首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 187 毫秒
1.
目的:探讨不同能量下,Varian21EX直线加速器中物理楔形因子和动态楔形因子受照射野大小和深度的影响。方法:在固体水膜体中利用0.6 cc电离室对6 MV和15 MV射线束下不同角度物理楔形板和动态楔形板分别测量加和不加楔形滤片时的剂量率来计算楔形因子。通过测量不同角度的物理楔形板和动态楔形板在固定照射野(10 cm×10 cm)的不同深度下的楔形因子来研究楔形因子随深度的变化规律。同时,对于楔形因子随射野大小的变化规律,还测量了不同角度的物理楔形板和动态楔形板在固定深度(d=10 cm)下的不同射野大小的楔形因子。为了更好地分析物理楔形因子与动态楔形因子的差异,引入了相对楔形因子NWF。结果:深度对于物理楔形板的楔形因子较为明显,深度增加时楔形因子增大,且随着楔形角的增大变化更明显。对于150、300、450、600的物理楔形板,当深度由最大深度增加到20 cm时对于6 MV能量楔形因子分别增加了1.86%、3.79%、4.99%、7.95%;对于15 MV能量1.29%、1.35%、1.49%、2.03%。而动态楔形因子随深度变化不明显,最大变化不到1%。射野大小对于物理楔形因子也有一定的影响,楔形因子随射野增加而增加,但是增加幅度不大;而对于动态楔形板,在6 MV和15 MV射线束下楔形因子受射野的增大都有明显的减小。对于100、150、200、250、300、450、600的动态楔形板,从参考射野(10 cm×10 cm)到最大射野,楔形因子分别减少了7.91%、11.04%、14.08%、16.96%、19.7%、28.03%、35.89%对于6 MV和5.72%、8.17%、10.41%、12.85%、15.08%、21.82%、30.59%对于15 MV能量。结论:对于物理楔形板,深度和射野大小都对物理楔形因子有影响,所以临床剂量计算时必须考虑深度和射野大小对物理楔形因子的影响并对它进行修正。对于动态楔形板,深度对动态楔形因子影响较小,在临床剂量计算时可以忽略;而射野大小对动态楔形因子影响比较明显,在临床剂量计算时只须考虑相对射野楔形因子。  相似文献   

2.
目的:探讨利用二维半导体阵列(Mapcheck)测量Varian动态楔形板二维平面剂量的方法。方法与材料:(1)在CMS XIO治疗计划系统(TPS)建立一个模体,在三维治疗计划系统上设置一定条件的射野计算并输出二维剂量平面分布图。(2)用标定后的Mapcheck逐一测量治疗计划系统给定的条件射野及楔形角,并用测量结果与TPS计算结果比较。(3)比较不同照射野及动态楔形角的水下深度5 cm的绝对剂量,并分析。结果:Mapcheck测量的二维平面剂量结果与TPS计算的结果通过率都在98%以上。Mapcheck测量与TPS计算水下深度5 cm剂量相差都在正负0.8%范围内。结论:利用Mapcheck测量动态楔形板的二维平面剂量的方法是可行的,测量结果准确,且精度较高,方便、快速。  相似文献   

3.
目的:探讨动态楔形板和物理楔形板对射线深度剂与射野外周边剂量的影响。方法:利用电离室法测量平野、动态楔形野、物理楔形野的深度剂量和射野外周边剂量。结果:动态楔形野的深度剂量和射野外周边剂量接近于平野的深度剂量和射野外周边剂量;而物理楔形野的深度剂量和射野外周边剂量高于平野的深度剂量和射野外周边剂量。结论:剂量计算时、动态楔形野可以利用平野的深度剂量,而物理楔形野需采用楔形深度剂量;使用物理楔形板时应注意想邻野或野外敏感器官的受量。  相似文献   

4.
楔形野剂量计算中的误差分析和修正   总被引:4,自引:0,他引:4  
目的研究楔形野剂量计算中的误差,并探讨解决方法.材料与方法在10MV和6MVX线条件下,用NEFarmer25710.6cc指形电离室和三维水箱在水模中测出平野和楔形野的各种参数,并用二种方法计算剂量,结果与实侧值比较.结果实测数据显示Pdd和Scp在平野和楔形野情况下存在差异.楔形因子因此随深度而变化,变化程度受射线能量、楔形板规格影响.与实测值比较,用传统方法计算楔形野剂量的结果存在误差,误差大小与能量、野面积、深度有关.6MVX线、15×15野、20cm深度处的计算误差可达11%.而用改进的方法进行计算,可将误差控制在1%以内.结论由于忽略了Pdd等物理参数在楔形野条件下的变化,用传统方法计算楔形野剂量存在误差.为保证临床剂量计算的准确性,应在计算公式中加入修正因子.  相似文献   

5.
目的:探讨Elekta motorized wedge楔形因子随射野宽度和测量深度的变化特性。方法:对Elekta Precise直线加速器6 MV X-ray,用Farmer 2571指形电离室和美国Capintec 192剂量仪,在固定测量深度的条件下,逐步扩大射野,实测获得15°,30°,45°,60°四个角度楔形板的楔形因子随射野宽度的变化特性;在固定射野宽度的条件下,逐步改变测量点的深度,实测获得15°,30°,45°,60°四个角度楔形板的楔形因子随测量深度的变化特性;同时,将每个实测到得的楔形因子与Elekta Precise TPS 2.12模拟实测条件输出的楔形因子进行了对比。结果:Elekta motorized wedge楔形因子随射野宽度和测量深度的增加而变大,呈现线性变化。当FSZ〈20 cm×20 cm时,楔形因子随射野宽度线性变化的斜率比较大,当FSZ〉20 cm×20 cm时,楔形因子随射野宽度线性变化的斜率比较小,深度对楔形因子的影响小于射野宽度。Elekta Pre-cise TPS 2.12模拟实测条件输出的楔形因子与实测得到的相近,偏差较小。结论:当FSZ〈20 cm×20 cm时,宽度对楔形因子的影响不能忽略,因此处方剂量计算时应先求得等效方野,而后用该等效方野对应的楔形因子进行楔形野的处方剂量计算;当FSZ〉20 cm×20 cm时,可以采用20 cm×20 cm测得的楔形因子进行楔形野的处方剂量计算;深度对楔形因子的影响可忽略,可以将参考深度(水下10 cm)获得的楔形因子用于所有的深度。  相似文献   

6.
目的:动态楔形技术即在加速器治疗时用计算机控制铅门的运动以使X线在所设定的照射野和深度处得到治疗所需要的楔形等剂量线分布,以代替传统的物理楔形板。在1978年,P.K.Kijewski等人[1]提出动态楔形技术(DW)之后,上个世纪90年代,John.P.Gibbons[2]提出了将动态楔形技术应用于临床,并对Varian加速器作了大量的研究。但对于Siemens医用直线加速器报道尚少。方法:本文以Siemens Primus医用直线加速器为研究对象,在水箱中放入0.6 cc电离室并与NE2620型剂量仪相连,分别对6 MV和15 MV光子线在dmax深度处进行测量。通过实验,找出适合Siemens Primus医用直线加速器的动态楔形临床剂量计算公式。结果:在实验过程中,我们发现,按照经验公式所拟合出来的公式与通过与Siemens Primus医用直线加速器的动态楔形因子的计算公式及公式中出现的参量[3]的理论值比较,即文中的公式理论值与实验值的比较,在用于临床时,我们发现,实验拟合出来的公式满足临床要求,误差结果在1%~2%内。结论:对于Siemens Primus加速器,在应用动态楔形技术时,对于对称野在临床剂量计算过程中,可以不考虑EDWF值,即与常规剂量计算一样。  相似文献   

7.
目的:找出在各种机头角和医科达物理楔楔形角的情况下,在横断面、冠状面、矢状面形成楔形角的规律,根据这个规律可以在治疗计划设计中机架角选定的情况下找到最佳的机头角和楔形角,使楔形板从调整二维剂量分布提升到调整准三维剂量分布。方法:建立医科达物理楔模型,通过推导和假设得到机头角和楔形角关系的公式,并按照楔形角的定义在计划系统中通过计算对公式做验证。结果:选择两个患者,分别用传统方式和调整机头角和楔形角的方式做治疗计划.两个计划中调整方式比传统方式的剂量均匀性更好,在危及器官保护程度相同的情况下,可以降低MU、提高靶区剂量。结论:采用上述方法,在实际设计计划时可以应用这种关系找到最优化的机头角和楔形角,调整准三维剂量分布。  相似文献   

8.
楔形滤片对X射线辐射质的影响   总被引:7,自引:2,他引:5  
光子照射野中引入楔形滤片将导致射线辐射质发生改变,继而使楔形野与平野相比,深度剂量发生改变。本文研究楔形野和平野两种情况下的辐射质差异,发现辐射质指数I变化达2.9%,最大剂量点深度变化达4mm。为精确治疗,我们建议应测量楔形野的剂量数据。  相似文献   

9.
照射野大小和测量深度不同,将导致楔形因素发生改变,继而使楔形照射野下的剂量计算发生偏差.本文研究照射野大小及测量深度对楔形因素的影响后,发现以多数作者采用的以10cm×10cm照射野,10cm深度测量的楔形因素为标准值,则方野时楔形因素最大偏差达2.9%,矩形野时最大偏差达3.4%;如果以其他作者采用的以10cm×10cm照射野,最大剂量深度处的楔形因素为标准值,则方野时楔形因素最大偏差达5.2%,矩形野时最大偏差达5.3%.WHO的有关规定是楔形因素的精度不能超过2%[1],否则必须修正.为精确治疗,我们建议应测量并使用不同楔形野的楔形因素,达到放射治疗质量保证和质量控制规定的标准.  相似文献   

10.
目的:通过比较研究不同临床照射条件下,6 MV X线对皮肤剂量的影响。方法:在常规治疗模式下,利用平行板电离室在固体水中测量不同射野大小、不同源皮距(SSD)、(有/无)有机玻璃挡铅托板、动态楔形板、固定楔形板、多叶准直器(MLC)及低熔点合金挡铅等不同照射参数条件下皮肤相对受量。结果:皮肤剂量随着照射野由3 cm×3 cm到30 cm×30 cm时,其剂量由8%上升到30%;皮肤剂量随源皮距(SSD)的增加而逐渐降低,并且这种变化在大野时比较明显;有机玻璃挡铅托板的使用明显增加了皮肤受量且在大野时增加更为显著;在使用固定楔形板时(各角度),皮肤剂量较开野小,然而在使用动态楔形板时,皮肤剂量因楔角不同而不同,在小角度时皮肤受量与开野相似,但在大角度时,皮肤受量有较明显的降低;低熔点合金挡铅增加了皮肤剂量,MLC对皮肤剂量的影响类似低熔点合金挡铅,但增加效果没有合金挡铅明显。结论:在不同的照射条件下,皮肤的受量有较大的变化,因此本研究的意义在于揭示这种影响,为以后治疗计划设计提供参考意见。  相似文献   

11.
目的:研究YC-TQ-Ⅱ型全身集成定位架对放疗靶区吸收剂量的影响。 方法:将尺寸为30 cm×30 cm×15 cm的固体水模体固定在全身集成定位架体部中心轴上进行CT扫描后,将CT图像导入XiO TPS并勾画出固体水模体、靶区及全身集成定位架结构,之后以电离室为中心,机架角度从0°开始每隔一定角度添加一个10 cm×10 cm、100 MU不同能量射线的照射野。考虑到高密度材料的大小对机架角度的影响,在以下机架角度范围内每隔1°测一个值(61°~79°、101°~119°、241°~259°、281°~299°);在其他机架角度范围内每隔10°测一个值(0°~60°、80°~100°、120°~240°、260°~280°、300°~350°)。根据对称性计算出高能X射线穿过全身集成定位架的衰减率,随后在医用直线加速器上用UNDOSE剂量仪进行同等条件下的测量来验证XiO TPS计算的准确性,最后在XiO TPS上对比有无全身集成定位架的三维适形放疗计划靶区吸收剂量变化情况。 结果:全身集成定位架对高能X射线的最大衰减率为:13.0%(6 MV)、11.4%(15 MV),并且XiO TPS计算值与实际测量值符合得很好,最大偏差0.6%(15 MV);添加全身集成定位架后靶区的D95%由6 000 cGy变化为5 304 cGy(6 MV)、5 484 cGy(15 MV);放疗计划靶区的均匀性指数分别由0.091(6 MV)、0.104(15 MV)变化为0.195(6 MV)、0.175(15 MV);靠近体架端靶区的6 000 cGy、5 500 cGy等剂量线明显上移,且6 MV比15 MV严重。 结论:YC-TQ-Ⅱ型全身集成定位架中的高密度材料可显著降低放疗靶区的吸收剂量,需要考虑其对高能X射线的衰减率并加以修正。  相似文献   

12.
目的:在全身放射治疗条件下,测量直线加速器空气中射线场均匀性,水模体内剂量分布情况,以及不同规格水模体的百分深度剂量值。方法:将加速器的源皮距(SSD)延长至450 cm,机架头旋转为90°,准直器开到最大,治疗头旋转为45°,形成菱形射野,使用剂量测量仪:PTW-UNIDOS,电离室:PTW 30001,测量Varian Clinac 2100C直线加速器的剂量值。结果与结论:加速器在空气中射线场剂量:T方向上总的平均值为5.147,绝对误差为5.8%,归一后相对误差达到;G方向上总的平均值为5.124,绝对误差为5.1%,归一后相对误差达到;此加速器的射线场均匀性可以用于全身放射治疗。水模体内剂量分布情况,在10 cm深度处,平均剂量值为8.960,归一数据中的绝对误差为;在20 cm深度处,平均剂量为6.381,从归一数据中的绝对误差为。  相似文献   

13.
目的:通过旋转准直器,研究准直器的旋转对鼻咽癌容积旋转调强(VMAT)计划与剂量验证的影响。方法:选择10名T3期鼻咽癌患者,每位患者分别设计10个VMAT计划,10个VMAT计划准直器角度分别为0°、5°、10°、15°、20°、25°、30°、35°、40°、45°,比较分析不同计划中靶区剂量、危及器官和正常组织的受照剂量以及机器跳数,并对每个计划进行剂量验证。结果:准直器角度为10°的VMAT计划,PGTVnx、PTV1以及PTV2的HI均值最小,CI均值最大(P<0.05)。PGTVnd的HI均值在所有计划中变化不大(P>0.05),CI均值在5°~30°最大(P<0.05)。脑干、脊髓以及眼球Dmax在5°~20°时较小(P<0.05),视交叉和下颌骨Dmax在15°~25°时较小,腮腺V30在35°时最小。靶区外正常组织,在低剂量区V5~V20时,0°和5°受照体积最低,在高剂量区V25~V50,10°最低。在不同的准直器角度,机器跳数平均值最小的是准直器为0°的计划,最大的是30°(P<0.05)。所有计划的γ通过率均在98%以上,其中准直器在20°时通过率最高。结论:在进行鼻咽癌VMAT计划设计时,可以将准直器角度设置在10°~20°来获取更好的靶区剂量分布,减少危及器官以及正常组织的受照剂量,同时不会降低剂量验证的通过率。 【关键词】鼻咽癌;容积旋转调强;准直器角度;剂量验证  相似文献   

14.
Compared with a set of physical photon wedges, a non physical wedge (virtual or dynamic wedge), realized by a moving collimator jaw, offers an alternative that allows creation of a wedged field with any arbitrary wedge angle instead of the traditional four physical wedges (15 degrees, 30 degrees, 45 degrees and 60 degrees). It is commonly assumed that non-physical wedges do not alter the photon spectrum compared with physical wedges that introduce beam hardening and loss of dose uniformity in the unwedged direction. In this study, we investigated the influence of a virtual wedge on the photon spectra of a 6-10 MV Siemens MD2 accelerator with the Monte Carlo code EGS4/BEAM. Good agreement was obtained between calculated and measured lateral dose profiles at the depth of maximum dose and at 10 cm depth for 20 x 20 cm2 fields for 6 and 10 MV photon beams. By comparing Monte Carlo models of a physical wedge and the virtual wedge that was studied in this work, it is confirmed that the latter has an insignificant effect on the beam quality, whereas the former can introduce significant beam hardening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号