR) and bone formation rate (BFR/BS) (− 17% and − 20%, respectively). Lamellar BFR/BS in the non-loaded ulna was also significantly decreased (− 37%), indicating that Hh signaling was required for normal bone modeling. In conclusion, Hh signaling plays an important role in post-natal osteogenesis in the setting of stress fracture healing, mediating its effects directly through regulation of bone formation and angiogenesis.  相似文献   

19.
Diabetes adversely impacts many organ systems including the skeleton. Clinical trials have revealed a startling elevation in fracture risk in diabetic patients. Bone fractures can be life threatening: nearly 1 in 6 hip fracture patients die within one year. Because physical exercise is proven to improve bone properties and reduce fracture risk in non-diabetic subjects, we tested its efficacy in type 1 diabetes. We hypothesized that diabetic bone's response to anabolic mechanical loading would be attenuated, partially due to impaired mechanosensing of osteocytes under hyperglycemia. Heterozygous C57BL/6-Ins2Akita/J (Akita) male and female diabetic mice and their age- and gender-matched wild-type (WT) C57BL/6J controls (7-month-old, N = 5–7 mice/group) were subjected to unilateral axial ulnar loading with a peak strain of 3500 με at 2 Hz and 3 min/day for 5 days. The Akita female mice, which exhibited a relatively normal body weight and a mild 40% elevation of blood glucose level, responded with increased bone formation (+ 6.5% in Ct.B.Ar, and 4 to 36-fold increase in Ec.BFR/BS and Ps.BFR/BS), and the loading effects, in terms of changes of static and dynamic indices, did not differ between Akita and WT females (p  0.1). However, loading-induced anabolic effects were greatly diminished in Akita males, which exhibited reduced body weight, severe hyperglycemia (+ 230%), diminished bone formation (ΔCt.B.Ar: 0.003 vs. 0.030 mm2, p = 0.005), and suppressed periosteal bone appositions (ΔPs.BFR/BS, p = 0.02). Hyperglycemia (25 mM glucose) was further found to impair the flow-induced intracellular calcium signaling in MLO-Y4 osteocytes, and significantly inhibited the flow-induced downstream responses including reduction in apoptosis and sRANKL secretion and PGE2 release. These results, along with previous findings showing adverse effects of hyperglycemia on osteoblasts and mesenchymal stem cells, suggest that failure to maintain normal glucose levels may impair bone's responses to mechanical loading in diabetics.  相似文献   

20.
Although it is recognized that cortical bone contributes significantly to the mechanical strength of the skeleton, little is known about this compartment from bone biopsy studies, particularly in CKD patients. In addition, there is no prospective data on the effects of CKD-MBD therapy on cortical porosity (Ct.Po). This is a post hoc analysis on data from a randomized controlled trial on the effects of different phosphate binders on bone remodelling. Therapy was adjusted according to the first biopsy, and included sevelamer or calcium acetate, calcitriol and changes in calcium dialysate concentration. We measured Ct.Po at baseline and one year after. Fifty-two patients (46 ± 13 years old, 67% women and 60% white) were enrolled. Ct.Po was already high at baseline in 85% of patients [30% (17, 46)] and correlated with PTH (p = 0.001). Low bone turnover was seen in 28 patients (54.9%). After one-year treatment, PTH increased in patients with low turnover, as intended. However, increased Ct.Po was seen in 49 patients (94%). This increase correlated with the delta of phosphate (p = 0.015) and the delta of PTH (p = 0.03); it was also higher among non-white patients than in white patients (p = 0.039). The risk of increase in Ct.Po was 4.5 higher among non-white patients. Adjusted multiple regression analysis showed that the delta of Ct.Po was dependent on delta PTH and race (r2 = 0.193). We concluded that in an attempt to increase bone turnover, the increase in PTH levels might be associated with higher cortical porosity, particularly in non-white patients. Whether this finding leads to a high risk of fracture deserves further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号